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KEY PO INTS

� Tumor cells express
transcriptional
programs of both
immature and mature
stages of normal PC
development.

� Survival of patients with
AL and MM is inferior
when tumor cells
express transcriptional
programs of more
immature normal PC
stages.

Although light-chain amyloidosis (AL) and multiple myeloma (MM) are characterized by
tumor plasma cell (PC) expansion in bone marrow (BM), their clinical presentation differs.
Previous attempts to identify unique pathogenic mechanisms behind such differences
were unsuccessful, and no studies have investigated the differentiation stage of tumor
PCs in patients with AL and MM. We sought to define a transcriptional atlas of normal PC
development in secondary lymphoid organs (SLOs), peripheral blood (PB), and BM for com-
parison with the transcriptional programs (TPs) of tumor PCs in AL, MM, and monoclonal
gammopathy of undetermined significance (MGUS). Based on bulk and single-cell RNA
sequencing, we observed 13 TPs during transition of normal PCs throughout SLOs, PB,
and BM. We further noted the following: CD39 outperforms CD19 to discriminate newborn
from long-lived BM-PCs; tumor PCs expressed the most advantageous TPs of normal PC dif-
ferentiation; AL shares greater similarity to SLO-PCs whereas MM is transcriptionally closer
to PB-PCs and newborn BM-PCs; patients with AL and MM enriched in immature TPs had
inferior survival; and protein N-linked glycosylation–related TPs are upregulated in AL. Col-

lectively,weprovide a novel resource to understand normal PCdevelopment and the transcriptional reorganization ofAL
and other monoclonal gammopathies.
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Learning objectives
Upon completion of this activity, participants will be able to:
1. Describe a gene expression atlas of normal plasma cell (PC) differentiation throughout secondary lymphoid organs, peripheral

blood, and bone marrow, according to a study
2. Compare transcriptional programs expressed in tumor PCs of light-chain amyloidosis (AL) vs monoclonal gammopathy of unde-

termined significance and multiple myeloma (MM), according to a study
3. Describe clinical and pathophysiologic implications of study findings regarding the differentiation stage of tumor PCs in patients

with AL and MM and a transcriptional atlas of normal PC development
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Introduction
Multiple myeloma (MM) and light-chain amyloidosis (AL) are the
most common malignant monoclonal gammopathies. Although
both present with accumulations of tumor plasma cells (PCs) in
bone marrow (BM), AL results from the deposition of misfolded
light chains.1-3 This urged the identification of the unique patho-
genic mechanisms in AL. Success in identifying these mechanisms
has thus far been limited.4-7

Knowledge about the neoplastic transformation of normal PCs
remains scarce,8 particularly when considering the anatomical
diversity reflected by their generation in secondary lymphoid
organs (SLOs), circulation in peripheral blood (PB), and residence
in BM. Thus, we sought to develop a gene-expression atlas of nor-
mal PC differentiation throughout SLOs, PB, and BM to compare
transcriptional programs (TPs) expressed in tumor PCs of AL vs
monoclonal gammopathy of undetermined significance (MGUS)
and MM.

Study design
One hundred subjects were studied. Tonsillar and PB-PCs were
flow-sorted according to surface heavy-chain immunoglobulin
expression, and 5 BM-PC subsets were isolated based on the
expression of CD19, CD39, CD56, andCD81, due to their ascribed
role in dissecting unique BM-PC differentiation states, from 9
healthy adults (HAs).9 Tumor PCs from patients with AL (n 5 32),
MM (n5 32), andMGUS (n5 6) were isolated for RNA sequencing
(RNAseq) using fluorescence-activated cell sorting according to
patient-specific aberrant phenotypes.4 We used an RNAseq
method optimized for limited cell numbers10 due to the very small
percentages of normal PC subsets in HAs and tumor PCs in AL and

MGUS. Single-cell RNAseq (scRNAseq) was performed in 80239
PCs from SLOs (n 5 3), PB (n 5 3), and BM (n 5 3) samples
from HAs, and BM aspirates from AL (n 5 6) and MM (n 5 15)
patients. The completemethodology is described in supplemental
Methods (available on the Blood Web site), the study workflow is
shown in supplemental Figure 1, and patient characteristics are
presented in supplemental Table 1.

Results and discussion
Transition from early to late stages of PC development includes
cessation of the cell cycle and activation of antiapoptotic
genes.11-13 Thus, prolonged survival of long-lived normal PCs
could be an intrinsic advantage before their neoplastic transforma-
tion, whereas blocked proliferation after exiting SLOs would pose
a challenge to their clonal expansion. Yet, precise knowledge
about the TPs expressed by tumor PCs in relation to normal PC
development remains unknown. Hence, we first displayed a
3-dimensional principal component analysis of normal and
tumor PC gene expression (Figure 1A), which exposed the pres-
ence of 13 TPs during the transition of normal PCs throughout
SLOs, PB, and BM (Figure 1B), and uncovered that tumor PCs
express TPs linked to various stages of normal PC differentiation
(Figure 1C).

