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B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is
the most common form of childhood cancer. Chemother-
apy is associated with life-long health sequelae and fails
in �20% of cases. Thus, prevention of leukemia would
be preferable to treatment. Childhood leukemia fre-
quently starts before birth, during fetal hematopoiesis.
A first genetic hit (eg, the ETV6-RUNX1 gene fusion) leads
to the expansion of preleukemic B-cell clones, which are
detectable in healthy newborn cord blood (up to 5%).
These preleukemic clones give rise to clinically overt leu-
kemia in only �0.2% of carriers. Experimental evidence

suggests that a major driver of conversion from the
preleukemic to the leukemic state is exposure to immune
challenges. Novel insights have shed light on immune
host responses and how they shape the complex interplay
between (1) inherited or acquired genetic predispositions,
(2) exposure to infection, and (3) abnormal cytokine
release from immunologically untrained cells. Here, we
integrate the recently emerging concept of “trained
immunity” into existing models of childhood BCP-ALL
and suggest future avenues toward leukemia prevention.

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the
most frequent cancer in children and has a unique age peak at age
2-6 years. This age peak is distinct from other types of childhood
leukemias, such as T-cell ALL (T-ALL) or acute myeloid leukemia
(AML). Children with BCP-ALL have survival rates exceeding
90% after first- or second-line therapy, but treatment is intense
and multimodal. Furthermore, survivors of BCP-ALL who have
undergone therapy in childhood might suffer from later toxicity,
morbidity, and mortality, a consequence that is a burden on the
individual and the health care system in general.1,2 A deeper
understanding of how preleukemic clones evolve to overt leuke-
mia will be key in defining future preventive measures. Currently,
there are 5 models of childhood leukemia evolution. Although the
models differ in their specific mechanisms, they all point to
infection-induced immune disturbances as being responsible for
leukemia evolution.

In 1988, Kinlen proposed that leukemia is a rare consequence of
exposure to a mild infectious agent in an isolated rural community
suddenly faced with a rapid influx of newcomers eliciting novel
immunological challenges. This so-called “population mixing the-
ory” is based on analyses of leukemia incidence in rural and urban
areas of Britain.3

At the same time, Greaves was the first who suggested that if an
immature untrained immune system’s first infection exposure is
delayed, the result is stronger, aberrantly damaging immune
responses leading to the progression of preleukemic cells.4

Building on Greaves’ model, the “infective lymphoid recovery
hypothesis” focuses on the leukemia-promoting effects of recur-
rent delayed infection-driven heat-shock responses and lymphoid
involution early in life.5 Infections can lead to a release of pro-
inflammatory (Th1) cytokines, which can in turn promote cell sur-
vival and a hypermutable state. In an attempt to restore cytokine
homeostasis following infection, the release of Th2 cytokines and
interleukin-7 (IL-7) then places a proliferative pressure on imma-
ture B cells, including preleukemic cells.

In contrast to the previous 3 models, Smith’s theory highlights the
importance of in utero infections passed from mother to fetus.6

This model is supported by evidence from a large number of stud-
ies that were recently evaluated in a comprehensive systematic
review and meta-analysis of maternal infection in pregnancy and
childhood leukemia. The results showed a significantly increased
BCP-ALL risk associated with in utero influenza, varicella, and
rubella infections.7

Another theory, the adrenal hypothesis model by Schmiegelow et
al,8 emphasizes the protective effect of early childhood infections
that result in profound changes in the hypothalamus-pituitary-
adrenal axis. Increased plasma cortisol levels resulting from
infection-induced perturbations to the hypothalamus-pituitary-
adrenal axis may directly eliminate preleukemic cells and suppress
leukemia-promoting Th1-cytokine responses. This theory is sup-
ported by the fact that BCP-ALL patients are often extremely sen-
sitive to glucocorticoid therapy.
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In this review, we discuss how the absence of immune training early
in life, as first proposed by Greaves, affects host responses to envi-
ronmental challenges, andmechanismsbywhich thismay promote
BCP-ALL development. We further build on and refine these mod-
els by integrating the emerging novel concept of “trained
immunity.” Trained immunity, in contrast to adaptive immune
responses involving B and T cells, focuses on the responses and
memory like properties of innate immune cells after infectious
exposure and vaccination. This concept fits well into the time-
restricted immune modulation occurring when children are partic-
ularly susceptible to BCP-ALL development. Finally, we summarize
the current state of intervention research that ultimately aims to
prevent the progression of the preleukemic clone into BCP-ALL.

