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KEY PO INTS

� Defective maturation of
NKeffector cells leads to
accumulation of less
cytotoxic
hyperactivated cytokine-
producing NK cells in
patients with B/T-ALL.

� Increased frequency of
activated cytokine-
producing NK cells
independently predicts
poor clinical outcome in
patients with ALL.

B- and T-cell acute lymphoblastic leukemia (B/T-ALL)may be refractory or recur after therapy
by suppressing host anticancer immune surveillance mediated specifically by natural killer
(NK) cells. We delineated the phenotypic and functional defects in NK cells from high-risk
patients with B/T-ALL using mass cytometry, flow cytometry, and in silico cytometry, with
the goal of further elucidating the role of NK cells in sustaining acute lymphoblastic leukemia
(ALL) regression. We found that, compared with their normal counterparts, NK cells from
patients with B/T-ALL are less cytotoxic but exhibit an activated signature that is character-
ized by high CD56, high CD69, production of activatedNK cell–origin cytokines, and calcium
(Ca21) signaling.Wedemonstrated that defectivematuration ofNK cells into cytotoxic effec-
tors prevents NK cells fromALL from lysingNK cell–sensitive targets as efficiently as do nor-
mal NK cells. Additionally, we showed that NK cells in ALL are exhausted, which is likely
caused by their chronic activation. We found that increased frequencies of activated
cytokine-producing NK cells are associated with increased disease severity and indepen-
dently predict poor clinical outcome in patients with ALL. Our studies highlight the benefits

of developing NK cell profiling as a diagnostic tool to predict clinical outcome in patients with ALL and underscore the
clinical potential of allogeneic NK cell infusions to prevent ALL recurrence.

Introduction
B- and T-cell acute lymphoblastic leukemia (B/T-ALL) is refractory
and often recurs after therapy.1–3 ALL occurs in children, in young
adults between 15 and 39 years old,4 and in individuals.50 years
old.5 Most acute patients with lymphoblastic leukemia (ALL) are
initially treated with multiagent chemotherapy, although the
recent success of antibody-based and chimeric antigen receptor
(CAR) T-cell–based immunotherapies have markedly improved
clinical outcomes.6–14 Despite treatment advances, because of
resistance to existing therapies,15,16 the 5-year relative survival is
only 68.8%.4 Hence, safe treatments to overcome therapeutic
resistance remain an urgent clinical need.

Therapeutic resistance is often caused by suppression of antileu-
kemia host immunity.17,18 Studying immune surveillance in trans-
genic ALL mice, we showed that specific subversion of
antileukemia natural killer (NK) cell–mediated surveillance drives
ALL development and recurrence.19 Our findings underscore

the importance of developing the therapeutic potential of NK cells
for sustained B/T-ALL regression.

As effector cytotoxic lymphocytes,20,21 NK cells are attractive
immune cell–based therapy candidates.22–27 NK cells have been
explored for treatment of acute myeloid leukemia and ALL even
prior to CAR T cells.22,28–32 NK cells have advantages over CAR
T cells. Development of allogeneic CAR T-cell immunotherapies
is complex as a result of the required disruption of mechanisms
that cause graft-versus-host disease in recipients.33,34 However,
NK cells, being less haplotype restricted,35 can be developed as
“off-the-shelf” immunotherapies.22,24,25,28,36–41 Treating T-cell
ALL (T-ALL) using CAR T cells is difficult because of the reduced
numbers of healthy T lymphocytes in patients and the on-target
effects on normal T cells.33,34 B-cell ALL (B-ALL)may become resis-
tant to CAR T cells by losing target antigen expression.42–45 Engi-
neering autologous CAR T cells to treat infant B-ALL can be
challenging because of difficulties associated with obtaining
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peripheral blood from these patients.38 Reduced cytokine release
syndrome and neurotoxicity make NK cells safer than CAR T
cells46,47; therefore, NK cell therapies are potentially attractive
to treat ALL.

To develop NK cell–based ALL therapies, we must delineate the
phenotypic and functional differences betweenNK cells in healthy
individuals and in patients with B/T-ALL. NK cell profiling in ALL
mouse models has improved our understanding of how NK cell
surveillance is suppressed in ALL.19 However, differences in
murine and human NK cells impede the translation of our murine
findings19 to the development of NK cell therapies for patients
with ALL. Therefore, in this study, we contrast NK cells from
patients with B/T-ALL and healthy individuals using mass cytome-
try (cytometry by time of flight; CyTOF),48 flow cytometry, and in
silico cytometry (CIBERSORT).49 We demonstrate that the NK cell
phenotype in patinets with ALL predicts disease severity and clin-
ical outcome. Our work lends insights into harnessing NK cells for
diagnosing and treating B/T-ALL.

