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KEY PO INTS

� A data set of >170000
microscopic images
allows training neural
networks for
identification of BM cells
with high accuracy.

� Neural networks
outperform a feature-
based approach to BM
cell classification and
can be analyzed with
explainability and fea-
ture embedding
methods.

Biomedical applications of deep learning algorithms rely on large expert annotated data
sets. The classification of bone marrow (BM) cell cytomorphology, an important cornerstone
of hematological diagnosis, is still done manually thousands of times every day because of a
lack of data sets and trained models. We applied convolutional neural networks (CNNs) to a
large data set of 171374 microscopic cytological images taken from BM smears from 945
patients diagnosed with a variety of hematological diseases. The data set is the largest
expert-annotated pool of BM cytology images available in the literature. It allows us to train
high-quality classifiers of leukocyte cytomorphology that identify a wide range of diagnos-
tically relevant cell species with high precision and recall. Our CNNs outcompete previous
feature-based approaches and provide a proof-of-concept for the classification problem of
single BM cells. This study is a step toward automated evaluation of BM cell morphology
using state-of-the-art image-classification algorithms. The underlying data set represents an
educational resource, as well as a reference for future artificial intelligence–based
approaches to BM cytomorphology.

Introduction
Examination and differentiation of bone marrow (BM) cell
morphologies are important cornerstones in the diagnosis of
malignant and nonmalignant diseases affecting the hematopoietic
system1-5 Although a large number of sophisticated methods,
including cytogenetics, immunophenotyping, and, increasingly,
molecular genetics, are now available, cytomorphologic exami-
nation remains an important first step in the diagnostic workup of
many intra- and extramedullary pathologies. Having been
established in the 19th century,6 the role of BM cytology is still
central for its relatively quick and widespread technical availabil-
ity.7 The method has been difficult to automatize, which is why, in
a clinical routine workflow, microscopic examination and classifi-
cation of single-cell morphology are still primarily performed by
human experts. However, manual evaluation of BM smears can be
tedious and time-consuming and are highly dependent on
examiner skill and experience, especially in unclear cases.8 Hence,
the number of high-quality cytological examinations is limited by
the availability and experience of trained experts, whereas
examiner classifications have been found to be subject to
substantial inter- and intrarater variability.9-11 Furthermore,

examination of individual cell morphologies is inherently qualita-
tive, which makes the method difficult to combine with other
diagnostic methods that offer more quantitative data.

Few attempts to automatize the cytomorphologic classification of
BM cells have been undertaken. Most are based on extracting
hand-crafted single-cell features from digitized images and using
them to classify the cell in question.12,13 Additionally, the majority
of previous studies of automated cytomorphologic classification
focused on the classification of physiological cell types or
peripheral blood smears,14-16 limiting their usability for classifica-
tion of leukocytes in the BM for the diagnosis of hematological
malignancies. Deep-learning approaches to BM cell classification
have focused on relatively low numbers of samples or disease
classes or did not make the corresponding data available
publicly.17-20

Classification of natural images has undergone significant
improvements in accuracy over the past few years, aided by the
increasingly widespread use of convolutional neural networks
(CNNs).21,22 In the meantime, this technology has also been
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applied to a variety of medical image interpretation tasks,
including mitosis detection in histological sections of breast
cancer,23 skin cancer detection,24 mammogram evaluation,25 and
cytological classification in peripheral blood.11 However, the
successful use of CNNs for image classification typically relies on
the availability of a sufficient amount of high-quality image data
and high-quality annotation, which can be difficult to access
because of the expense involved in obtaining labels by medical
experts.26,27 This is particularly true in situations like the
cytomorphologic examination of BM, where there is no underlying
technical gold standard, and human examiners are needed to
provide the ground truth labels for network training and
evaluation.

