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Although genomic alterations drive the pathogenesis of acute myeloid leukemia (AML), tra-
ditional classifications are largely based on morphology, and prototypic genetic founder
lesions define only a small proportion of AML patients. The historical subdivision of pri-
mary/de novo AML and secondary AML has shown to variably correlate with genetic pat-
terns. The combinatorial complexity and heterogeneity of AML genomic architecture may
have thus far precluded genomic-based subclassification to identify distinct molecularly
defined subtypes more reflective of shared pathogenesis. We integrated cytogenetic and
gene sequencing data from a multicenter cohort of 6788 AML patients that were analyzed
using standard and machine learning methods to generate a novel AML molecular subclassi-
fication with biologic correlates corresponding to underlying pathogenesis. Standard super-
vised analyses resulted in modest cross-validation accuracy when attempting to use
molecular patterns to predict traditional pathomorphologic AML classifications. We per-
formed unsupervised analysis by applying the Bayesian latent class method that identified
4 unique genomic clusters of distinct prognoses. Invariant genomic features driving each

cluster were extracted and resulted in 97% cross-validation accuracywhen used for genomic subclassification. Subclasses
of AML defined by molecular signatures overlapped current pathomorphologic and clinically defined AML subtypes. We
internally and externally validated our results and share an open-access molecular classification scheme for AML patients.
Although the heterogeneity inherent in the genomic changes across nearly 7000 AML patients was too vast for tradi-
tional prediction methods, machine learning methods allowed for the definition of novel genomic AML subclasses, indi-
cating that traditional pathomorphologic definitions may be less reflective of overlapping pathogenesis.

Introduction
Genetic mutations (somatic or germline), cytogenetic abnormali-
ties, and their combinations contribute to the heterogeneity of
acute myeloid leukemia (AML) phenotypes.1-3 Seminal studies
have described the molecular landscape of AML and its exclusive
framework and have stratified patients into prognostic sub-
groups.4-7 Moreover, serial sequencing studies have delineated
a stepwise acquisition of subclonal mutations accompanying
AML evolution.8 To date, prototypic founder lesions [eg, t(8;21),
inv(16), and t(15;17)] define only a fraction of AML subgroups,
with specific prognoses corresponding to molecular pathogene-
sis.9,10 Indeed, in a larger proportion of AML patients, somatic

mutations or cytogenetic abnormalities potentially serve as driver
lesions in combination with numerous acquired secondary hits.3

However, their combinatorial complexity hampers the resolution
of distinct genomic classifications and overlaps across classical
pathomorphologic AML subtypes, including de novo/primary
(pAML) and secondary AML (sAML) evolving from an antecedent
myeloid neoplasm.11,12 These AML subtypes are themselves non-
specific because of variation in the understanding of their patho-
genetic links, especially in cases without overt dysplasia.13,14

Without dysplasia, reliance is mainly on anamnestic clinical infor-
mation that might be unavailable or cannot be correctly assigned
because of a short prodromal history of antecedent myeloid neo-
plasm. Additionally, supervised analytic strategies to reproduce
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current pathomorphologic entities as gold standard using molec-
ular features have been modest. Here, we explored the potential
use of distinct genomicmarkers, uncovered by advancedmachine
learningmethods, to subclassify AML objectively and provide per-
sonalized prognostication, irrespective of clinicopathologic infor-
mation; we propose this method as a new standard in AML
assessment.

We analyzed integrated genomic data from pAML and sAML
patients seen in our institution and multiple other centers over 2
decades using both standard supervised approaches and unsu-
pervisedmachine learningmethods that better captured the com-
plex interactions of high-dimensional genomic features underlying
AML subgroups. Machine learning was instrumental for the iden-
tification of novel AML subgroups with invariant driver genomic
features.