Methods
Patient samples
After providing consent, bone marrow mononuclear cells (BMMCs)
and peripheral blood mononuclear cells (PBMCs) were collected
and processed from patients with B/T-ALL and healthy donors
according to Institutional Review Board policies. Healthy BMMCs
were purchased from AllCells (Alameda, CA). Healthy PBMCs
were isolated from buffy coats procured from Stanford Blood Cen-
ter, City of Hope Michael Amini Transfusion Medicine Center, and
influenza vaccine studies50 of Stanford Biobank. Deidentified B/T-
ALL patient specimens were used. This study is classified as nonhu-
man subjects research under City of Hope IRB19373.

CyTOF
Samples were processed as previously described.51 After thawing,
cells were classified as unstimulated and stimulated. After an over-
night rest, stimulated cells were incubated with phorbol myristate
acetate (PMA)1ionomycin; during incubation, anti-CD107a, bre-
feldin A, and monensin were added to all samples. Dead cells
were identified using Cell-ID Cisplatin-195Pt (Fluidigm) prior to
surface staining and fixed with 2% paraformaldehyde, followed
by intracellular and DNA staining with Cell-ID Intercalator-Ir (Fluid-
igm) (antibodies are provided in supplemental Tables 2 and 3,
available on the Blood Web site). Prior to acquisition (CyTOF
Helios; Fluidigm), cells were washed with Milli-Q water and resus-
pended in a 13 solution of EQ Four Element Calibration Beads
(Fluidigm). Data were normalized using MATLAB normalizer
before analyzing with Cytobank.52

NK cell isolation and cytotoxicity
CD561 cells, enriched using REAlease CD56MicroBeads (Miltenyi
Biotec), were stained with anti-CD3, anti-CD56, and DAPI (supple-
mental Table 4). DAPI2CD32CD561 NK cells were sorted using a
BD FACSAria Fusion cytometer and used for cytotoxicity assays.
Targets were labeled with 2.5 mMcarboxyfluorescein succinimidyl
ester–violet dye (CellTrace Violet Cell Proliferation Kit; Invitrogen)
and cocultured with NK cells at an effector-to-target ratio of 10:1
in complete RPMI medium (10% fetal bovine serum, 100 U/mL
penicillin, 100 mg/mL streptomycin). After 5 hours, cells were
stained with 7-aminoactinomycin D (7-AAD) and NK

cell–mediated cytotoxicity was measured on a BD Fortessa X20
cytometer. Data were analyzed using FlowJo 10.7.1. Specific cyto-
toxicity5 ([7-AAD1 target cell frequency in coculture with effector
cells 2 7-AAD1 target cell frequency alone]/[100 2 7-AAD1 tar-
get cell frequency alone]) 3 100.

Flow cytometry
PBMCs were thawed in complete RPMI medium containing Pierce
Universal Nuclease (25 U/mL; ThermoFisher Scientific) and stained
with fluorochrome-tagged surface antibodies (supplemental
Table 4) and Ghost Dye UV 450 for 30 minutes on ice. Cells
were fixed with 1% paraformaldehyde (BioLegend), followed by
acquisition on a BD FACSymphony flow cytometer. FCS files
were analyzed using FlowJo 10.7.1. Supplemental Table 5 shows
analyzed NK cell numbers per patient.

Calcium mobilization
Samples wer e stained with anti-CD45, anti-CD3, and anti-CD56
antibodies (supplemental Table 4). Cells were resuspended in
RPMI 1640medium containing 2% fetal bovine serum and stained
with Indo-1/AM (1.5 mM; ThermoFisher Scientific), a UV
light–excitable radiometric Ca21 indicator, for 30 minutes at
37�C. Cells were stained with 7-AAD and equilibrated at 37�C
for 10 minutes for hydrolysis of AM moieties of Indo-AM dye.
Ca21 flux was measured on a BD Fortessa-X20. Baseline Indo-1
fluorescence was measured for 22 seconds, followed by ionomy-
cin treatment (1 mg/mL); measurement was continued for 3 to 4
minutes. Ratios of fluorescence detected at 405/20 BandPass
(Ca21bound) to 515/20 BandPass (Ca21-free) channels over time
were calculated using derived parameters in FlowJo 10.7.1, fol-
lowed by normalization of fluorescence kinetics with baseline fluo-
rescence ratio. Area under the curve was calculated using
GraphPad.

CIBERSORT
CIBERSORT was carried out using https://cibersort.stanford.
edu.49 LM22 reference was used to estimate resting and activated
NK cell frequencies within total NK cells. To estimate NK cell fre-
quencies with CD56bright and CD56dim molecular signatures by
CIBERSORT, we used GSE2177453,54 to construct reference and
phenotype classes files.

Visualization of differentially regulated genes
Relative signal intensities for each probeset/gene were calculated
by log transforming the data and centering them on the average
value calculated for each gene across the immune cell types, using
Gene Cluster 3.0, and then visualizing the data as heat maps in
TreeView.