Here, we present a large data set of 171374 expert-annotated
single-cell images from 945 patients diagnosed with a variety of
hematological diseases. To our knowledge, it is the largest image
data set of BM cytomorphology available in the literature in terms
of the number of diagnoses, patients, and cell images included.
Therefore, it is a resource to be used for educational purposes and
future approaches to automated image-based BM cell classifica-
tion. We used the data set to train 2 CNN-based classifiers for
single-cell images of BM leukocytes, 1 using ResNeXt, a recent
model that proved successful in natural image classification, as
well as a simpler sequential network architecture. We tested and
compared the classifiers and found that they outperform previous
methods while achieving excellent levels of accuracy for many
cytomorphologic cell classes with direct clinical relevance. The fact
that both classifiers, based on different models, attain good
results increases the confidence in the robustness of our findings.

Methods
Data set selection and digitization
BM cytologic preparations were included from 961 patients
diagnosedwith a variety of hematological diseases at MLLMunich
Leukemia Laboratory between 2011 and 2013. All patients had
given written informed consent for the use of clinical data
according to the Declaration of Helsinki. Images of single cells
do not allow any patient-specific tracking. The study was
approved by the MLL Munich Leukemia Laboratory internal
institutional review board. The age range of included patients was
18.1 to 92.2 years, with amedian of 69.3 years and amean of 65.6
years. The cohort included 575 (59.8%) males and 385 (40.1%)
females, as well as 1 (0.1%) patient of unknown gender.

All BM smears were stained according to standard protocols as
used in daily routine. May-Gr€unwald-Giemsa/Pappenheim stain-
ing was used as published elsewhere.2

BM smears are digitized with an automated microscope (Zeiss
Axio Imager Z2) in several steps. First, the entire slide is captured
at low optical magnification (onefold magnification) to obtain an
overview image. For an automatic system and to minimize the
scanning duration, automated detection of the BM smear on the
microscopic slide is necessary. The contour of the smear is
identified by a combination of thresholding and k-means cluster-
ing methods.28 Then the BM smear region is determined and
digitized by performing a "systematicmeander" of the slide with a
midlevel (fivefold) magnification objective. Relevant regions are
selected by human experts and scanned automatically at high

magnification (403 oil immersion objective) for themorphological
cell analysis. All images are captured with a CCD cameramounted
on a brightfield microscope (Zeiss Axio Imager Z2). The
dimensions of the original images are 2452 3 2056 pixels, and
the physical size of a camera pixel is 3.45 3 3.45 mm. For the
localization of single cells, a method considering the foreground
ratio of the high-resolution BM images is used.29 A quadratic
region around each found cell center is presented to experienced
cytologists at the Munich Leukemia Laboratory MLL to determine
the ground truth classifications for single-cell images. A total of
945 patients was included in the final analysis data set. Diagnoses
represented in the cohort include a variety of myeloid and
lymphoblastic malignancies, lymphomas, and nonmalignant and
reactive alterations, reflecting the sample entry of a large
laboratory specializing in hematology (supplemental Figure 1,
available on the Blood Web site).

From the examined regions, diagnostically relevant cell images
were annotated into 21 classes according to the morphological
scheme shown in Figure 1A. When annotating individual samples,
morphologists were asked to annotate 200 cells per slide in
accordance with routine practice. To avoid biasing the annotation
for easily classifiable cell images, separate classes were included
for artefacts, cells that could not be identified, and other cells
belonging to morphological classes not represented in the
scheme. From the annotated regions, 250 3 250-pixel images
were extracted containing the respective annotated cell as a main
content in the patch center (Figure 1A). No further cropping,
filtering, or segmentation between foreground and background
took place, leaving the algorithm with the task of identifying the
main image content relevant for the respective annotation. To
exclude correlations between different images in the data set, we
screened for overlaps between images using the SIFT algorithm30

and discarded images for which overlapping local features were
detected. The final number of images contained in each of the 21
morphological classes is shown in Table 1. Overall, the cleaned
data set consists of 171374 single-cell images.