Methods
Patients and cell samples
For the purpose of this study, we combined AML patient data
from the Cleveland Clinic (CC; n5 855) and the Munich Leukemia
Laboratory (n5 4002) with publicly available data sets (TheCancer
Genome Atlas, the BEAT AML Master Trial, and the German-
Austrian Study Group; n 5 1931[ cases with unavailable cytoge-
netics were excluded])4-6 to form a large, well-annotated cohort
of 6788 patients (supplemental Table 1). Targeted next-
generation sequencing results at the time of AML diagnosis
were adjusted to focus on the most recurrent somatic myeloid
mutations (supplemental Table 2). Patients were followed until
September 2019, with a median duration of 12.4 months. Periph-
eral blood and/or bone marrow samples were collected after
receiving written informed consent according to protocols
approved by the institutional review board at CC and other insti-
tutions in accordance with the Declaration of Helsinki. Clinical
parameters were obtained from medical records after securing
appropriate material transfer agreements and from resources
accessible online.

Genetic studies
For the data collected at CC, whole-exome sequencing was per-
formed on paired tumor and germline DNAs (purified CD31 lym-
phocytes). Whole-exome capture was accomplished according to
the SureSelect Human All Exon 50Mb or V4 Kit (Agilent Technol-
ogies), and captured targets were sequenced using a HiSeq 2000
(Illumina). Reads were aligned to the human genome (hg19) by a
Burrows-Wheeler aligner (http://bio-bwa.sourceforge.net/). Data
were validated using a TruSeq Custom Amplicon Kit (Illumina)
with a panel of 44 genes (supplemental Table 2). Variants were
annotated using Annovar and filtered, and a bioanalytic pipeline
developed in house15-17 identified somatic mutations as specified
in the data supplement. Variants in patients from the Munich Leu-
kemia Laboratory cohort were called as previously reported.18-22

The gene sequencing methods of publicly shared AML patients
were previously described.4-6

Statistical analyses
Multivariate Cox proportional hazardsmodeling was used to iden-
tify genomic abnormalities associated with survival in various AML
cohorts. Uni- and multivariate logistic regression (MLR) analyses
were performed to find distinct genomic features of pAML and

sAML. We performed unsupervised analysis to cluster AML
patients into genomic subgroups by latent variable modeling.
More specifically, we used Bayesian latent class analysis (BLCA)
coupled with resampling to generate a consensus matrix23 that
was then hierarchically clustered using Ward’s criteria to obtain
final patient cluster assignments. To validate the prognostic signif-
icance of identified clusters, we used survival analysis. To deter-
mine if AML subtype distributions differed across identified
clusters, we normalized pAML and sAML samples to population
proportions using the bootstrap method. To identify distinct
genomic features and generate a subclassification model, we
used random forest (RF) classification and extracted the variables
with the highest global importance measured by mean decrease
in accuracy. Additionally, we performed internal and external val-
idation of our model. The RF subclassification model and cluster-
specific survival estimates are available via a Web-based open-
access resource.

Results
Molecular architecture determines disease risk and
distinguishes AML subtypes
Using theWorld Health Organization 2016 diagnostic criteria,9 we
classified 6788 AML patients as having core-binding factor AML
(CBF-AML; n 5 422), acute promyelocytic leukemia (APL; n 5

312), KMT2A-rearranged AML (KMT2AR-AML; n 5 371), pAML
(n 5 4502), sAML (n 5 832), or therapy-related AML (tAML; n 5