Gene set enrichment analysis
Genes were ranked by maximum enrichment scores to identify
significantly differentially regulated gene expression signatures
between 100% resting and 100% activated NK cell groups from
the hallmark gene sets provided in the molecular signatures data-
base from Broad Institute.55–57

Statistics and reproducibility
Exact P values are provided; they are considered significant (P ,

.05) or trending toward significance (.05 , P , .1). Survival was
estimated by the Kaplan-Meier method. The P values were calcu-
lated using the log-rank test for survival, the Bonferronimethod for
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survival analyses with multiple comparisons, gene set enrichment
analyses55–57 for pathway analysis, and the Mann-Whitney U test
for all other analyses. Sample size was calculated using the
“cpower” function in the R package. Reproducibility in CyTOF
was ensured by using $8 independent biological samples per
group for the ALL cohort and$4 samples for the healthy controls.

Results
NK cell frequency and cytotoxicity are reduced in
patients with B/T-ALL
To understand the mechanisms underlying the suppression of NK
cell surveillance in human ALL, using CyTOF,48 we immunopheno-
typedNK cells in BMMCs and PBMCs from13B-ALL and 7 patients
with T-ALL (supplemental Table 1), as well as in 22 tissue-matched
samples (BMMCs or PBMCs) from healthy donors. We selected
patientswith ALL forwhom therapies targeting thedriver oncogene
are unavailable, including those driven by rearrangements of
KMT2A (5/20),CRLF2 (4/20),MYC (2/20),NOTCH1pointmutations
(4/20), and CDKN2A deletions (1/20) (supplemental Table 1).

We first compared the frequencies of CD561 NK cells between
patients with B/T-ALL and healthy donors after gating out CD141

and/or CD331 myeloid cells, CD31 T/NK T cells, and CD191

and/or CD201 B cells (supplemental Figure 1). Consistent with
reduced NK cell numbers that we reported previously in murine
ALL,19 NK cell frequencies were significantly reduced within the
nonmalignant immune fraction of patients with ALL compared
with healthy donors (Figure 1A-B). An absence of differences in
NK cell viability and proliferation between patients and healthy
donors (supplemental Figure 2A-F) suggested that NK cell frequen-
cies in B/T-ALL are likely reduced by other mechanisms.

We then examined whether the cytotoxicity of residual NK cells is
impaired in ALL patients by comparing the abilities of sorted
PBMC NK cells (supplemental Figure 3) from B-ALL patients and
healthy donors to lyse allogeneic NK cell–sensitive erythroleuke-
mia and T-ALL targets in vitro. ALL NK cells exhibited a signifi-
cantly lower specific cytotoxicity toward leukemia targets
compared with healthy donor NK cells (Figure 1C-D). Therefore,
reduced NK cells and suppressed NK cell cytotoxicity block NK
cell surveillance in ALL patients.

NK cells with a less cytotoxic CD56bright molecular
signature are expanded in B/T-ALL
Reduced cytotoxicity of ALL NK cells suggests that production of
cytolytic NK effectorcells is perturbed in ALL patients. Human NK
cells mature from a less cytotoxic CD56brightCD162 stage to a
highly cytotoxic CD56dimCD161 stage.58–62 Therefore, we postu-
lated that frequencies of CD56bright and CD56dim NK cells are per-
turbed in ALL.

Using CIBERSORT, we compared the relative frequencies of NK
cells with CD56bright and CD56dim molecular signatures
(GSE21774;53 supplemental Figure 4) from 94 healthy donors
(GSE65136,49 GSE1315963), 207 B-ALL patients from the P9906
Children’s Oncology Group (COG) clinical trial (GSE1187764–66),
and 576 patients with B-ALL and 174 T-ALL patients from the
Microarray Innovations in Leukemia (MILE; GSE1315963,67) bank-
ing study (Figure 2A). Transcriptomes of patient samples from
COG and MILE were measured at diagnosis (pretreatment).

Concordant with reduced NK cell cytotoxicity in ALL, we found
that the frequencies of NK cells with a CD56bright molecular signa-
ture were increased, whereas thosewith a CD56dim signature were
decreased, in B/T-ALL (Figure 2B). Of note, we chose CIBER-
SORT49 over methods like xCell,68 because estimating relative fre-
quencies of CD56bright and CD56dim NK cell fractions within total
NK cells was not possible with xCell.69

Consistent with CIBERSORT, we observed a significant increase in
the CD56bright NK cell fraction in BMMCs from patients with B/T-
ALL using CyTOF (supplemental Figure 5A-B). Surprisingly,
CD56bright and CD56dim NK cell frequencies were unchanged in
PBMCs from B/T-ALL patients compared with healthy donors
(supplemental Figure 5C-D), although CIBERSORT showed that
cells with a CD56bright NK cell transcriptome were enriched in
ALL (Figure 2B). AlthoughCIBERSORT considers a comprehensive
molecular signature for the CD56bright and CD56dim NK cell frac-
tions (supplemental Figure 4), CyTOF discriminates between
CD56bright and CD56dim subsets based on CD56 expression,
which could explain the discrepancy between the 2 methods.
We infer that ALL NK cells, irrespective of their surface CD56
expression, have the molecular makeup of less mature and less
cytotoxic CD56bright NK cells. Proliferation and viability of
CD56bright and CD56dim NK cell subsets are unaffected in ALL
(supplemental Figure 2A-F). Hence, their perturbed turnover
does not lead to the expansion of NK cells with the CD56bright

molecular phenotype in ALL patients.