Cell types represented in our morphological classification scheme
are present at very different frequencies on BM smears, resulting
in a highly imbalanced distribution of training images (Figure 1B).
Class imbalance is a challenging feature of many medical data
sets31; in the present case, it arises from the uneven prevalence of
different disease entities included and the different intrinsic
prevalences of specific cell classes in a given sample. To
counteract the class imbalance in the training process, we used
data set augmentation21 and upsampled the training data to
�25000 images per class by performing a set of augmentation
transformations. First, we used clockwise rotations by a random
continuous angle in the range of 0� to 180�, as well as vertical and
horizontal flips, shifts by up to 25% of the image weight and
height, and shears by up to 20% of the image size. In addition to
these geometric transformations, we included stain-color aug-
mentation transformations, which have been shown to improve
robustness and generalizability of the resulting classifier.32 Fol-
lowing the strategy proposed by Tellez et al,33 we first separated
the eosin-like and the hematoxylin-like components according to
the principal component analysis–based method of Macenko et
al.34 These 2 stain components were perturbed using the method
and default parameters of Tellez et al,33 thus simulating the
variability in stain intensity.
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Figure 1. Structure of the 21 morphological classes of BM cells used in this study. (A) Ordering of the classes into hematopoietic lineages. In agreement with routine
practice, major physiological classes of myelopoiesis and lymphopoiesis are included, as well as characteristic pathological classes and classes for artefacts and unclear
objects. As detailed in the main text, all cells were stained using the May-Gr€unwald-Giemsa/Pappenheim stain, and imaged at 340 magnification. (B) Distribution of the
171 374 nonoverlapping images of our data set into the classes used.
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Network structure and training
We used the ResNeXt-50 architecture developed by Xie et al,35 a
successful image-classification network that obtained a second
rank in image classification at the ImageNet Large Scale Visual
Recognition Challenge 2016 competition.36 The network topol-
ogy was used previously in the classification of peripheral blood
smears,14 making it a natural choice for the morphologic classi-
fication of BM cells. One advantage of the ResNeXt architecture is
its low number of hyperparameters. We kept the cardinality
hyperparameter C 5 32, as was done in the original study.35

Furthermore, we modified the network input to accept images
with a size of 2503 250 pixels and adjusted the number of output
nodes to 22, of which 2 nodes were combined, yielding the 21
overall morphological classes of our annotation scheme. Overall,
the resulting network possessed 23059094 trainable parameters.
When generating class predictions on images, the output node
with the highest activation determined the cell class prediction.

Networks were trained onNVIDIA Tesla V100 graphics processing
units; training of the ResNeXtmodel took�48 hours of computing

time. For the training of individual networks reported in this article,
we used 80% of the available images for each class, whereas 20%
were used for evaluation of the trained network. This stratified
train-test split was performed in a random fashion. Data augmen-
tation was performed after the train-test split. For fivefold
crossvalidation, we performed a stratified split of the data set
into 5mutually disjoint folds, each containing�20% of the images
in the respective cell class. We then trained 5 different networks
for 13 epochs, where each individual network used a different fold
for testing, and the remaining 4 folds for training of the network.
Results were then averaged across the 5 different networks. To
evaluate the robustness of our results with respect to network
structure, we also trained a sequential model with a simpler
architecture that has been used before to train a classifier for
leukocytes in peripheral blood.11 The precise network architecture
used is shown in supplemental Figure 5. With input and output
channels adjusted to match those of the ResNeXt model, the
sequential model contained a total of 303694 trainable param-
eters. Distribution of data into test and training sets for the
different folds was kept identical to the one used in training the

Table 1. Class-wise precision and recall of the neural network classifier, as obtained by fivefold crossvalidation