349). Patients’ baseline, clinical, and cytogenetic information are
presented in Table 1. Mutational profiling identified 13879
somatic mutations of variant allele frequency (VAF) $1% in the
selected uniformed gene panel (supplemental Tables 2 and 3).
Using multivariate Cox modeling, we identified specific genomic
lesion associations with survival. This approach enabled feature
partitioning into favorable vs adverse risks within diverse AML
groups (supplemental Table 4). Because the role of recurrent bal-
anced translocations in AML diagnostics and the prognosis of
tAML are already well established, we focused our analyses on
5334 pAML and sAML cases without these pathognomonic
lesions; thus, we excluded CBF-AML, APL, KMT2AR-AML, and
tAML. Our objective was to determine if unique configurations
of specific genetic lesions can produce distinguishable diagnostic
patterns of pAML vs sAML or within AML subsets, including nor-
mal karyotype (NK-AML; n 5 3176) and abnormal karyotype
AML (AK-AML; n 5 2158). This strategy was motivated by the
observation of significantly different pAML vs sAML survival (Fig-
ure 1A-C). Indeed, the supervised analyses yielded distinct clinical
(supplemental Table 5) and genomic features that characterized
each subtype (Figure 1D). Patterns detected by univariate logistic
regression and MLR included enrichment in mutations in CEBPA
(both monoallelic and biallelic), DNMT3A, FLT3 internal tandem
duplication (FLT3ITD), FLT3 tyrosine kinase domain, GATA2,
IDH1, IDH2R140, NRAS, NPM1, and WT1 in pAML and a greater
prevalence of mutations in ASXL1, RUNX1, SF3B1, SRSF2, and
U2AF1; 25/del(5q); 27/del(7q); 217/del(17p); del(20q); 18; and
complex karyotype in sAML (Figure 1D-F). Mutational burdens
were similar in both AML subtypes (median, 2 mutations per indi-
vidual; supplemental Figure 1). Analyses of NK-pAML vsNK-sAML
(supplemental Figure 2) and AK-pAML vs AK-sAML (supplemental
Figure 3) revealed significant genetic associations that character-
ized each subset. In addition, clonal hierarchy analyses differenti-
ated pAML vs sAML based on founder and subclonal hits (Figure
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Table 1. Baseline, clinical, and cytogenetic characteristics of AML cohort by subtype

Variable CBF-AML APL
KMT2AR-

AML pAML sAML tAML All

Total population 422 (6.2) 312 (4.6) 371 (5.5) 4502 (66.3) 832 (12.2) 349 (5.2) 6788 (100)

Median age
(range), y*

52 (18-86) 51.8 (18-86) 63.8 (18-87) 66.9 (18-89) 70 (21-89) 67.3 (18-89) 66.2 (18-89)

$60 103 (32.9) 93 (34.9) 165 (60.8) 2374 (65.5) 638 (81.3) 183 (66.5) 3556 (64.2)

Sex

Male 239 (56.6) 163 (52.2) 199 (53.6) 2373 (52.7) 535 (64.4) 142 (40.7) 3651 (53.7)

Female 183 (43.4) 149 (47.8) 172 (46.4) 2129 (47.3) 297 (35.6) 207 (59.3) 3137 (46.3)

Hematologic and BM
parameters*

Median WBC
(range), 3 109/L

15.5 (0.1-351) 2.9 (0.3-155) 15 (0.4-427) 20.2 (0.1-600) 5.3 (0.5-388) 7.4 (0.5-303) 14.7 (0.1-600)

,3 41 (10.4) 136 (50.7) 85 (22.9) 874 (20.4) 279 (36.6) 94 (30.9) 1509 (23.4)

Median hemoglobin
(range), g/dL

8.9 (2.5-19) 9.8 (2.7-16.4) 9.1 (3.5-18.5) 9.2 (2.3-17.9) 9.3 (5-16.5) 9.4 (3.4-16) 9.1 (2.3-19)

,10 277 (69.8) 144 (52.7) 209 (66.1) 2479 (65.9) 484 (66.3) 188 (64.4) 3781 (65.6)

Median platelets
(range), 3 109/L

42 (3-529) 30 (1-228) 71 (2-578) 73 (2-2366) 50 (5-869) 53 (5-570) 54 (1-2366)

,100 356 (83.6) 239 (87.5) 221 (61.4) 2663 (60.6) 573 (76.5) 222 (75) 4274 (75.4)

Median BM blasts
(range), %

51 (20-99) 76 (20-100) 70 (20-100) 61 (20-100) 30 (20-97) 60 (20-99) 50 (20-100)

Antecedent
diagnosis*

MDS — — — — 627 (75.5) — 627 (9.2)

MDS/MPN — — — — 58 (7) — 58 (0.8)

MPN — — — — 39 (4.7) — 39 (0.6)

ELN risk
stratification, %

Favorable 422 (100) 312 (100) 0 (0) 656 (15) 25 (3) 23 (7) 1438 (21.2)

Intermediate 0 (0) 0 (0) 0 (0) 2166 (48) 358 (43) 189 (54) 2713 (40)

Adverse 0 (0) 0 (0) 371 (100) 1680 (37) 449 (54) 137 (39) 2637 (38.8)