Genetic predisposition in BCP-ALL
For childhood BCP-ALL to arise, a combination of genetic suscep-
tibility and acquired somatic mutations is usually required.9

Genetic susceptibility observed in BCP-ALL is complex, ranging
from very rare, but highly penetrant germline mutations in cancer
predisposing genes to frequent, but low-penetrant somatic chro-
mosomal aberrations and adverse combinations of germline sin-
gle nucleotide polymorphisms associated with an elevated risk
of developing childhood leukemia (Table 1).10 Most commonly,
childhood BCP-ALL is characterized by recurrent somatic chromo-
somal aberrations, including aneuploidy and interchromosomal
translocations11 originating in utero.9 These aberrations generate
preleukemic cell clones, which frequently require secondarymuta-
tions to transform after a latency phase in early childhood (Figure
1).9 The most common translocation, t(12;21), encodes the onco-
genic transcription factor ETV6-RUNX112 present in 5% of healthy
newborns, �1 in 500 of which will develop the disease.13

Although systematic studies are lacking, it seems reasonable to
speculate that healthy carriers clear preleukemic cells later in
life. The age peak of BCP-ALL in children and the almost complete
absence of the ETV6-RUNX11 genetic subtype in adults with BCP-
ALL, supports this view. There are few cases of ETV6-RUNX11

BCP described in adults, and patients are usually young (median
age, 24 years).14 In rare but informative cases of monozygotic
twins (and thus complete HLA identity) with ETV6-RUNX1 predis-
position, such silent, preleukemic cells can be detected years after
birth without any evidence of disease.15

Infection exposure triggers BCP-ALL:
evidence from epidemiology and
preclinical mouse models
The age peak, first described by Ward,16 is strikingly unique to
BCP-ALL and coincides with the period when children are com-
monly exposed to infections through interactions with their peers
in day care, kindergarten, and primary school settings in devel-
oped societies.9 Ward proposed that infection acts as a trigger
in childhood BCP-ALL.16 Epidemiological data linking leukemia
occurrence to infection space-time clusters have supported this
hypothesis (Table 2).17–19 Although childhood BCP-ALL generally
does not cluster geographically,20 3 infection space-time clusters
associated with increased BCP-ALL incidence may serve as exam-
ples: (1) Niles, USA (1957-1960)17; (2) Fallon, USA (1999-2004)18;
and (3) Milan, Italy (2009-2010),19 the last of which was associated
with an endemic AH1N1 swine flu outbreak. In Hong Kong in
2003, efforts to prevent the spread of communicable infections

of severe acute respiratory syndrome (SARS) included a complete
2-month shutdown of public life, including schools and child day
care facilities, and 6 months of additional strict measures. These
actions resulted in a decrease in the number of common infections
and coincided with a significant decrease in ALL.21

It will be interesting to follow ALL incidence during the ongoing
SARS-coronavirus-2 pandemic. Preliminary data were released
by the Oslo University Hospital. They noted a reduction in ALL
diagnoses in March 2020, when the Norwegian government
implemented lockdown restrictions, closing schools, day care
facilities, and after-school activities.22 The small sample size limits
the conclusions that can be drawn, and cautionary notes were
published to that effect.23

In summary, epidemiological studies suggest infection as a poten-
tial trigger of BCP-ALL in children.

These observations have been experimentally supported in vitro
and in vivo (Table 3). Stimulation of ETV6-RUNX11 transduced
IL-7-dependent pre-B cells with bacterial lipopolysaccharide
drove the expression of recombination activating gene 1/2
(RAG1/RAG2) and activation-induced cytidine deaminase (AID),
as well as clonal evolution and outgrowth of BCP-ALL in a xeno-
graft model.24 Another report found that genomic alterations
caused byRAG1/RAG2 off-target activity, characterized by recom-
bination signal sequence-like motifs near the breakpoints, domi-
nated in patient- and clone-specific ETV6-RUNX1 fusions.25

Further reports showed that infection-induced RAG1/2- and
AID-dependent genomic alterations24 and the composition of
the hematopoietic niche, including the cytokine milieu26–28 and
presence of innate immune cells,29 were critical to progression
of preleukemia to BCP-ALL. ETV6-RUNX11 cells demonstrated
a competitive advantage in the presence of transforming growth
factor-b compared with their wild-type counterparts.26 Further-
more, bonemarrow stroma cells in the presence of tumor necrosis
factor-a/IL-6 and IL-1b supported the outgrowth of ETV6-
RUNX11 preleukemic clones in a hematopoietic niche model of
ETV6-RUNX11 Ba/F3 cells.27

These studies suggest additional overlayingmechanisms of leuke-
mia evolution involving the interplay of preleukemic clones with
innate immune and stromal cells in the bone marrow niche.27 In
parallel, when transgenic mice with the ETV6-RUNX1 fusion30 or
Pax51/2 heterozygosity31 were exposed to common infections,
they developed BCP-ALL, although with incomplete penetrance.
The high expression of AID observed in ETV6-RUNX1preleukemic
cells was recapitulated in Pax51/2 precursor cells, but did not
affect BCP-ALL development.32 These murine models mimic spe-
cific aspects of BCP-ALL and enable the study of the interplay
between genetic predisposition, host/environmental factors, and
cooperating mutagenic events in BCP-ALL development. Nota-
bly, clonal evolution is not uniform in these murine models, but
presents with distinct patterns of secondary somatic lesions
dependent on the underlying genetic predisposition.