Class Precisiontolerant Recalltolerant Precisionstrict Recallstrict Images*

Band neutrophils 0.91 6 0.02 0.91 6 0.01 0.54 6 0.03 0.65 6 0.04 9 968

Segmented neutrophils 0.95 6 0.01 0.85 6 0.03 0.92 6 0.02 0.71 6 0.05 29424

Lymphocytes 0.90 6 0.03 0.72 6 0.03 0.90 6 0.03 0.70 6 0.03 26242

Monocytes 0.57 6 0.05 0.70 6 0.03 0.57 6 0.05 0.70 6 0.03 4 040

Eosinophils 0.85 6 0.05 0.91 6 0.03 0.85 6 0.05 0.91 6 0.03 5 883

Basophils 0.14 6 0.05 0.64 6 0.07 0.14 6 0.05 0.64 6 0.07 441

Metamyelocytes 0.68 6 0.04 0.87 6 0.03 0.30 6 0.05 0.64 6 0.08 3 055

Myelocytes 0.78 6 0.03 0.91 6 0.01 0.52 6 0.05 0.59 6 0.06 6 557

Promyelocytes 0.91 6 0.02 0.89 6 0.03 0.76 6 0.05 0.72 6 0.08 11994

Blasts 0.79 6 0.03 0.69 6 0.03 0.75 6 0.03 0.65 6 0.03 11973

Plasma cells 0.81 6 0.06 0.84 6 0.04 0.81 6 0.06 0.84 6 0.04 7 629

Smudge cells 0.28 6 0.09 0.90 6 0.10 0.28 6 0.09 0.90 6 0.10 42

Other cells 0.22 6 0.06 0.84 6 0.06 0.22 6 0.06 0.84 6 0.06 294

Artefacts 0.82 6 0.05 0.74 6 0.06 0.82 6 0.05 0.74 6 0.06 19630

Not identifiable 0.27 6 0.04 0.63 6 0.04 0.27 6 0.04 0.63 6 0.04 3 538

Proerythroblasts 0.69 6 0.09 0.85 6 0.04 0.57 6 0.09 0.63 6 0.13 2 740

Erythroblasts 0.90 6 0.01 0.83 6 0.02 0.88 6 0.01 0.82 6 0.01 27395

Hairy cells 0.80 6 0.03 0.88 6 0.02 0.35 6 0.08 0.80 6 0.06 409

Abnormal eosinophils 0.02 6 0.03 0.20 6 0.40 0.02 6 0.03 0.20 6 0.40 8

Immature lymphocytes 0.35 6 0.11 0.57 6 0.13 0.08 6 0.03 0.53 6 0.15 65

Faggot cells 0.17 6 0.05 0.63 6 0.27 0.17 6 0.05 0.63 6 0.27 47

Data are mean 6 standard deviation. Results are shown for the tolerant evaluation, allowing for mix-ups between classes that are difficult to distinguish, and the strict evaluation.

*Overall number of cell images contained in each class of the data set.
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ResNeXt model. The feature-based approach of Krappe et al13

used minimum redundancy selection37 of.6000 features per cell
to train a support vector machine. Furthermore, a slightly different
training strategy was used. Although the split into test and training
data was kept identical for training the ResNeXt and the
sequential CNN models, the feature-based approach used 70%
of the data for training and 30% of the data for evaluation.13 To
ensure that our results are robust with respect to this slight
difference in split strategy, we trained a ResNeXt-50 model using
a stratified split of the data into 70% training data and 30% test
data. The results show only minor deviations from the fivefold
crossvalidation results (supplemental Figure 6).

Results
The trained deep neural ResNeXt shows accurate prediction
performance for most morphological classes in our scheme
(Figure 2). As might be expected for a data-driven learning
algorithm, such as a neural network, classification performance
tends to increase with a higher number of available training
sample images. For quantitative evaluation of our training
algorithm, we used the commonmeasures of precision and recall,
defined as

precision ¼ true positive
true positiveþ false positive

recall

¼ true positive
true positiveþ false negative

,

where true positive and true negative are defined as the number
of images that are classified or not classified, respectively, into a
given class in agreement with the ground truth. Similarly, false
positive and false negative signify the number of images that are
classified or not classified, respectively, into a given class in
disagreement with the ground truth.