Cytogenetics

Normal — — 45 (12.1) 2812 (62.5) 364 (43.8) 111 (31.8) 3332 (49.1)

t(1;22) 0 (0) 0 (0) 0 (0) 3 (0.07) 0 0 3 (0.04)

inv(3)/t(3;3) 0 (0) 0 (0) 0 (0) 61 (1.4) 16 (1.9) 3 (0.9) 80 (1.2)

25/del(5q) 5 (1.2) 2 (0.6) 54 (14.5) 288 (6.4) 130 (15.6) 40 (11.5) 519 (7.6)

t(6;9) 0 (0) 0 (0) 0 (0) 24 (0.5) 2 (0.2) 1 (0.2) 27 (0.04)

26/del(6q) 0 (0) 2 (0.6) 4 (1.1) 21 (0.5) 12 (1.4) 9 (2.6) 48 (0.7)

27/del(7q) 6 (1.4) 3 (1.0) 31 (8.3) 298 (6.6) 109 (13.1) 54 (15.5) 501 (7.4)

29/del(9q) 33 (7.8) 4 (1.2) 8 (2.1) 82 (1.8) 10 (1.2) 6 (1.7) 143 (2.1)

Data are presented as n (%) unless otherwise indicated.

BM, bone marrow; ELN, European LeukemiaNet; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; WBC, white blood cell.

*Some data were not available.
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1G). Despite these significant findings, the genomic profiles of
pAML vs sAML identified by MLR resulted in only 0.74 cross-
validation accuracy of predictive performancewhen used to repro-
duce pathomorphologic AML subtypes (Figure 1H).

Unsupervised genomic analysis unveils novel
molecular AML groups spanning sAML/
pAML dichotomy
Because the accuracy ofMLR prediction wasmodest, we explored
other machine learning approaches as an alternative analytic strat-
egy. BLCA of AML cases with complete mutational screens (n 5

2681; supplemental Table 2) uncovered 4 novel genomic sub-
groups (Figure 2A) based on the highest silhouette value (supple-
mental Figures 4 and 5). The biologic relevance of these
subgroups was reflected in significantly different survival among
GC-1 (median, 34.1; 95% confidence interval [CI], 25.2-50.5
months), GC-2 (median, 26.5; 95% CI, 22.9-31.0 months), GC-3
(median, 15.8; 95% CI, 13.3-18.0 months), and GC-4 (median,
9.2; 95% CI, 7.4-11.6 months; Figure 2B; supplemental Figure
6), as well as survival probability (supplemental Table 6). Of
note, the implementation of survival analyses was considered
only to reflect the biologic and prognostic relevance of these clus-
ters and not to replace current prognostic schemes.Moreover, the
robustness of the BLCA clustering with respect to VAF was further
validated when considering a higher cutoff of 15%, which also
resulted in 4 GCs with a silhouette value of 0.86 and an adjusted
Rand index of 0.84 (supplemental Figure 7A-B).

pAML and sAML composition within GCs
The distribution of GCs within pAML and sAML was variable (Fig-
ure 2C). For instance, pAML cases showed similar percentages of
GC-1 (32%), GC-2 (33%), and GC-3 (25%) but fewer cases of GC-4
(10%). In contrast, sAML cases had higher percentages of GC-4
(22%) but lower GC-1 (5%) (Figure 2C). The few GC-1 sAML cases
may be suggestive of a possible subtype misclassification on pre-
sentation or impact of an important genetic alteration (supple-
mental Table 7). Higher percentages of patients with good

molecular prognosis were found among those with pAML (GC-
1/2; 65%), whereas those with sAML had more higher-risk cases
(GC-3/4; 66%). Results of reverse analysis of normalized frequen-
cies of pAML and sAML within cluster groups were consistent
with the aforementioned results (Figure 2D), showing increased
pAML proportion in GC-1 (89% vs 11%) and sAML in GC-4
(67% vs 33%). In addition, survival analyses within the same prog-
nostic group showed no significant difference between pAML and
sAML cases except in GC-4 (supplemental Figure 8A-D; supple-
mental Figure 9 shows for P values of all pairwise comparisons
of survival in our 8-cluster 3 pAML/sAML groups).