Evidence for training of immune cells in
BCP-ALL
In contrast to lymphocyte-dependent immune responses, which
lead to antigen-specific, long-term immunologic memories, the
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contributions of innate-like immune defenses have only
recently gained attention. Challenging a long-standing dogma,
it has become clear that cellular responses of innate immune
cells are modified based on whether a previous encounter
with infection or immune stressors had occurred. In the follow-
ing sections, we review evidence for the contribution of proper
and timely training of immune cells in BCP-ALL. Recent data
collected from epidemiological, experimental, and clinical
studies in mice and humans may pave the way for early inter-
vention, hopefully even before clinically full-blown BCP-ALL
develops.

Innate host immune responses influence
penetrance of BCP-ALL
Epidemiological data demonstrating that infections have an
inverse and protective effect early in life (,1 year of age) may ini-
tially appear to contradict what is known from space-time cluster
data and preclinical mouse models. However, exposure to infec-
tious agents and immune challenges by proxy in infancy reinforce
the idea of an early infection-induced protective effect against
ALL. Relevant factors include birth order,33–35 mode of deliv-
ery,36–39 breastfeeding,40 early day-care attendance,33,34,41–46

early common infection, and animal contact (reviewed in Ajrouche
et al33). Further support for this hypothesis stems from a recent
large-scale pooled and meta-analysis of 7847 leukemia cases
(immunophenotype: 76% B-lineage, 10% T-ALL, rest unspeci-
fied/unknown) and 11 667 controls by the Childhood Leukemia
International Consortium.47 The consortium demonstrated that
regular contact with livestock, poultry, and pets in infancy (,1
year of age) reduced the risk of ALL development significantly.47

The reduced risk associated with contact with livestock was
remarkably clear (odds ratio 5 0.65; 95% confidence interval,
0.50-0.85).47 The influence of vaccines activating the innate and
adaptive immune system, on the incidence of childhood ALL
has also been explored. A meta-analysis of 12 studies48 observed
that early vaccination (,3 months of age) with the Bacillus
Calmette–Gu�erin (BCG) vaccine resulted in statistically robust pro-
tection from ALL.48 These associations are supported by numer-
ous studies reporting on BCG vaccination of newborns and
leukemia incidence in Austria,49 Chicago,50 and Quebec.51,52 In
the latter 2 studies, the authors refer to mortality related to leuke-
mia; thus, it remains debatable whether BCG vaccination modu-
lated the course of leukemia or the mortality-associated
infectious complications associated with the treatment. Before
German reunification, BCG vaccination was compulsory in East
but not in West Germany. This difference in vaccination protocol
correlates with a lower rate of childhood leukemia in East Ger-
many before reunification, which increased toWest German levels
8 years after reunification.53,54

The protective role of early immune training in BCP-ALL develop-
ment was explored in 2 transgenic murine BCP-ALL models: the
Em-ret and the TCF3-PBX1 model.29,55 Toll-like receptors (TLRs)
are pattern recognition receptors (PRRs) that detect potential
harmful pathogens and activate downstream signaling pathways

producing inflammatory cytokines (including type I interferon
[IFN] and other mediators) that lead to the induction of innate
immune responses. After ex vivo stimulation of TLR7, TLR8, or
TLR9 leukemia-initiating precursor B cells derived from spleens
of 4-week-old Em-ret mice showed reduced cell recovery, but
increased cell expansion following TLR3 stimulation.29 Similar
observations were made in the transgenic TCF3-PBX1model.29,55

Treatment with IFN-a- or IFN-g-neutralizing antibodies reversed
these effects, implying that proliferation or regression of leukemia
initiating cells is interferon-dependent.28,29 IFN-g’s inhibitory
activity on BCP-ALL was confirmed in IFN-g2/2 mice.28 Impor-
tantly, TLR9 stimulation induced long-term control of preleukemia
and established leukemia in the same Em-ret model. Innate
immune cells (namely natural killer [NK] cells and macrophages)
were critical in mediating these effects.56 Collectively, these
data provide a plausible mechanistic link between the reported
association of early-life infections, immune modulation via PRRs,
and protection from ALL. The long-lasting inhibitory effect was
largely mediated by the innate rather than adaptive immune sys-
tem, which points to the involvement of the innate immune cells’
memory.