As has been noted before, precise differentiation of individual
morphological classes can be difficult, in particular when they are
closely related in the leukocyte differentiation lineage.13 As a
result of this intrinsic uncertainty with regard to morphological
classification, some predictions of the network can be considered
tolerable, even though they differ from the ground truth label
provided by the human annotator. As an example, a confusion
between segmented and band neutrophils, which are consecutive
morphological classes in the continuous process of myelopoiesis,
can be considered tolerable. This consideration led Krappe et al13

to introduce so-called “tolerance classes” for the evaluation of
their feature-based classifier on a related single-cell data set. For
this study, similar tolerance classes were used (Figure 3A).

The values for precision and recall attained by the ResNeXt
network for individual morphological classes are given in Table 1
as mean6 standard deviation across the 5 networks evaluated on
the mutually disjoint folds (see “Methods”). A strict and a tolerant
evaluation strategy were used: the former compares the network
prediction with the ground truth label only, and the latter takes
tolerance classes into account. The analogous analysis was also
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Figure 2. Accurate ResNeXt prediction for most morphological classes. Confusion matrix of the predictions obtained by the ResNeXt classifier on the test database
annotated by gold standard labels provided by human experts. Plotted values were obtained by fivefold crossvalidation and are normalized row-wise to account for class
imbalance. The number of single-cell images included in each category is indicated in the logarithmic plot on the right. Note the enhanced confusion probability between
consecutive steps of granulopoiesis and erythropoiesis, as might be expected because of the unsharp delineations between individual morphological classes. Separate
confusion maps of individual folds are shown in supplemental Figure 2.
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performed for the sequential model trained for comparison on the
identical data. A confusionmatrix analogous to Figure 2, as well as
class-wise precision and recall values, are given in supplemental
Figure 3 and supplemental Table 1. Overall, the sequential
network attains similar, but somewhat inferior, performance
values, in agreement with the comparative evaluation of both
network architectures in the classification of peripheral blood cells
from a data set of 15 malignant and nonmalignant cell classes
relevant in acute myeloid leukemia.11

In a direct performance comparison of ResNeXt, the sequen-
tial model, and the feature-based approach of Krappe et al,13

the neural networks outperformed the feature-based classifier
in all classes (Figure 3B) with the exception of segmented
neutrophils and lymphocytes, where the average tolerance
recall of our fivefold crossvalidation falls slightly below the
tolerance recall of the feature-based method. This effect may
be due to the distinctive signal of segmented neutrophils and
lymphocytes in the feature space used in the classifier of
Krappe et al,13 which explicitly includes parameters of nuclear
shape. In contrast, the neural network classifiers used in this
study do not rely on the extraction of handcrafted morpho-
logical parameters but extract the relevant features from the
training data set.
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Figure 3. Both CNN models outperform the feature-based classifier in terms of tolerant class-wise recall. (A) Some morphological classes can be difficult to
distinguish, so that a misclassification can be considered tolerable. Strict classification evaluation accepts only precise agreement of ground truth and network prediction, as
shown in the red diagonal entries of the matrix. Mix-ups that are considered tolerable are colored blue. (B) Tolerance improvement for key classes. Error bars indicate
standard deviation across 5 cross-validation folds. For segmented neutrophils and lymphocytes, performance of the feature-based classifier is slightly higher than of the
neural networks. In all other classes, both CNNs consistently outperform the feature-based classifier of Krappe et al.13 This might be due to the distinctive signal of the
nuclear shape of segmented neutrophils and lymphocytes in feature space. Additionally, ResNeXt outperforms the sequential network in several key classes, reflecting the
greater complexity of the network used.
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As is expected for a data-driven method, the classifier performs
less favorably for classes in which only few training images are
available, such as faggot cells or pathological eosinophils. For
image-classification tasks focused on recognition of these specific
cell types, more training data would be required. Furthermore,
training a binary classifier instead of a full multiclass classifiermight
yield better prediction performance.38