Next, we examined coexpression of CD27 and CD56. The major-
ity of CD56bright NK cells are CD271, and differentiation into
CD56dim cytotoxic effectors results in CD27 loss.70,71 We found
a significant increase in the least cytotoxic CD56brightCD271 NK
cell fraction and a concomitant decrease in the cytotoxic
CD56dimCD272 NK cell subset in BMMCs, but not in PBMCs,
from patients (Figure 2C-F).

Less cytolytic CD56brightCD271 NK cells express more natural cyto-
toxicity receptor NKp46 than do their CD56dimCD272 counter-
parts.59 Comparing the expression of NKp46 in patient and
healthy donor NK cells, we observed significantly increased
CD271NKp461 NK cell frequencies in BMMCs from ALL patients
compared with healthy donors, whereas no differences were
observed in PBMCs (supplemental Figure 6A-D). Low expression
of NK cell maturation marker CD5771 confirmed that
CD271NKp461 NKcells were immature (supplemental Figure 6E-F).

The increase in immature CD56brightCD271 and CD271NKp461

NK cells in BMMCs corroborated the expansion of less cytotoxic
CD56bright NK cells in BMMCs from ALL patients (Figure 2C-D;
supplemental Figures 5A-B, 6A,C). For PBMCs, despite no pertur-
bations in CD56, CD27, or NKp46 in ALL NK cells (Figure 2E-F;
supplemental Figures 5C-D and 6B,D), we observed that NK cell
cytotoxicity was reduced, and NK cells with a CD56bright transcrip-
tome were enriched (Figures 1C-D, 2B). Therefore, we infer that
NK cells in PBMCs from patients with ALL exhibit CD56bright-like
characteristics.

Maturation of NK cells into cytotoxic effectors is
perturbed in PBMCs from patients with B/T-ALL
To determine why NK cells in PBMCs from patients with ALL are
less cytotoxic, despite the absence of perturbations in CD56
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Figure 1. NK cell frequency and cytotoxicity are reduced in high-risk B/T-ALL patients. (A) CyTOF analysis depicting frequencies of total CD561 HLA-DR2 NK cells
(after gating out CD141 and/or CD331 monocytes, and then CD31 T cells, and then CD191 and/or CD201 B cells, referred to as nonmonocyte non-T non-B gate) in BMMCs
and PBMCs of patients with B/T-ALL (n 5 12 BMMC; n 5 8 PBMC) and healthy donors (n 5 12 BMMC; n 5 10 PBMC). Data are median 6 interquartile range. (B) Repre-
sentative viSNE plots showing surface CD56 expression in the non–T-cell, non–B-cell, nonmonocyte, HLA-DR2 population in BMMCs and PBMCs from healthy donors and
patients with B/T-ALL. The color scale represents the intensity of CD56 expression on each cell. Flow cytometry density plots and comparison of NK cell–specific cytotoxicity
of sorted CD32CD561 NK effector cells from PBMCs of healthy donors (n5 3) and patients with B-ALL (n5 3) after coculture with the commonly used K562 erythroleukemia
NK cell–sensitive target for measuring NK cell function (C) or NK cell–sensitive MOLT-4 T-ALL target cells (D) for 5 hours at an effector-to-target ratio of 10:1. Data are shown
from 3 independent experiments; each experiment was conducted using the same number of NK cells sorted from 1 patients with B-ALL and 1 healthy donor. Each exper-
imental pair is connected by a line. The exact P value was calculated using the paired Student t test.
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Figure 2. NK cells with a less cytotoxic CD56bright molecular signature are expanded in B/T-ALL. (A) Schematic diagram depicting the steps to estimate the relative
proportions of CD56bright NK cells and CD56dim NK cells in healthy donors (GSE13159, GSE65136), in patients with B/T-ALL from the MILE study (GSE13159), and in patients
with B-ALL from the COG P9906 clinical trial (GSE11877) using CIBERSORT. Using GSE21774, which contains the transcriptomic profile of CD56bright and CD56dim NK cell
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of the mean for each subset. Exact P values were calculated using the Mann-Whitney U test. ns, nonsignificant.
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and CD27, we further characterized the CD56bright to CD56dim NK
cell transition by comparing CD94, KIR2DL1, NKG2A, and CD62L
on PBMC NK cells from 9 healthy donors and 9 patients with ALL
using flow cytometry (supplemental Figure 7).

