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THROMBOSIS AND HEMOSTASIS
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Hemophilia A is a bleeding disorder resulting fromdeficient factor VIII (FVIII), which normally
functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX).
Tomimic this property in a bispecific antibody format, a screeningwas conducted to identify
functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional
and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently
with FIXa and FX onmembranes, and supported activation with an apparent equilibrium dis-
sociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower,
with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 mM, respectively.
In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the
anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude.
In hemophilia A plasma andwhole blood,Mim8 normalized thrombin generation and clot for-
mation, with potencies 13 and 18 times higher than a sequence-identical analogue of emici-
zumab. A similar potency difference was observed in a tail vein transection model in

hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore,
the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In
conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.

Introduction
Treatment options for people with hemophilia A (HA) have for
the past 2 decades improved markedly. Recombinant factor VIII
(FVIII) molecules have eliminated the risk of viral transmission,
and extended half-life FVIII products have further reduced the
treatment burden of prophylaxis.1 However, a serious complica-
tion of FVIII treatment of HA is the development of neutralizing
antibodies (inhibitors) in ~30% of patients,2 as well as the risk
and inconvenience associated with intravenous (IV) administra-
tion. Likewise, until recently, the bypassing agents available
for the treatment of HA patients with inhibitors have been
intravenously administered products (recombinant activated
FVII and activated prothrombin complex concentrate) and
with limited options available for prophylactic therapy due to
their short half-lives in circulation.3 With the launch of the acti-
vated FVIII (FVIIIa)-mimetic bispecific antibody (biAb) emicizu-
mab (Hemlibra [Genentech]), the first subcutaneous (SC)
prophylactic treatment became available. Emicizumab mimics

the effect of FVIIIa by binding to activated factor IX (FIXa)
and factor X (FX),4 and it has exhibited good efficacy for pro-
phylactic treatment of HA patients with or without inhibitors.5,6

Even though both FVIIIa and FVIIIa-mimetics stimulate FIXa-
mediated activation of FX, there are differences in their modes
of action,7 and the cofactor activity of FVIIIa is considerably
greater than that of emicizumab.8 With this in mind, the current
study aimed to design a highly potent and efficacious FVIIIa-
mimetic antibody.

The biology of FVIII to be recapitulated in an FVIIIa-mimetic biAb
format is complex. In circulation, FVIII exists predominantly as a
heterodimeric pro-cofactor tightly bound to its carrier protein,
vonWillebrand factor, which shields it from untimely engagement
with the components of the coagulation system.9-11 Upon proteo-
lytic activation at the site of injury, von Willebrand factor is
released and the resulting FVIIIa localizes to the activated platelet
surface,9 where it combines with FIXa to form the intrinsic tenase

KEY PO INT S

� Mim8, an anti-FIXa/anti-
FX bispecific antibody,
has enhanced activity
over emicizumab in
mouse models and in
vitro hemophilia A
assays.

� The activity of Mim8 is
partly achieved through
FIXa stimulatory activity
residing in the anti-FIXa
arm.
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complex. Compared with free FIXa, the catalytic efficiency of this
complex seems to result from improved membrane localiza-
tion,12,13 optimal proximity and alignment of FIXa and FX for sub-
strate cleavage to occur,14,15 and the allosteric maturation of the
active site of FIXa.16-19 Together, these mechanisms enhance
the rate of FX activation by 4 to 6 orders of magnitude.20

As shown with emicizumab, the biAb format is well suited to
mimic the ability of FVIIIa to bridge protease and substrate.21

We further hypothesized that the allosteric component of the
FVIIIa cofactor activity could be recapitulated in the biAb
through directed engineering of the anti-FIXa arm. Guided by
these considerations, anti-FIXa/anti-FX biAbswere generated in vitro
by using the controlled antigen-binding fragment (Fab)-arm
exchange (DuoBody [Genmab]) technology (Figure 1A).22 Com-
bined with extensive mutational optimization, Mim8 was cre-
ated. Here, we report the development of Mim8 as a next-
generation FVIIIa mimetic with highly efficient FIXa-stimulating
capability, a circulating half-life of 14 days in the cynomolgusmon-
key, and low target binding in circulation.

Methods
Human material
Congenital HA plasma (FVIII level <1%) was obtained from
George King Bio-Medical Inc. Peripheral blood was drawn from
healthy volunteers (approved by “De videnskabsetiske komiteer
for Region Hovedstaden”; VEK journal no. H-D-2007-0055) and
stabilized by 3.2% (w/v) citrate. Platelet-rich plasma was prepared
from citrate-stabilized blood by centrifugation for 10 minutes at
200g.

Variant generation
Anti-FIXa and anti-FX antibodies were produced by using the
Expi293 expression system (HEK; Thermo Fisher Scientific). Subse-
quent assembly of biAbs was performed as described by Labrijn et
al23 and detailed in the supplemental Methods (available on the
BloodWeb site). Generation of anti-FIXa one-arm (OA) antibodies
followed the same protocol, except that assembly was performed
with a fragment crystallizable (Fc) fragment instead of an anti-FX
monoclonal antibody (mAb).