Effects of trained immunity on host immune
response and the hematopoietic stem cell
compartment
Numerous studies laid the groundwork for establishing a new
immunological principle, referred to as “innate immune memory”
or “trained immunity,” to explain sustained memory-like proper-
ties of innate immune cells. In brief, macrophages, monocytes,
and NK cells can undergo metabolic and epigenetic rewiring fol-
lowing exposure to infection, vaccination, or other immune stim-
uli, thereby modifying their expression profile and cell
physiology. This plasticity provides innate immune cells with a
memory, which subsequently modulates their response to a sec-
ond, possibly heterologous stressor, such as infection exposure
later in life.57 The induction of this long-lasting immunologicmem-
ory that is initiated at the level of bone marrow progenitors of the
innate immune cells and is mediated by persistent epigenetic
modifications in hematopoietic stem cells (HSCs) and myeloid
progenitors depends on the transcription factor CCAAT/
enhancer-binding protein b (C/EBPb).58 Variations in individual
responses to trained-immunity inducers have been explained by
different DNA methylation patterns.59 Thus, when cells of the
hematopoietic niche are trained with b-Glucan and BCG, they
show accumulation of methylated and acetylated histone com-
plexes, specifically H3K4me3 and H3K27ac. Kaufmann et al dem-
onstrated an open accessible chromatin structure after BCG
exposure in HSCs.60 Remarkably, these epigenetic marks were
partially preserved when HSC differentiated along myeloid and
lymphoid lineages. Further mechanistic studies may reveal how
these marks are maintained during hematopoietic differentiation
and remain stable through DNA replication and cell cycle. Thus,
we advocate for studies addressing the link between epigenetic
rewiring of innate immune cells and presumed changes in their

Figure 1. Contribution of trained immune responses to BCP-ALL development. Children genetically predisposed to BCP-ALL harbor clonally expanded preleukemic
cells at birth. A hematopoietic stressor, such as infection, has the potential to trigger ALL at a later time point (2-6 years). The genetically determined immune responses,
cytokine release, and basal cytokine levels, especially of interferons, may influence the outgrowth of the leukemic clone. However, the role of earlier-trained innate cells in
the control of the preleukemic clone is largely unappreciated thus far. Epidemiological and experimental data suggest that innate immunity can be trained by BCG vac-
cination or b-glucan application, which substantially reduces the risk of developing BCP-ALL.
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methylation and acetylation status in pro- and anti-inflammatory
cytokine loci, as well as its connection to clonal outgrowth of pre-
leukemic clones.

To add complexity to the model, the individual composition of
host microbiota, collectively referred to as the microbiome, also
profoundly affects trained immunity responses. The microbiome
functionally rewires bone marrow progenitors and adds to interin-
dividual variation in cytokine responses.57,61,62 Transient infection
and immune stimuli not only train innate immune cells but also
functionally reshape bacterial species.

Stacy et al demonstrated that oral infection of wild-type mice
with Klebsiella pneumoniae leads to long-term remodelling of
intestinal microbiota and enhanced resistance to subsequent
infection. They deciphered the functional metabolic relation-
ships in these new defense processes.63 The infected host
deploy more taurine, a bile-acid derived metabolite, as an
essential nutrient and taurine-trained microbiota enhance colo-
nization resistance.63

b-Glucan64 and live vaccines such as BCG65 are the best-studied
inductors of trained immunity. b-Glucan, a component of cell walls
in yeast, fungi, and seaweed, increases secretion of innate
immune mediators such as IL-1b and granulocyte-macrophage
colony-stimulating factor. Besides its ability to regulate infec-
tion,60,64 b-Glucan is approved as an immunoadjuvant therapeutic
drug for cancer in Japan, Australia, South Korea, and Taiwan.
Upon b-glucan-induced trained immunity, granulocyte-
monocyte progenitors give rise to neutrophils with an anti-tumor
phenotype and suppress tumor growth via production of reactive
oxygen species. This phenomenon was accompanied by com-
plete rewiring of granulopoiesis via transcriptomic and epigenetic
changes.66 The anti-tumor activity crucially depended on IFN-I sig-
naling because pharmacologic or genetic blockade of IFN-a/b
receptor abolished the anti-tumor activity of trained immunity.
The trained immunity effect was independent of adaptive immune
cells, was long lasting and remained stable when trained neutro-
phils were systemically transferred into tumor-bearing mice.66

IFN-a is a key cytokine directing a multitude of context and
time-dependent processes in the hematopoietic niche.