As expected, TPs related to germinal center formation and B-cell
activation/proliferation were turned off once normal PCs egressed
from SLOs (TP-3 and TP-4). By contrast, genes related to NF-kB,
among others, in TP-9 became active from the moment PCs left
SLOs. The transition from PB- into BM-PCs was characterized by
differential expression of genes related to protein secretion (TP-10),
whereas newborn and long-lived BM-PC subsets differed on the
expression of genes associated with proliferation (TP-5) and survival
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(TP-13). This transcriptional atlas of normal PC differentiation
may contribute to further insights on genes involved in the
generation of antibody-secreting cells and maturation into
long-lived BM-PCs.13 For example, we observed that CD39
outperforms CD19 as a marker to discriminate newborn
(CD391) from long-lived (CD392) normal BM-PCs (Figure 1B;
supplemental Figure 2).

There are divergent opinions about the anatomical origin of
monoclonal gammopathies in accordance with different concepts
of disease pathogenesis; namely an antibody-secreting cell that
originates from post–germinal center B cells in SLOs and can be
detected in PB vs long-lived PCs in the BM.14-19 Here, we unrav-
eled that tumor PCs from AL, MM, and MGUS patients express
TPs from more immature SLOs, PB, and newborn PCs (eg, MYC
activation in TP-7, TP-8) together with TPs from long-lived
BM-PCs (eg, survival in TP-13). By contrast, reduced protein secre-
tion (eg, TP-10) and regulation of response to endoplasmic retic-
ulum stress (eg, TP-12) emerged as hallmarks of the neoplastic
transformation from normal, long-lived BM-PCs into tumor PCs.

Based on the nonsuperimposable distribution of tumor PCs from
AL,MM, andMGUSpatients throughout the various stages of nor-
mal PC development (principal component 4 in Figure 1A), we
decided to determine gene-expression correlation levels between
each TP in themultiple normal PC subsets vs tumor PCs from each
disease (supplemental Figure 3A). As such, the TPs that better
defined each normal PC subset were identified, and their relative
weight was measured in tumor PCs to unbiasedly identify their
closest normal PC counterpart (supplemental Figure 3B). Sur-
prisingly, we found that whereas TPs from SLOs, PB, and new-
born and long-lived BM-PCs were equally distributed in
MGUS, there was predominant expression of TPs from SLO-PCs
in AL and TPs from PB- plus newborn BM-PCs in MM (supplemen-
tal Figure 3C).

We then used scRNAseq to investigate whether these TPs were
homogeneously (vs heterogeneously) expressed in individual nor-
mal and tumor PCs (Figure 1D). As expected, normal PCs clus-
tered according to their differentiation. Some patients also
clustered, which could be partially explained by the proliferative
stage of tumor PCs (supplemental Figure 4) and, to a lesser extent,
IGH translocations (supplemental Figure 5). Furthermore, we
observed that, whereas all AL patients had a predominant TP
expressed by a majority of tumor PCs (ie, TP-9, TP-11, and
TP-12; Figure 1E; supplemental Figure 6A), there was consider-
able single-cell diversity and most TPs were detectable in smaller
percentages of tumor PCs (supplemental Figure 6A-B). These

findings build upon recent concepts about the evolutionary trade-
offs of cancer hallmarks.20,21 Thus, rather than tumors being
forced to select 1 biological function (eg, proliferation, survival,
invasion, etc), singular PC subsets would be specialized in one
or another task, and subset predominance in response to stimuli
(eg, hypoxia) would dictate the tumor phenotype in a given
moment.

Because previous studies in MM have shown an association
between the differentiation stage of tumor PCs and patient out-
come,9 we investigated whether the same applied to AL. First,
we defined a normalized enrichment score (NES) based on the
transcriptional profile of SLO-PCs, PB-PCs plus newborn BM-PCs
and long-lived BM-PCs (supplemental Figure 7). As expected,
the various normal PC subsets from SLOs, PB, and BM displayed
the highest corresponding NES, whereas tumor PCs from AL and
MM patients showed higher NES values related to the transcrip-
tional profile of SLO-PCs and PB-PCs/newborn BM-PCs, respec-
tively (Figure 2A). Although the number of patients precludes
definitive conclusions, AL patients with tumor PCs displaying
higher NES values corresponding to normal SLO-PCs had signifi-
cantly inferior progression-free survival (Figure 2B-C). Similarly, we
found that, in a larger series of patients with MM enrolled in
CoMMpass, those displaying high NES values corresponding to
PB-PCs/newborn BM-PCs had significantly poorer outcome
(Figure 2D-E and supplemental Figure 8, in which MKI67 was
removed).