CD94 is reduced in a stepwise fashion as NK cells differentiate
from CD56bright to CD56dim stages: less cytotoxic
CD56brightCD94High cells transition into a more cytotoxic
CD56dimCD94High intermediary before finally maturing into the
most cytotoxic CD56dimCD94Low subset.72 We observed signifi-
cantly decreased frequencies of the most cytotoxic CD56dimC-
D94Low subset in B/T-ALL patients (Figure 3A-B). The inhibitory
receptor KIR2DL1, which is expressed more by CD56dim NK cells
than by CD56bright NK cells,59 was also reduced in total and
CD56dim ALL NK cells (Figure 3C-D). No differences were
observed for NKG2A and CD62L between ALL and healthy
PBMCs (data not shown).

Our data suggested that the pathway producing cytotoxic NK
effectorcells is perturbed in ALL. NK effector maturation is a
4-stage process with progressive acquisition of cytotoxicity:
CD11b2CD272 double negative ! CD11b2CD271 single posi-
tive (SP) ! CD11b1CD271 double positive ! CD11b1CD272

SP.73 We observed significantly increased frequencies of imma-
ture and least cytotoxic CD11b2CD272 double-negative NK cells
and reduced frequencies of cytotoxic CD11b1CD272 SP NK
effector cells (Figure 3E-F). The CD11b1CD272 fraction resem-
bles the CD56dim NK cell subset, whereas the other fractions
resemble CD56bright NK cells,73 further supporting our observa-
tions that NK cells with the CD56bright molecular phenotype are
enriched in ALL patients.

Finally, comparing the expression of the cytotoxicity-inducing acti-
vating receptor DNAM-1 in ALL patients and healthy donors,74 we
observed a trend toward reduced DNAM-11 total NK cells, signif-
icantly reduced frequencies of the most cytotoxic
CD56dimDNAM11 NK cells, and a trend toward an increased
CD56dimDNAM-12 less cytotoxic fraction in patients compared
with healthy donors (Figure 3G-H). Because CD56dimDNAM-11

NK cells are the most cytotoxic NK cell fraction,74,75 our findings
demonstrate defective NK cell maturation in patients with ALL.

We conclude that perturbations in NK effector maturation from
the CD56bright to the CD56dim NK subset result in accumulation
of dysfunctional NK cells in patients with B/T-ALL.

Stimulated ALL NK cells produce more cytokines
than their healthy counterparts
CD56bright NK cells, when stimulated with PMA1ionomycin or
monokines, express higher levels of the cytokines interferon-g
(IFN-g), tumor necrosis factor (TNF), and granulocyte macrophage
colony-stimulating factor (GM-CSF) than do their CD56dim coun-
terparts.60,76 Because CD56bright-like NK cells are increased in B/
T-ALL (Figures 2 and 3; supplemental Figures 5 and 6), we pre-
dicted that stimulated ALL NK cells will produce more cytokines
than their normal counterparts. Therefore, we compared frequen-
cies of PMA1ionomycin-stimulated NK cell subsets expressing
intracellular cytokines in B/T-ALL patients and healthy controls.
We found increases in the frequencies of GM-CSF1 and TNF-a1

NK cells in BMMCs and PBMCs from B/T-ALL patients compared
with healthy donors. IFN-g1 NK cells were significantly increased

in PBMCs, but were unchanged in BMMCs, from patients with B/
T-ALL compared with healthy individuals (Figure 4). We found sig-
nificant increases in MIP-1b1 and interleukin-2 (IL-2)1 cells within
the CD56bright NK cell fraction of PBMCs and BMMCs, respec-
tively, in patients with ALL (supplemental Figure 8). Hence, stimu-
lated ALL NK cells produce more cytokines than do their healthy
counterparts, further corroborating the expansion of immature,
cytokine-producing, and poorly cytotoxic CD56bright-like NK cells
in ALL patients.

Peripheral blood ALL NK cells degranulate more
than healthy NK cells
BecauseCD56bright NK cells express fewer cytotoxic granules (per-
forin [PRF], granzyme B) than do their CD56dim counterparts,77 we
compared granule expression between ALL and healthy NK cells.
Surprisingly, we observed a trend toward increased
PRF1CD56bright NK cells in BMMCs and PRF1 total NK cells in
PBMCs, as well as significant increases in the frequencies of
PRF1 NK cell subsets in ALL PBMCs (supplemental Figure 9A-F).

Stimulated CD56bright NK cells degranulate more and express
more CD107a than do CD56dim NK cells.76 Therefore, we com-
pared the frequencies of CD107a1-stimulated NK cells between
patients with ALL and healthy donors. Although we did not
observe any significant changes in the frequencies of CD107a1

BMMC NK cells, we found a striking increase in CD107a1 cells
in the stimulated PBMCNK cell fractions of patients with ALL com-
pared with healthy donors (supplemental Figure 9G-J), corrobo-
rating the enrichment of CD56bright-like NK cells in ALL.