Table 2. Selected epidemiological studies

Space-time clustering of BCP-ALL

Region Associated agent Cases Time References

Rural areas, UK ND NA 1946-1965 3,155

Niles, USA Streptococcus 8 1957-1960 17

Fallon, USA Adenovirus 13 1999-2004 18

Milan, Italy Influenza A (H1N1) virus 7 4 wk, 2009/2010 19

UK Influenza virus NA 1974-2000 156

Switzerland ND NA 1985-2014 157

Proxies of exposure to infections associated with BCP-ALL

Proxy Impact References

Day care attendance Increasing levels of social activity during the first
year of life were associated with reduced risk.

42

Birth order Being born later was associated with reduced risk. 158

Medication prescribed for infections Medication prescribed for infections throughout
childhood resulted in decreased risk.

159

Contact with livestock Regular contact with livestock or pets was
associated with lower risk.

47

Immunological modifiers

Modifier Impact References
Mode of delivery Increased risk was associated with cesarean section. 36–38

Breastfeeding Breastfeeding for 6 mo or longer was associated
with lower risk.

40,88,89

Birth weight Higher birth weight was associated with increased
risk.

160,161

mo, months; NA, not applicable; ND, not determined; wk, weeks.
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Short-term, acute IFN-a stimulation of dormant HSCs leads to self-
renewal and an activated state, whereas chronic IFN-a treatment
blocks self-renewal and promotes progression to the progenitor
state in vitro and in vivo.67 Thus, exposure to infection and the
accompanying host IFN response directs proliferation and differ-
entiation of HSCs/PCs. However, IFN-mediated effects on

preleukemic or BCP-ALL cells likely elicit different responses. In
a pluripotent hematopoietic stem/progenitor cell line (EML1) sta-
bly expressing ETV6-RUNX1, IFN-a/b production was suppressed
following treatment with IL-7, thereby blocking B-cell differentia-
tion at an early stage. The IFN-a/b pathway and IRF3 expression
were suppressed in ETV6-RUNX1-expressing cells, but the

Table 3. Preclinical murine BCP-ALL infection models

Primary oncogenic
lesion Treatment Outcome Comment References

Transgenic, retroviral LTR-
driven ETV6-RUNX1
expression

No treatment Decreased B-cell
differentiation of early

B-cell progenitors (Cd192

to pro-B) to pre-B cells

First model of ETV6-
RUNX1 preleukemia

162

Transgenic, b-globin
promoter–driven ETV6-
RUNX1 expression,
lymphoid lineage
specificity via IGH chain
enhancer

No treatment Expansion of early B-cell
progenitors

(Cd341Cd382Cd191)

First lymphoid lineage-
specific model of ETV6-
RUNX1 preleukemia

26

Heterozygous knockout,
Pax51/2

Exposure to infectious
environment

BCP-ALL, �22% of mice First in vivo model
recapitulating human
Pax51/2 BCP-ALL

31

Transgenic, retroviral LTR-
driven ETV6-RUNX1
expression

NOD-SCID transplanted
with pretreated

Aicda1/1Rag11/1ETV6-
RUNX1 cells (IL-7

withdrawal, LPS treatment
of AID activation)

100% BCP-ALL in ex vivo
LPS-treated

Aicda1/1Rag11/1

background

First murine model
showing the impact of
bacterial infection on

ETV6-RUNX11 leukemia
development

24

Transgenic, Em-promoter-
driven Ret expression

Treatment of IFNg1/1 Em-
ret mice with TLR ligands

Delay of BCP- ALL First model of leukemia
prevention through

targeting IFN pathways

29

Transgenic, conditional
E2A-promoter-driven
E2A-PBX1 expression
induced by Cd19-,
Mb1-, or Mx1-driven
Cre expression

No treatment BCP-ALL: 7% Cd19-Cre
line, 53% Mb1-Cre line,

59% Mx1-Cre line

First in vivo model
recapitulating human E2A-

PBX1 BCP-ALL

163

Transgenic, conditional
E2A-promoter-driven
E2A-PBX1 expression
induced by Cd19-,
Mb1-, or Mx1-driven
Cre expression;
Pax51/2

No treatment Heterozygous deletion of
Pax5 substantially

increased penetrance and
shortened BCP-ALL

latency

Confirmed a tumor-
suppressive role for Pax5

in the TgE2A-PBX1
background

163

Transgenic, Sca1-
promoter-driven ETV6-
RUNX1 expression

Exposure to infectious
environment

BCP-ALL, �10% of mice First in vivo model
recapitulating human

ETV6-RUNX11 BCP-ALL

30

Heterozygous knock-out,
Pax51/2 Aid1/2

Exposure to infectious
environment

BCP-ALL, �30% of mice First model showing that
AID does not affect latency
or incidence of infection-
mediated Pax51/2 BCP-