This is the first integrated bulk and single-cell analysis of the tran-
scriptional programs of anatomically different normal PC subsets
vs tumor PCs in AL, MM, and MGUS. Our results unveiled shared
and exclusive transcriptional states between normal and tumor
PCs, together with unique differences in tumor PCs from patients
with AL, MM, and MGUS (supplemental Figure 9). Indeed, there
were 720 genes differentially expressed in AL vs MM and MGUS
(supplemental Table 2). It could be hypothesized that the greater
similarity between MGUS and MM is because most MGUS pro-
gress into MM and not AL. Larger studies are needed to confirm
this, and that specific cytogenetic abnormalities have no impact in
transcriptional differences between AL vs MGUS/MM (supple-
mental Figure 10).

Two-thirds of genes overexpressed in AL vsMM/MGUS belonged
to TP-2, TP-3, and TP-6 (213 of 335; 64%). These are linked to
chromatin organization and protein N-linked glycosylation, which
becomes downregulated as normal PCs egress from SLOs (Figure
1B-C). Interestingly, there is a fourfold higher rate of N-glycosyla-
tion in light chains from patients with AL vs other PC disorders ,22

Figure 1. Transcriptional atlas of normal PC development and neoplastic transformation. Data were normalized with RUVSeq, and differential expression of genes was
analyzed with Deseq2 or masigpro, followed by k-means clustering in R. (A) Tridimensional principal component analysis of gene-expression data based on the top 500
variable genes. Normal PCs were isolated by fluorescence-activated cell sorting (FACS) from SLOs (ie, tonsils, SLO) and PB according to immunoglobulin heavy-chain iso-
types, as well as from BM samples of healthy adults according to differential expression of CD19, CD39, CD56, and CD81. Tumor PCs were isolated by FACS from BM
samples of patients with AL (n 5 32), MGUS (n 5 6), and MM (n 5 32). (B) Heat map of gene expression in normal PC subsets (after merging SLO- and PB-PCs with immu-
noglobulin M [IgM], IgG, and IgA isotypes as well as all CD392 BM-PCs due to overlapping profiles) and tumor PCs from AL, MGUS, and MM patients, based on a total of
2200 genes selected by their differential expression in normal SLO-PCs, PB-PCs, and CD391 and CD392 BM-PCs plus 720 genes differentially expressed in tumor PCs from
AL, MGUS, and MM patients. TPs were defined by semisupervised k-means clustering (k5 13), and gene expression is represented with a row z score. (C) Functional enrich-
ment heat map based on top nonredundant biological functions (ie, gene ontology [GO]) (P , .05) per TP determined with Metascape. TP1, TP7, and TP8 shared the same
top biological functions and were grouped. Color intensity is proportional to the significance level. Box plots from left to right represent gene-expression levels in normal
SLO-PCs, PB-PCs, and CD391 and CD392 BM-PCs as well as tumor PCs from AL, MGUS, and MM patients. The most significant deregulated genes are shown at the right
end of the graphical representation. (D) Uniform manifold approximation and projection (UMAP) of 142 778 individual PCs isolated by FACS from healthy adults; SLOs (n 5

3), PB (n 5 3), and BM (n 5 3) and from patients with AL (n 5 6) and MM (n 5 15). (E) Single normal BM-PCs and tumor PCs were colored according to the TPs identified in
panel C, based on the expression level of the most significant genes defining each TP. We used the Seurat R package24 for data integration and clustering.
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although we could not confirm in vitro that knockdown of NAGK
andMGAT2 reduced N-glycosylation of light chains produced by
KJON cells (supplemental Figure 11).

More than one-half of genes underexpressed in AL vs MM/
MGUS belonged to TP-1 and TP-8 (223 of 385; 58%), which

are associated with oxidative phosphorylation, MYC, or ribo-
some biogenesis that becomes upregulated as normal PCs
egress from SLOs (Figure 1B-C). These findings are consistent
with previous observations about impaired ribosome machinery
in AL.23 Thus, our results could potentially shed new light into the
different clinical presentation of AL.
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Figure 2. Impact of tumor gene expression in the survival of patients with AL and MM according to the resemblance with normal PC counterparts. (A) NES values
based on the transcriptional profile of SLOs (ie, tonsils, SLO), PB, CD391 (CD391ve), and CD392 (CD39-ve) BM normal PCs, measured in these as well as in tumor PCs from
patients with AL (n 5 32), MGUS (n 5 6), and MM (n 5 32). The dashed line marks the median NES of the corresponding normal PC subset. *P , .05. (B-C) Progression-free
and overall survival of patients with AL (n5 29) according to low vs high NES values corresponding to normal SLO-PCs (red, NES value above the median; green, NES values
below the median). (D-E) Progression-free and overall survival of patients with MM (n 5 552) according to low vs high NES values corresponding to normal PB-PCs and
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