Hyperactivated and exhausted NK cells accumulate
in peripheral blood of patients with ALL
Increased expressions of cytokines, lytic granules, and CD107a
(Figure 4; supplemental Figure 9) suggest that PBMC NK cells in
patients with ALL are hyperactivated. Comparing levels of the acti-
vation marker CD6978 and Ca21 mobilization in NK cells of
patients with ALL and healthy donors by flow cytometry, we
observed significant increases in CD691 cells in the total NK cell
and NK cell subsets of ALL patients (Figure 5A-B) and found
that ALL NK cells exhibited a higher calcium flux (Figure 5C-D).
Therefore, ALL NK cells are more activated than are their healthy
counterparts.

Despite their increased activation, PBMC ALL NK cells cannot lyse
NK cell–sensitive leukemia targets.We investigated 2mechanisms
to explain the dysfunctionality of hyperactivated ALL NK cells.

First, we compared the expression of CD94 on CD691 NK cells in
patients with ALL and healthy donors, because CD94 inhibits
CD69-mediated NK cell cytotoxicity,78 and CD94 is perturbed in
ALL NK cells (Figure 3A-B). We observed significantly increased
CD691CD941 NK cells in ALL patients (Figure 5E). Our observa-
tions, together with other studies showing that excessive Ca21 sig-
naling impedes NK cell–mediated lysis of cancers,79 explain, at
least in part, why NK cells in ALL are dysfunctional, despite being
highly activated.

Next, using CyTOF, we investigated whether chronic activation
and impaired cytotoxicity of ALL NK cells are associated with
upregulation of checkpoint markers80–82 that indicate NK cell
exhaustion, including CTLA-4, PD-1, programmed death ligand
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1 (PD-L1), PD-L2, lymphocyte-activation gene-3 (LAG-3), T-cell
immunoglobulin and mucin domain-containing protein 3, T-cell
immunoreceptor with Ig and ITIM domains, killer cell lectin like
receptor G1 (KLRG1), and Ig-like transcript 2.80,82 Immune check-
points were unaffected in BMMCNK cells, with the exception of a
decrease in PD-L1 in the CD56bright subset (supplemental Figure
10). In PBMCs, we observed significantly increased LAG-31 total
NK cells and CD56dim NK cells and increased KLRG11 and PD-
L21 CD56bright NK cells in patients with ALL (Figure 5F-G). Hence,
chronicNK cell activation in ALL could lead to their exhaustion and
further impair their functions.

Among other checkpoints, we found significantly reduced sialic
acid-binding immunoglobulin-type lectin 7 (Siglec-7) in total and
CD56dim PBMC ALL NK cell subsets (Figure 5F-G). Reduced
Siglec-7 onNK cells is associated with the loss of NK effector func-
tions.83–85 Siglec-7 increases during NK effector maturation, with
the highest frequency of Siglec-71 NK cells occurring in the
most cytotoxic CD11b1CD272 NK cell fraction and the lowest fre-
quency of Siglec-71NK cells in the least cytotoxic andmost imma-
ture CD11b2CD272 subset.86 Reduced Siglec-7 in ALL NK cells
validates our observations of increased frequencies of
CD11b2CD272 immature NK cells and reduced frequencies of
mature cytotoxic CD11b1CD272 NK cells in ALL (Figure 3E-F).
Overall, we demonstrate the accumulation of dysfunctional and
exhausted NK cells with an activated phenotype in B/T-ALL.

High frequencies of activatedNK cells predict poor
clinical prognosis in high-risk B-ALL
We investigated whether the frequencies of activated NK cells
predict clinical prognosis in ALL patients. Using CIBERSORT,49

we estimated the relative frequencies of activated and resting
NK cells in 207 children with B-ALL enrolled in the COG P9906
trial (GSE11877).64–66 To estimate activated and resting NK cell
frequencies, we used the CIBERSORT LM22 reference file,49

which assigns pan-NK cells into restingNK cell and IL-2/IL-15–acti-
vated NK cell subsets (Figure 6A; supplemental Figure 12). We
confirmed that activated and resting NK cell signatures desig-
nated in CIBERSORT include classic NK cell activation markers
and that CIBERSORT is comparable to flow cytometry and CyTOF
because it uses the expression of lineage markers to distinguish
NK cells fromother related immune subsets, including T cells (sup-
plemental Figure 12A-B).

After excluding 4 patients with B-ALL with no detectable NK cells,
we assigned the remaining patients to 2 groups based on their
relative proportions of resting and activated cells within the total
NK cell fraction as resting NK . activated NK (n 5 104) and
activated NK . resting NK (n 5 99) and compared relapse-free
survival (RFS) probabilities between these cohorts. We observed
that patients who had more activated NK cells than resting NK
cells had shorter RFS (Figure 6B).

Analyzing poorly prognostic B-ALL with central nervous system
(CNS) involvement (CNS1, CNS2, or CNS3), we found that greater
activated NK cell frequencies significantly shortened RFS (Figure
6C). We then investigated whether frequencies of activated and
resting NK cells can independently predict clinical outcome in
patients who are classified, based on minimal residual disease
(MRD), as MRD1 or MRD2 at the end of induction therapy (day
29). We observed that a higher relative proportion of activated

NK cells predicts a significantly worse outcome and shortens
RFS in poorly prognostic MRD1 and better prognostic MRD2

patients (Figure 6D).