ALL development

32

Hetero- and homozygous
knock-out, Pax51/2

Aid2/2

Exposure to infectious
environment

BCP-ALL, �30% of mice

Heterozygous knockout of
Pax51/2 in
heterozygous n1 mice

Exposure to infectious
environment

BCP-ALL, �15% of mice First model showing that
the infection-driven BCP-

ALL development in
Pax51/2 mice is not
dependent on T cells

81

Heterozygous knockout
Pax51/2 in homozygous
n/n mice

Exposure to infectious
environment

BCP-ALL, �15% of mice

LPS, lipopolysaccharide.
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differentiation block was relieved upon reexpression of IRF3,
allowing cells to fully regain the capacity to differentiate into
mature B cells.68

Cytokine profiles are altered at birth in children
who later develop BCP-ALL
Two studies investigated cytokine levels at birth in children who
subsequently developed BCP-ALL. Wiemels and colleagues mea-
sured 11 cytokines at birth in 116 childhood ALL cases and com-
pared them with 116 healthy controls. Lower IL-10 levels were
associated with an increased risk of developing ALL. IL-10 orches-
trates the intensity and duration of immune responses and plays a
complex context-specific role in tumor biology, although the cyto-
kine itself has anti-tumoral properties and a pegylated version is
being evaluated in clinical trials for the treatment of solid
tumors.69,70 The second study showed that children who devel-
oped BCP-ALL had significantly lower neonatal concentrations
of soluble IL-6 receptor (sIL-6Ra), IL-8, transforming growth factor
b1, monocyte chemoattractant protein-1 (MCP-1/CCL2), and
C-reactive protein, whereas concentrations of IL-6, IL-17, and
IL-18 were significantly higher compared with controls.71 Overall,
8 of 9 detectable inflammatory markers in this study were abnor-
mal in children who later developed BCP-ALL.

Thesestudiessuggest thatchildrenwhodevelopBCP-ALLareborn
with an abnormal immune/cytokine response. Neither study
assessed IFN levels, most likely because of technical limitations
related tomeasuring thesecytokines indriedneonatalbloodspots.
However, genome-wide studies have identified polymorphic IFNg

alleles associated with late onset of BCP-ALL in IFN-g high pro-
ducers and early onset in IFN-g low producers, implying that
in-born genetic polymorphisms determine the cytokine host
response and affect BCP-ALL onset.72 This finding is further sub-
stantiated by the experimental observation that leukemia-
initiatingcell expansionwasdirectly inhibitedby IFN-gbut thisphe-
nomenon is restricted to thepreleukemic phase only.28 The idea of
inherited rare or common variants that affect the host response to
infection exposure has been highlighted in recent years. The pat-
tern of cytokine response related to specific pathogens in children
is, to a large extent, inherited.73,74 This was shown in children both
fromhealthy anddiseased cohorts.75,76 Thus, in the future, cytoge-
nomic studies deciphering host response to pathogens in specific
leukemia subgroupswill shed light on predisposing environmental
conditions for the onset of leukemia. This approach will be an
important tool for identifying children at risk early in life.

Overall, the complex interplay between three factors should be
considered for the development of BCP-ALL: (1) inherited or
acquired genetic risk factors (Table 1 and see Klco and Mul-
lighan77); (2) exposure to infection; and (3) immunological immatu-
rity with abnormal cytokine release of untrained cells (Figure 1). It
seems plausible that the dysregulated cytokine profile is host-
mediated, but not caused by the preleukemic cells themselves,
since their frequency is very low.78,79

Toward intervention for prevention of
BCP-ALL
Current knowledge points to several theory-guided, empirically
supported avenues of BCP-ALL intervention and precautionary
measures (Figure 2).

Ensuring microbiome diversity
The potentially fatal interplay between microbial signals and
genetic leukemia predisposition has been demonstrated in Tet
methylcytosine dioxygenase 2-deficient mice, whose preleukemic
myeloproliferative state depends on microbially mediated inflam-
matory signals. Disruption of the intestinal barrier or stimulation
of TLR2 agonists induced a preleukemic myeloproliferative state,
whereas antibiotic treatment reverted this preleukemic condition.80

Diametrical effects of antibiotic treatment were investigated in a
cohort of preleukemic Pax51/2 mice, in which we targeted the
microbiome through treatment with an antibiotic cocktail over an
8-week period (Figure 3).81 Destruction and subsequent reconstitu-
tion of the gut microbiome triggered BCP-ALL in 50% of the mice,
even when housed under specific pathogen-free conditions and
lacking infectious stimuli.81 Untreated animals kept in the same spe-
cific pathogen-free animal housing facility remained healthy. These
findings indicate a significant protective effect of the undisturbed,
complex, and species-rich microbiome that is likely mediated
through the release of microbial components or metabolites.