External validation
To test the generalizability of our model, evaluation of the
network’s predictions on an external data set not used during
training is required. At present, very few publicly available data
sets that include single BM cells in sufficient number, imaging, and
annotation quality exist, rendering evaluation of the generalizabil-
ity of our network’s predictions challenging. We evaluated our
model on an annotated data set from Choi et al20; 627 single-cell
images from 30 slides of 10 patients are available with annotations
for different stages of the erythroid and myeloid lineages. The
data set includes images with different illuminations and image
resolutions. Because no information about the physical pixel size
was available, we scaled all single-cell images up to 250 3 250
pixels and generated predictions from the scaled images. Note
that this may have led to input images of systematically different
sizes compared with the images in our data set.

Of the 627 annotated images, 247were assigned to the “artefact”
and “not identifiable” categories, indicating that the network was
not able to predict the class of these images. Predictions on the
remaining 380 images are shown in Figure 4,indicating fair
performance of the classifier on the external data set. In particular,
most cells are classified correctly into their respective lineages.
Given the different imaging and annotation strategies followed in
the compilation of both data sets, a considerable amount of
tolerable confusion between individual lineage steps is expected.

It must be noted that, compared with the internal data set, the
external evaluation data set is relatively small and heterogeneous
in terms of staining and background lighting. Furthermore,
considerable differences in terms of imaging and annotation
strategies exist. For example, the lymphoid lineage is not covered,
and the annotation classes differ from those used in our data set.
Nevertheless, the performance of the classifier on the external
data set indicates that the model is able to generalize and
recognize cases for which no confident prediction can be made. It
might be expected that including additional information on the
external data set (eg, matching the patch size or background
brightness to the one used during training or matching the stain
color distribution) would increase the performance of our
classifier.

In the sequential model, a qualitatively similar performance is
observed using the external data set (supplemental Figure 6),
suggesting that generalization is robust against different network
architectures.

Classification analysis and explainability
Because they are developed based on the training set in a data-
driven way, the classification decisions of neural networks do not
lend themselves to direct human interpretation. Nevertheless, to
gain insight into the classification decisions used by these
algorithms, a variety of explainability methods has recently been
developed.39 To determine which regions of the input images are
important for the network’s classification decisions, we analyzed
the ResNeXt model with SmoothGrad40 and Grad-CAM,41 two
recently developed algorithms that have been shown to fulfill
basic requirements for explainability methods (ie, sensitivity to
data and model parameter randomization).42 Results for key cell
classes are shown in Figure 5, suggesting that the model has
learned to focus on the relevant input of a single-cell patch (ie, the
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Figure 4. The network exhibits fair performance on an external data set. Of 627 single-cell images from an external data set, the network predicted classes on 380
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slightly different, but compatible, classification schemes. Good agreement is generally observed with the exception of confusions within the myeloid and erythroid
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main leukocyte shown in it) while ignoring background features
like erythrocytes, cell debris, or parts of other cells visible in the
patch. Furthermore, specific defining structures that are known
to be relevant to human examiners when classifying cells also
seem to play a role in the network’s attention pattern, such as
the cytoplasm of eosinophils and the cell membrane of hairy
cells. Although, as post hoc classification explanations, these
analyses do not in themselves guarantee the correctness of a
particular classification decision, they may increase confidence
that the network has learned to focus on relevant features of the
single-cell images, and predictions are based on reasonable
features.

As a second test that the classifier has learned relevant and
consistent information, we embedded the extracted features
represented in the flattened final convolutional layer of the
network with 2048 dimensions into 2 dimensions for each
member of the test set using the Uniform Manifold Approxi-
mation and Projection (UMAP) algorithm.43 The result of the
embedding is shown in Figure 6, suggesting that the classifier
has extracted features that generally separate individual classes
well; however, some classes, such as monocytes, can be
challenging to distinguish from unrelated others, as reflected
by their proximity to unrelated classes in the embedding.
Additionally, the embedding shows that classes representing
consecutive steps of cell development (eg, proerythroblasts
and erythroblasts) are mapped to neighboring parts of feature
space. This indicates that the network extracts relevant features
indicative of the continuous nature of development between
these classes.