Comparing patients with only activated NK cells and no resting
NK cells (100% activated NK, n 5 85) against those with no acti-
vated NK cells and only resting NK cells (100% resting NK, n 5

73), we found that patients with 100% activated NK cells had a
worse prognosis than did those with 100% resting NK cells (Figure
6E). Finally, we found that the absence of activated NK cells inde-
pendently predicts favorable clinical outcome in CNS1, MRD2,
and MRD1 patients with B-ALL (Figure 6F-G). Therefore,
enrichment of the activated NK cell molecular signature predicts
a poor clinical outcome in ALL, independently of CNS
involvement or MRD status.

CD56, CD69, calcium signaling, and cytokines are
increased in ALL patients with a poor prognosis
We confirmed that COG B-ALL patients with only activated NK
cells express higher levels of NK cell activation markers, that we
find to be increased in ALL, compared with their counterparts
with 100% resting NK cells and a better prognosis. First, we
showed significantly increased CD56 and CD69 transcripts in
patients with 100% activated NK cells than in patients with
100% resting NK cells (supplemental Figure 13A-B). Next, using
gene set enrichment analysis,55–57 we showed that Ca21 signaling
is significantly upregulated in the 100% activated NK cell group
(supplemental Figure 13C-D). Therefore, the poor prognosis for
ALL patients with 100% activated NK cells could stem from the
repeated failure of immature chronically activated NK cells to
lyse lymphoblasts (Figures 3-5).

Because ALL NK cells can produce more cytokines upon stimu-
lation (Figure 4), we hypothesized that high expression of
GM-CSF, TNF, and IFN-g coincides with the molecular signature
of activated NK cells in CIBERSORT. To test this, (1) we com-
pared transcript levels of GM-CSF/CSF2, TNF-b/LTA, TNF-C/
LTB, and IFN-g/IFNG in COG B-ALL patients with 100% acti-
vated NK cells or 100% resting NK cells. Because expression
of TNF-a was not available in COG, we used TNF-b and
TNF-C, which are also induced in stimulated CD56bright NK
cells.60 We observed significantly increased GM-CSF and TNF
messenger RNA, as well as a trend toward increased IFN-g, in
patients with 100% activated NK cells vs 100% resting NK cells
(Figure 7A). (2) We divided COG B-ALL patients into 2 groups,
based on median messenger RNA expression of GM-CSF, TNF,
and IFN-g, as GM-CSFHighTNFHighIFN-gHigh (n 5 22) and GM-
CSFLowTNFLowIFN-gLow (n 5 19) and estimated the relative fre-
quencies of activated and resting NK cells in these groups using
CIBERSORT.49 Patients in the GM-CSFHighTNFHighIFN-gHigh

group had greater frequencies of activated NK cells compared
with those in the GM-CSFLowTNFLowIFN-gLow group (Figure
7B). Therefore, the molecular signature of activated NK cells
in CIBERSORT coincides with classic NK cell activation markers,
including increased production of cytokines.

High frequency of cytokine-producing NK cells
predicts poor ALL prognosis
We investigated whether increased cytokine production may be
responsible, at least in part, for the poor prognosis of COG
patients with B-ALL with more activated NK cells than resting
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NK cells. AmongNK cell activationmarkers, we chose cytokines to
perform clinical correlations because only cytokines were
identically regulated in BMMCs and PBMCs from patients with
B-ALL in in vitro studies (Figure 4), and cytokines were
differentially regulated between COG patients with B-ALL with
100% resting and 100% activated NK cells (Figure 7A-B).

First, we compared the proportions of COG patients with B-ALL in
GM-CSFHighTNFHighIFN-gHigh and GM-CSFLowTNFLowIFN-gLow

groups with 5 high-risk pediatric ALL features: white blood cell
(WBC) count at diagnosis .100000, relapse, CNS1, testicular
involvement, and MRD. We found that GM-CSFHighTNFHighIFN-
gHigh patients weremore likely to have all 5 high-risk features com-
pared with their GM-CSFLowTNFLowIFN-gLow counterparts (Figure
7C). Furthermore, B-ALL patients in the GM-CSFHighTNFHighIFN-
gHigh cohort trended toward shorter RFSs compared with patients
in the GM-CSFLowTNFLowIFN-gLow cohort (Figure 7D).