Notably, the gut microbiome of predisposed but still healthy
Pax51/2 animals differed significantly from their wild-type coun-
terparts long before leukemia onset.81

If confirmed in a human setting, microbiome testing may help to
identify children at risk and provide amodifiable target for preven-
tion. However, the data on microbiome diversity in healthy and
genetically predisposed children are limited. Serial sampling
from healthy children raises ethical and logistical questions, and,
because of BCP-ALL’s low incidence, large-scale approaches
would be required. So far, studies have only investigated the
enteral microbiome in children at diagnosis, and during and after
treatment of ALL. They found that the gut microbiome composi-
tion was age-dependent and predicted infection risk during che-
motherapy,82 and that it persisted in a dysbiotic state years after
chemotherapy.83,84 A difference in microbial composition was
observed in survivors of ALL up to 11.9 years posttherapy.85

Microbial changes at diagnosis, however, are likely predominantly
shaped by the disease and the accompanying perturbation of the
immune system. We therefore advocate for future sampling
approaches in healthy children on a population-wide scale.
Another very heavily discussed field is vaginal seeding, or
maternal-fecal microbiota transplantation in babies born by cesar-
ean section. This procedure shifts microbiome composition
toward a profile similar to that of babies born by vaginal delivery.86

Nevertheless, we believe that more research and a framework of
well-controlled clinical trials are needed before the potentially
beneficial effects of such a “bacterial baptism” procedure can
be supported. Severe side effects, such as neonatal herpes-
simplex infection, have been reported after vaginal seeding.87

Besides natural delivery and social contacts before 1 year, one of
the most important factors in shaping the gut microbiome early in
life is the mode of feeding: namely formula or breastfeeding.
Comparing breastfed and formula-fed infants, both the intestinal
microbiome and the lymphocyte population composition differed
significantly, and the incidence of childhood leukemia was signif-
icantly lower in breastfed infants.40,88,89 A significantly greater
amount of NK cells have been found in breastfed infants com-
pared with formula-fed infants.90 Determining whether these cor-
relative observations result in better NK cell-mediated surveillance
of the preleukemic clone requires further experimental studies.
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However, the connection between several NK cell subsets, the
expression of particular HLA-encoded ligands (C2) for inhibitory
NK-cell receptors (KIR2DL) and increased susceptibility to BCP-
ALL (but not T-ALL) has been demonstrated.91

Contact with livestock early in life not only fosters microbiome
diversity, but also trains the immune system and significantly
reduces the risk of BCP-ALL.47 In developed Western societies,
the incidence of BCP-ALL is increased, as is that of asthma. These
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Social contacts

Natural delivery, 
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Livestock contacts
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Avoidance of infection

Reduction in harmful 
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Avoidance of overuse of antibiotics

Reduction in harmful chemicals exposure
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Figure 2. Possible preventive measures and proposed interventions that can help to reduce the risk of BCP-ALL development in genetically predisposed children.
Before birth, maternal uptake of folic acid and a healthy diet (brown) have been associated with a reduced risk of BCP-ALL development. Maternal infection in pregnancy is
associated with a significantly increased BCP-ALL risk related to viral transmission. After birth, trained immunity (green) and microbiome diversity (yellow) are important
factors supported by epidemiological (filled bars) or experimental (striped bars) evidence. Immunity can be trained through vaccinations (TIBVs) before the age of 3 months,
by breastfeeding and by social and livestock contacts (including pets) in the first year of life. Microbiome diversity is supported by a natural delivery and gradually builds up
after birth. Again, breastfeeding and social and livestock contacts in the first year of life also have a beneficial impact on gut microbial diversity. Although only demonstrated
in experimental models, the avoidance of overuse of antibiotics, the application of probiotics and a diet consisting of microbiome-supportive fibers are interventions that
could also reduce the risk of leukemia development. Exposure of parents and children to various harmful chemicals can influence the microbiome along with carcinogenic
effects.164–166 Further evidence needs to be generated through large population-based studies to identify preventive measures and to substantiate initial data on vaginal
seeding and fecal transplants.
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2 disease states are epidemiologically linked and may represent 2
sides of the same coin.92 Both diseases are related to low expo-
sure to immunological challenges in very early life. Of note, a
thoughtfully designed birth cohort study recently demonstrated
that the diversification of the gut microbiome of children growing
up on a farm significantly contributed to asthma prevention.93 The
protective effect was mainly mediated through specific microbial
metabolites, such as fecal butyrate. Such studies can be used as
a model toward prevention of BCP-ALL in children.