Invariant genomic features accurately predict
molecular class assignments in AML
To link each cluster to its pathogenetic features, we generated an
RF model. The resulting multiclass classifier yielded a cross-
validation accuracy of 0.97 (Figure 2E). Globally, the most impor-
tant genomic features of the model, quantified by mean decrease
in accuracy, included mutations in NPM1, RUNX1, ASXL1, SRSF2,
and TP53;25/del(5q);DNMT3Amutations;217/del(17p);BCOR/
L1 mutations; and others (supplemental Figure 10). Comprehen-
sive group-specific observations showed that GC-1 was character-
ized by the highest prevalence of NK-AML (88%) and full presence
ofNPM1mutations (100%; 86% with VAF.20%) that cooccurred
with DNMT3A (52%), FLT3ITD (27%; 91% with VAF ,50%), and
IDH2R140 mutations (16%; whereas IDH2R172 mutations were
absent), with depletion or absence of ASXL1, EZH2, RUNX1,
and TP53 mutations and complex cytogenetics (Figure 3A).
GC-2 had a higher percentage of AK-AML cases than GC-1 and
the highest frequency of CEBPA biallelic (9%) and IDH2R172K

(4%), FLT3ITD (14%), and FLT3TKD mutations (6%) occurring with-
out NPM1 mutations, whereas mutations in ASXL1, RUNX1, and
TP53 were absent (Figure 3B). GC-3 had the highest frequency
ofASXL1 (39%), BCOR/L1 (16%), andDNMT3Amutations without
NPM1 mutation (19%), in addition to being highly enriched with
EZH2 (9%), RUNX1 (52%), SF3B1 (7%), SRSF2 (38%), and U2AF1
mutations (12%; Figure 3C). Of note, GC-3 showed a higher
degree of heterogeneity. In fact, 53 cases in GC-3 had a silhouette

Table 1. (continued)

Variable CBF-AML APL
KMT2AR-

AML pAML sAML tAML All

del(12p) 1 (0.2) 4 (1.3) 16 (4.3) 113 (2.6) 18 (2.1) 19 (5.4) 171 (2.5)

del(13q) 2 (0.5) 2 (0.6) 6 (1.6) 35 (0.7) 15 (1.8) 8 (2.3) 68 (1.0)

del(16q) 1 (0.2) 1 (0.3) 2 (0.5) 20 (0.4) 4 (0.5) 0 (0) 28 (0.4)

217/del(17p) 1 (0.2) 1 (0.3) 18 (4.8) 133 (3.0) 45 (5.4) 24 (6.9) 222 (3.3)

del(20q) 0 (0) 0 (0) 10 (2.7) 67 (1.5) 33 (3.9) 9 (2.6) 119 (1.8)

18 35 (8.3) 44 (14.1) 82 (22.1) 405 (9) 117 (14.1) 40 (11.5) 723 (10.7)

2X 27 (6.4) 0 (0) 0 (0) 18 (0.4) 8 (1.0) 7 (2.0) 60 (0.9)

2Y 64 (15.2) 2 (0.6) 9 (2.4) 79 (1.7) 31 (3.7) 9 (2.6) 194 (2.9)

Complex 38 (9) 11 (3.5) 93 (25.1) 451 (10) 164 (19.7) 72 (20.6) 829 (12.2)

Data are presented as n (%) unless otherwise indicated.

BM, bone marrow; ELN, European LeukemiaNet; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; WBC, white blood cell.

*Some data were not available.
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Figure 1. Survival outcomes and mutational landscape of pAML vs sAML. (A-C) Kaplan-Meier survival curves of pAML vs sAML (A), NK-pAML vs NK-sAML (B), and
AK-pAML vs AK-sAML (C). (D) Bar graph showing the frequency (percentage) of somatic mutations in pAML vs sAML. (E-F) Forest plots representing univariate logistic
regression and MLR analyses showing the odds ratio (OR; in log scale) of the association of somatic mutations in pAML vs sAML, respectively. (G) Forest plots representing
univariate analyses showing the OR (in log scale) of the association of dominant/ancestral and secondary/subclonal somatic mutations in pAML vs sAML, respectively. Levels
of statistical significance, indicated by green, orange, and black (P , .0001, P , .05, and P . .05, respectively), were obtained by Fisher’s exact test. (H) Bar graph showing
the average predictive performance ( �0.74) of MLR using cross-validation area under the curve (ie, we correctly predicted pAML and sAML classification in �74% of AML
cases in our cohort using the distinct genomic characteristics of each subtype). ns, not significant.
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value ,0, and of these, 15 cases were misclassified by the RF
model. Further investigation of these misclassified cases showed
that they were wild type for RUNX1, a GC-3–defining gene (sup-
plemental Figure 11). Finally, GC-4 had the highest prevalence
of AK-AML (96%; mostly of complex karyotype [76%]) and
TP53 mutations (70%) that were associated with 25/del(5q)
(68%), 27/del(7q) (35%), and 217/del(17p) (31%; Figure 3D).
Signature patterns, their importance, and pairwise co-