Discussion
Neural networks have been shown to be successful in a variety of
image classification problems. In this study, we present a large
annotated high-quality data set of microscopic images taken from
BM smears from a large patient cohort that can be used as a
reference for developing machine learning approaches to mor-
phological classification of diagnostically relevant leukocytes. To

our knowledge, this image database is the most extensive one
available in the literature in terms of the numbers of patients,
diagnoses, and single-cell images included.

We used the data set to train and test a state-of-the-art CNN for
morphological classification. Overall, the results are encourag-
ing, with high precision and recall values obtained for most
diagnostically relevant classes. In direct comparison of recall
values, our network clearly outperforms a feature-based clas-
sifier13,44 that was recently developed on the same data set for
most morphological cell classes. Our findings are in line with
experiences from other areas of medical imaging, where deep
learning–based image classification tasks have achieved higher
benchmarks than methods that require extraction of hand-
crafted features.27,45 The key ingredient to successful applica-
tion of CNNs is a sufficiently large and high-quality training data
set.21

Although CNNs have outperformed classifiers relying on
handcrafted features across a wide range of tasks, the structure
of their output usually does not lend itself to straightforward
human interpretation. To address this drawback, a variety of
explainability methods have been developed. In this study, we
used the SmoothGrad and the Grad-CAM algorithms and
found that the algorithm has indeed learned to focus on
relevant regions of the single-cell image, as well as to pay
attention to features known to be characteristic of specific cell
classes. Furthermore, by analyzing the features extracted by
the network using the UMAP embedding, we could confirm
that the network has learned to stably separate morphological
classes and map cells with morphological similarities into
neighboring regions of feature space. Therefore, the features
learned by the network to classify single-cell images appear
robust and tolerant with respect to some label noise that
cannot be avoided in a data-driven method relying on expert
annotations. Future work may reduce the relevance of label
noise (eg, by using semi- or unsupervised methods as have
been applied to processes such as erythrocyte assessment46 or
cell cycle reconstruction).47
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Figure 5. Network prediction analysis shows focus on relevant image regions. Original images classified correctly by the network are shown in the top row. As detailed
in the main text, all cells were stained using the May-Gr€unwald-Giemsa/Pappenheim stain, and imaged at 340 magnification. The middle row shows analysis using the
SmoothGrad algorithm. The lighter a pixel appears, the more it contributes to the classification decision made by the network. Results of a second network analysis method,
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relevant for particular classes, such as the cytoplasmic structure in eosinophils or the nuclear configuration in plasma cells.
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In the present study, we primarily followed a single-center
approach, with all BM smears included for training prepared in
the same laboratory and digitized using the same scanning
equipment. Within that setting, the network described in this
study shows a very encouraging performance. External validation,
although challenging because of the limited amount of available
data, indicates that the method is generalizable to data obtained
in other settings. Applicability to other laboratories and
scanners may be increased further by using larger and more
diverse data sets and including specific information on imaging
and data handling in the image analysis pipeline.21,48 Further
expansion of the morphological database, ideally in a multi-
centric study and including a range of scanner hardware, would
likely increase the performance and robustness of the network,
in particular for classes containing few samples in our data set.
However, because of the number of cases and diagnoses
included, we expect our data set to reasonably reflect the
morphological variety for most cell classes. This study is
concerned with assessing adult BM morphology. Extension to
samples from infants and young children would be interesting,
in particular for lymphoid cells. Further work is needed to
evaluate the performance of our network in a real-world
diagnostic setting. Given the variety of diagnostic modalities
used in hematology, we anticipate that inclusion of comple-
mentary data (eg, from flow cytometry or molecular genetics)
would further increase the quality of predictions that can be
obtained by neural networks.
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