Finally, we determined whether high cytokine production specifi-
cally by NK cells correlates with poor clinical prognosis by interro-
gating whether high frequencies of GM-CSF1TNF1IFN-g1 NK
cells predict poor prognosis in patients with B/T-ALL using CyTOF
(supplemental Table 1). We divided ALL patients into High GM-
CSF1TNF1IFN-g1 NK cell (n 5 8) and Low GM-CSF1TNF1IFN-
g1 NK cell (n 5 7) groups based on the median frequencies of
stimulated NK cells expressing these proteins. We found that
patients in the high GM-CSF1TNF1IFN-g1 NK cell group had
lower overall survival probability than did those in the low GM-
CSF1TNF1IFN-g1 NK cell group (Figure 7E). We also observed
that higher proportion of patients in the high GM-
CSF1TNF1IFN-g1 NK cell group had WBC counts .100000
and did not survive postinduction therapy compared with patients
in the low GM-CSF1TNF1IFN-g1 NK cell group (Figure 7F-G).
Therefore, accumulation of cytokine-producing NK cells may con-
tribute to increased ALL severity and poor outcomes for patients
with high frequencies of activated NK cells.

Discussion
Studies showing that NK cells promote ALL regression in bone
marrow transplant recipients28,37 underscore the role of NK cells
in antileukemia immune surveillance. However, the mechanisms
by which NK cell surveillance is perturbed in human ALL, as well
as whether these perturbations in NK cell surveillance predict clin-
ical outcome in patients, were unknown. We address these clini-
cally relevant questions.

To delineate how NK cell surveillance is subverted in human ALL,
we immunophenotyped NK cells in B/T-ALL patients using
CyTOF48 and flow cytometry. We found that ALL NK cells are
less cytotoxic but exhibit a more activated and immature
CD56bright-like signature than do their healthy counterparts.
Because NK cell homeostasis in B/T-ALL patients are identically
perturbed, we infer that identical molecular mechanisms suppress
NK cell surveillance in both ALL lineages.

We find that, despite their increased activation and high cytokine
production, ALL NK cells do not lyse NK cell–sensitive targets as
efficiently as do their healthy counterparts. We show that
decreased production of cytotoxic NK effector cells in patients
with ALL may reduce NK cell cytotoxicity. Reports show that initial
failed NK cell–mediated lysis of targets leads to continuous

engagement of activation receptors on NK cells87 and promotes
Ca21 signaling,88–90 ultimately causing NK cell exhaustion.91

Therefore, our observations demonstrating increased frequencies
of CD941CD691 NK cells, reduced frequencies of KIR2DL11 NK
cells, enhanced Ca21 signaling, and increased NK cell exhaustion
markers in patients prove that dysfunctional hyperactivated NK
cells accumulate in ALL. Other reasons for ALL NK cell dysfunc-
tionality that were not interrogated here include perturbations in
homeostasis of lytic granules.92,93

Resistance of cancer cells to NK cell–mediated lysis and/or defects
in NK cell homeostasis93 cause NK cell suppression in cancer. We
focused on the latter because ALL NK cells are unable to kill NK
cell–sensitive leukemia. We did not exclude lymphoblast resis-
tance as a contributor of poor NK cell cytotoxicity in B/T-ALL
and will explore this in future studies.

Our findings are clinically relevant; hyperactivated cytokine-
producing NK cells predict poor outcome in B/T-ALL patients,
independent of prognostic factors, including MRD and CNS
involvement. We find that activated cytokine-producing NK cells
predict poor clinical outcome in childhood and adult ALL. We
anticipate translating our findings to develop flow
cytometry–based NK cell profiling of blood or bone marrow aspi-
rates to predict the outcome of ALL patients at diagnosis and to
identify patients who could benefit from NK cell therapies.

Our studies underscore the therapeutic potential of allogeneic NK
cell–based therapies. First, reducedNK cell frequencies in patients
make it challenging to obtain sufficient autologous NK cells for
engineering therapies.38 Second, the inability of NK cells from
patients with B/T-ALL to lyse NK cell–sensitive targets may
explain, in part, why autologous hematopoietic transplants fail
to induce ALL regression as effectively as do allogeneic haploi-
dentical transplants.28,37–41,94,95 Therefore, engineering NK cell
therapies from dysfunctional autologous NK cells from ALL
patients would be tedious.

Our studies have limitations; 75% of BMMC B/T-ALL samples that
we used are from pediatric subjects. It is difficult to obtain healthy
pediatric bone marrow controls. Despite this apparent pitfall, we
find that pediatric and adult ALL have the same perturbations in
NK cell surveillance compared with healthy donors (supplemental
Figure 14). Hence, the ages of patients with do not determine the
presence or absence of NK cell dysfunction. However, the extent
of NK cell dysfunction in ALLmay be associatedwith age, because
adult ALL has a worse clinical prognosis than does childhood
ALL.5 Reduced NK cell frequencies in ALL patients and difficulty
manipulating NK cells using viral vectors precluded us from con-
ducting knockdown or rescue experiments showing that modulat-
ing the CD56bright to CD56dim NK cell transition restores the
cytotoxicity of NK cells from patients with ALL. We will conduct
these studies in the future using humanized mice.

Our future studies will include single-cell RNA sequencing96 to
delineate the molecular events leading to the suppression of NK
effector maturation in ALL patients, determining whether leuke-
mia inside-out signaling suppresses NK cell surveillance, and iden-
tifying mechanisms of lymphoblast resistance that block NK cell
cytotoxicity in patients with ALL.
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