occurrence with other genomic markers, in addition to the
clonal hierarchy of driver mutations in each cluster, are
described in Figure 3B-E, supplemental Figure 12, and supple-
mental Figure 13A-D, respectively.

We also analyzed the percentages of novel groups among each
genomic lesion population (supplemental Figures 14-16). GC-1
represented 97% of NPM1, 50% of FLT3ITD, 54% of DNMT3A,
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43% of IDH1, and 43% of IDH2R140 mutations as well as 43% of
NK-AML cases; GC-2 accounted for 91% of CEBPA biallelic,
46% of GATA2, and 50% of WT1 mutations; and GC-3 had
90% of ASXL1, 82% of BCOR/L1, 52% of CBL, 53% of ETV6,
and 46% of IDH2R172K mutations. GC-3 also represented a
majority of splicing factor mutations (48% of SF3B1, 86% of
SRSF2, 70% of U2AF1, and 65% of ZRSR2 mutations), 98% of
RUNX1 mutations, and the highest portion of del(20q) (65%)
and trisomy 8 (49%). GC-4 represented 94% of TP53mutations,
62% of complex cytogenetics, 92% of25/del(5q), 100% of26/
del(6q), 88% of del(12p), 91% of del(16q), and 92% of 217/
del(17p).

When the clinical and baseline characteristics of each group were
studied (supplemental Table 8), GC-1/2 were found to comprise a
significantly younger age population compared with GC-3/4
(median age, 61 vs 70 years; P , .0001; supplemental Figure
17). Moreover, lower numbers of white blood cells correlated
with higher-risk disease (P, .0001; supplemental Figure 18), pos-
sibly because patients in GC-3/4 harbored more dysplastic fea-
tures than those in GC-1/2, who had more a proliferative AML
phenotype.

Finally, we revisited the previously excluded well-defined prog-
nostic AML groups and applied BLCA, which demonstrated that
APL, CBF-AML, and tAML constituted a single GC each, whereas
2 genomic groups were revealed in KMT2AR-AML (supplemental
Figure 19A-B), including GC-A (OS, 20.3 months) and GC-B
(median OS, 6.9 months) with distinct survival (supplemental Fig-
ure 19C). The most important genomic markers extracted by the
RF model included TP53 mutations followed by 25/del(5q), 27/
del(7q), and 217/del(17p) (supplemental Figure 19D). GC-2
KMT2AR-AML was characterized by the enriched presence of
TP53 mutations (79%), 25/del(5q) (63%), 27/del(7q) (38%),
18 (38%), and 217/del(17p) (31%; supplemental Figure 19E),
whereas GC-1 KMT2AR-AML had absence/depletion of the afore-
mentioned genomic aberrations except for 18 (18%), in addition
to frequent DNMT3A (20%) and NRAS mutations (16%; supple-
mental Figure 19E).