Training immunity
Immune responses in children are trained in early life through
measures such as breastfeeding and social and livestock contact.
A new concept of targeted intervention has recently emerged in
form of trained-immunity-based vaccines (TIBV). Application of
TIBVs seeks to increase host resistance against a broad spectrum
of pathogens and to cross-protect against heterologous patho-
gens. Recently, TIBVs have been applied for prevention of autoim-
mune disease (including type 1 diabetes, multiple sclerosis),
bladder cancer, andmelanoma.94 TIBVs composed of PRR ligands

are characterized by 2 distinguishing features that confer broad
protection following administration. First, TIBVs aim to stimulate
nonspecific effector responses of innate immune cells. Second,
TIBVs stimulate the adaptive immune system through targeting
activated dendritic cells, to increase antigen-specific and
bystander responses. A TIBV example is the sublingual vaccine
MV130 (composed of inactivated bacteria with a ratio of 90%
gram-positive to 10% gram-negative strains), which is designed
to prevent respiratory and urinary tract infections.95 It triggers
dendritic cells to release the classical trained-immunity cytokines
tumor necrosis factor a, IL-6, and IL-1b, leading to enhanced
T-cell responses.96 In patients with common variable immunode-
ficiency, administration of MV130 resulted in a lower rate of respi-
ratory infections, decreased antibiotic use, and fewer unscheduled
doctor visits.97 MV130 also reduced the need for tonsillectomy in
adults with recurrent tonsillitis.98 Well-studied TIBVs based on
conventional vaccines are the BCG, Vaccinia, and influenza virus
vaccines, which all can induce innate immune cell training.99 In a
placebo-controlled clinical trial with attenuated yellow fever virus,
healthy BCG-vaccinated volunteers showed a significant reduc-
tion in viremia and enhanced IL-1b production compared with
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Figure 3. Antibiotic treatment in the development of lymphoblastic leukemia. Antibiotic treatment in early life induces leukemia in genetically predisposed Pax51/2

mice.81 (Left) In wild-type mice, depletion of the gut microbiome bacteria by antibiotic treatment at 8 weeks of age has only a transient effect on the immune system (includ-
ing the gut-associated and peripheral lymphoid tissues) and mice do not develop pB-ALL. (Right) Pax5 heterozygosity directly affects B-cell maturation and leads to clonal
hematopoiesis, while also indirectly reducing gut microbiota diversity. In response to bacterial depletion in the gut microbiome by antibiotic treatment at 8 weeks of age,
the microbiome reconstitutes with further reduced diversity. Cooperating oncogenic mutations then lead to pB-ALL in �50% of these mice between 11 and 21 months of
age. Leukemia development is preceded by a reduction of mature B and T cells in the gut and associated peripheral lymphoid tissues. However, it has not been tested in
this model whether leukemia development can be inhibited through intervention. In addition to microbial dysbiosis, infectious stimuli can also cooperate with oncogenic
mutations, leading to leukemia development in Pax51/2 mice.31
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the placebo group.100 BCG trained immunity effects are also ben-
eficial in patients with non-muscle invasive bladder cancer as an
immune-therapeutic approach in the urothelium, and have been
used as a standard of care treatment of more than 40 years.101,102

In terms of efficacy, using a specific BCG strain is less important
than the number of intravesical BCG installations. This principle
is demonstrated by the NIMBUS randomized trial, in which
patients who received a reduced number of BCG installations (n
5 9 in the first year) showed far more cancer recurrences than
patients treated with 15 installations.103 Furthermore, BCG vacci-
nation of newborns reduced the risk of melanoma104 and leuke-
mia, as reviewed previously. The protective link between BCG
vaccination and childhood leukemia has been addressed by
more than 12 studies since 1975.48 Although the protective ben-
eficial effect of BCG as an immune modulator in early life is prom-
ising, little is known about potential detrimental effects. The
protective mechanism of the trained immunity effect only lasts
up to several months,105 although the capacity to enhance T-cell
responses can be extended for up to 1 year.106 This is in sharp
contrast to the sometimes life-long memory of adaptive immune
cells gained through active infection. Thus, TIBVs are likely to
have transitory rather than permanent effects, which narrows their
therapeutic window and might require repetitive application.
Given the sharp age peak of childhood BCP-ALL, as identified
more than 100 years ago, we nevertheless envision that cross-
protective effects of vaccines may have potential to be used for
leukemia prevention. If well-controlled large-scale clinical trials
prove the benefits of TIBVs or microbiome nurturing, such inter-
ventions may become a recommendation in pediatric care.

Summary
The reviewed data suggest the integration of trained immunity,
with its key component of a temporary, unspecific immunological
memorymediated by innate immune cells that lack the capacity to
elicit antigen-specific responses, into the existing models of BCP-
ALL development in children. The trained immunity concept,
developed through epidemiological and genetic studies over
the past several decades, adds a novel piece to the puzzle and
provides a target for interventions. Immunity can be trained

through the application of appropriate vaccinations early in life.
Thus, adoption of the vaccination recommendation or immunity
modulation via TIBVs, microbiome modulation, and avoidance
of overuse of antibiotics will be promising avenues toward preven-
tion of BCP-ALL in children.
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