Automated cluster predictor and
confirmatory studies
We performed internal and external validation of our genomic
clustering model. The internal confirmatory cohorts consisted
of randomly selected training (80%; n 5 2144) and test sets
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Figure 3. Invariant genomic features driving each genomic group. Bar plots representing the mutational profiles of GC-1 (A), GC-2 (B), GC-3 (C), and GC-4 (D) and their impor-
tance. Red asterisks represent themost important genomic features based on an arbitrary importance cutoff of a mean decrease in accuracy$0.01. In addition, circos diagrams showing
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(20%; n5 537). BLCA and RF classification were applied on the
training set only, and survival analysis of the test set was per-
formed separately (supplemental Figure 20A-B). The test
cohort did not show significant survival differences per each
GC compared with the training set when Kaplan-Meier analyses
were performed (supplemental Figure 21A-D). We further eval-
uated how the number of the identified clusters varied across
subsets of the training cohort by randomly sampling 75% of
observations to prevent overfitting. Silhouette values across
random samples showed 4 as the optimal number of clusters
(supplemental Figure 22). External validation was then con-
ducted using an independent cohort of 203 AML patients
from the MD Anderson Cancer Center (MDACC; pAML, n 5

143; sAML, n 5 60), with a median follow-up of 12 (range,

0.1-35.3 months) and fully annotated characteristics (supple-
mental Table 9). Gene sequencing of the selected gene panel
(supplemental Table 2) identified a total of 723 somatic muta-
tions in the MDACC cases (supplemental Table 10). The
Kaplan-Meier survival analyses of the original data andMDACC
cases showed similar survival among each GC assigned by the
RF model (Figure 4A-D). Details of additional validation
approaches for hyperparameter tuning and depth selection in
the RF model are provided in the data supplement.

Furthermore, the 4GCs greatly overlappedwith the ELN 2017 risk
groups (supplemental Figure 23). GC-1/2 mainly represented the
favorable and intermediate groups, whereas GC-3/4 highly
matched the adverse group. Interestingly, when OS of the GCs
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were comparedwithin each ELN2017 risk group, significant differ-
ences were observed (supplemental Figure 24).

Finally, our genomic subclassification model is available as a Web-
based open-source resource that can be accessed widely by clini-
cians and the public to forecast the subclassification and estimated
survival of AML patients without known pathognomonic lesions,
balanced translocations, or tAML (https://drmz.shinyapps.io/
local_app/; Figure 4E). A conceptual framework summarizing our
overall approach is illustrated in supplemental Figure 25.

Discussion
Apart from certain well-defined AML subtypes (eg, CBF-AML,
APL, and KMT2AR-AML), historically, AML patients have been
subcategorized into subgroups defined by pathomorphologic
features and broad anamnestic clinical criteria because of the
inability to precisely infer the presence of an antecedent prodro-
mal disease.11,24 Ubiquitous application of genomic diagnostics
has provided opportunities for objective subclassification of
AML, which, because of its mechanistic foundation, can direct dis-
covery and application of molecularly targeted therapeutics and
allow for tailored personalized risk stratification.10 Building on
this potential and the power of modern genomic and bioanalytic
approaches, we investigated whether rational genomic tools
would yield precise, simple, and diagnostic AML subclasses reflec-
tive of genomic pathogenesis and prognosis. This is best illus-
trated by the ability of GCs to redefine historical subclasses such
as pAML and sAML, which have been shown to correlate only var-
iably with genetic patterns and pathogenesis.

By applying machine learning methods to an unprecedentedly
large cohort of AML patients with detailed molecular annotations,
wedeveloped a new classificationmodel. Credence in thismodel is
fortified by its accurate classification (�97% correct) and the plausi-
bility of the distinctive genomic features that contributed to the
overall assignment accuracy. The utility of this model is supported
by different cluster group survival outcomes. Feature association
with both pathobiology (molecular parameters) and survival sug-
gests that this model could overcome some limitations of previous
pathomorphologically based classifications of pAML and sAML.

Our results reaffirm previous studies4-6,11 and extend them by
integrating more molecular features and expanding diagnostic
and pathogenetic implications. In particular, we focused on the
inclusion of genomic signatures, despite their variable degree of
global importance, to achieve the highest possible genomic clas-
sification accuracy. For instance, and in line with previous
reports,10,13,25-28 NPM1 and TP53 mutations contributed greatly
to creating the lower- and higher-risk phenotypes (corresponding
to the clinical/survival risk), respectively. However, the highest
cumulative accuracy was achieved only by the incorporation of
the status (presence or absence) of additional genomic lesions,
including RUNX1, ASXL1, SRSF2, and DNMT3A mutations; 25/
del(5q); 217/del(17p); and others.

Our molecular 4-tiered model is not meant to challenge or
replace previously established prognostic schemes. It mainly
focuses on objectively subclassifying genomically undefined
pathomorphologic AML subtypes, including pAML and sAML.
However, becausewe compare it with traditional prognostication
tools that incorporate prognostic genomic features, like ELN

2017, we would like to point out certain advantages that were
concluded from our GC-based model. Our model expands a
larger pool of genomic signatures and quantifies their corre-
sponding importance. The latter is crucial when determining
the probability of objective subclassification in complex hetero-
geneous AML cases harboring combined ELN 2017–defined
favorable and adverse genomic lesions. Themodel describes dis-
tinct clustering of a variety of previously described genomic
lesions that are known to influence AML outcome and emerged
as AML cluster determinants. DNMT3A, IDH2R140, and TET2
mutations, only when occurring without NPM1 mutations, are
important genomic determinants of GC-2. Splicing factor muta-
tions (SRSF2 and U2AF1) contributed substantially to the perfor-
mance of our model and were noticeably enriched in GC-3,
indicating their predicted potential to be a distinct AML sub-
group.11,22 Moreover, RUNX1 mutations had the second-
highest global importance and crucially contributed to the iden-
tification of all novel groups. Specifically, RUNX1mutations were
highly prevalent in GC-3. Thus, our data confirm the substantial
presence of RUNX1-mutant AML in themost recentWorldHealth
Organization classification as a provisional disease category.9,29

Interestingly, BCOR/L1 mutations emerged as a potential geno-
mic marker of GC-3. Although complex karyotype AML was
abundant in the poorest survival group as defined in ELN 2017,
the concurrent presence of other important genomic markers
identified by our model [25/del(5q), 217/del(17p), and TP53
mutations] seemed to delineate its classification. When these
aforementioned markers were absent, complex karyotype AML
was also seen in other groups (GC-3). Therefore, our model
argues that genomic subclassification of complex karyotype
AML is strongly dependent on the present/absent status of other
decisive correlating genomic markers. Finally, the model is
dynamic and displays flexibility and personalization by account-
ing for accurate probabilities of assignment to each cluster per
the presence/absence of each genomic feature and its interac-
tions with other signatures, rather than predicting a single classi-
fication. It also defines the estimated survival interval of each
genomic group, which can be considered when assessing pro-
spective AML patients’ prognoses.

Because of the mechanistic focus, the deliberate exclusion of
certain clinical data may appear as a limitation of our model.
Although we believe that some of the phenotypic features
are a result of genomic makeup and are likely codependent,
we acknowledge that selected parameters may be later incor-
porated, similarly to the genomic features to be discovered in
the future. The latter may, for example, include some of the
germline alterations, clonal/subclonal burden, or configuration
of hits as demonstrated for CEBPA biallelic mutations. Further-
more, some GCs showed a higher degree of heterogeneity
compared with others, which can be likely improved by future
incorporation of more complex models such as neural
network–based clustering or the use of infinite priors in a Bayes-
ian setting if a larger cohort is available. Also, as all of the
patients receive therapy, new effective drugs could affect prog-
nosis and thus may have a global subgroup-specific impact on
survival, and the predictive value of survival curves within sub-
groups may have a limited shelf life. Although the predictive
accuracy of our genomic model was validated and our
approach accounted for a possible generalizability limitation
by including multicenter cohorts, eventually prospective exter-
nal validations of longer patient follow-up durations are still
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warranted. Additionally, we envision that molecularly based risk
assessment may have a rational implication for the use of spe-
cific therapy choices, especially when targeted agents and their
combinations become more widely applied and thus purely
clinical classification schemes become obsolete to provide
generalizable survival predictions.

In summary, our study demonstrates that despite the tremendous
heterogeneity of AML genomics, nonrandom genomic relation-
ships, captured bymachine learningmethods, are capable to accu-
rately assign objective molecular classification and prognosis
irrespective of the availability of clinicopathologic or anamnestic
information. It clearly indicates that the classical distinction of
sAML frompAML cannot be justified atmolecular levels, and rather
molecular signatures/patterns should provide a prevailing impetus
for classification schemes. Our model provides a personalized
genomic tool for AML subclassification that is publicly shared.
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