Enzyme kinetic analyses
The activities of biAb and anti-FIXa OA antibodies weremeasured
at room temperature by using plasma-derived (pd) FIXa and FX
and synthetic 25:75 PS:PC (25% phosphatidylserine, 75% phos-
phatidylcholine) vesicles (all from Haematologic Technologies
Inc. [HTI]) in reaction buffer (50 mM N-2-hydroxyethylpiperazine-
N9-2-ethanesulfonic acid, 100 mM NaCl, 5 mM CaCl2, 0.1%
PEG8000, and 1 mg/mL bovine serum albumin at pH 7.3). Reac-
tions were quenched by addition of EDTA to a final total concen-
tration of 20 mM. Generated activated FX (FXa) was quantified
from the hydrolysis of 500 mM of chromogenic substrate S-2765
(Chromogenix) based on a standard curve with known concentra-
tions of FXa. Details of individual assays and data analysis are pro-
vided in the supplemental Methods.

Binding studies and epitope mapping
Direct binding studies were performed by using isothermal titra-
tion calorimetry (ITC) at 25�C or 37�C in 10mMN-2-hydroxyethyl-
piperazine-N9-2-ethanesulfonic acid, 150 mM NaCl, and 5 mM

CaCl2, pH 7.4. Key residues involved in the recognition of FIXa
by the anti-FIXa arm in Mim8 were determined by mutagenesis
and subsequent evaluation of binding by surface plasmon reso-
nance analysis. Detailed assay descriptions are provided in the
supplemental Methods.

X-ray crystallography
The supplemental Methods provide a detailed description of the
crystallization and structure elucidation of the complexes between
the anti-FIXa and anti-FX Fab fragments of Mim8 and EGR-
chloromethylketone active-site inhibited des-(Gla-EGF1) FIXa
and FXa, respectively.

Thrombin generation in human plasma
BiAb activity was measured in a thrombin generation test using
pd-FXIa (HTI) or tissue factor (TF) (PRP-Reagent LOW; Thrombino-
scope) as trigger and reagents, calibrators, and software from
Thrombinoscope. A detailed assay description is provided in the
supplemental Methods.

Thromboelastography in human whole blood
Clot formation in human whole blood with antibody-induced HA
was determined with TF as trigger (200000-fold dilution of Inno-
vin) using a Thrombelastograph Coagulation Analyzer (Haemo-
scope Corporation). Antibodies were tested at final whole blood
concentrations of 0.005 to 175 nM (ie, 0.01-350 nM in plasma
assuming a hematocrit of 50%). Clot time (R-time) and clot devel-
opment (a-angle) were calculated by the accompanying software
and the concentration-dependent change in R-time fitted to a var-
iable-slope, 4-parameter dose-response model.

Effect studies in HA mouse injury models
HA mice (C57B6/S129 mixed background, 12-16 weeks of age,
male and female subjects; The Jackson Laboratory) were anesthe-
tized and placed on a heating pad with tails submerged in tem-
pered saline. To overcome the lack of cross-reactivity of Mim8
with mouse FIXa and FX, HA mice were supplemented with
human recombinant FIX (BeneFix, Pfizer Inc.) and pd-FX (HTI) to
approximately twice the normal level in humans. Tail vein transec-
tion (TVT) studies were performed as previously described24 with a
40-minute duration of bleeding. Tail clip bleeding was performed
as noted earlier, except that the entire tail was cut 4mmabove the
tail tip, and the duration of bleeding was limited to 30 minutes.
Details on the measurement of blood loss and plasma compo-
nents and data analysis are provided in the supplemental
Methods. All studies were approved by the Danish Animal Exper-
imentation Council.

Pharmacokinetic parameters in
cynomolgus monkeys
The pharmacokinetic study in the cynomolgus monkey was per-
formed at Covance Ltd. (UK) in accordance with the EU Directive
2010/63/EU for animal experiments and The Animals (Scientific
Procedures) Act and Covance Standard Operating Procedures,
and it was approved by the Novo Nordisk Ethical Review Commit-
tee. Additional details of the study are provided in in the supple-
mental Methods.
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Results
Screening and optimization of anti-FIXa and
anti-FX arms
Antibodies against active-site inhibited FIXa and zymogen FX
were selected based on immunizations in Kymouse mice (Kymab
Ltd.) with a human antibody repertoire25 and from selections using
a phage library displaying human antibodies. Subsequent intro-
duction of the K409R (anti-FIXa mAb) or F405L (anti-FX mAb) sub-
stitutions in immunoglobulin G1 format allowed for in vitro
assembly of biAbs using controlled Fab-arm exchange.23 Due to
variability in affinities of the assembled biAbs, functional screening
was performed at several concentrations to cover differences in
activity optima as a result of the so-called hook effect. This effect
is evident as a decline in activity above a certain biAb

concentration due to the sequestration of FIXa and FX on sepa-
rate biAbs and thereby blocking the assembly of productive
biAb-FIXa-FX complexes (discussed also by Douglass et al26).

Screening of individual constituents of the 100 × 100 anti-FIXa/
anti-FX library for the ability to promote thrombin generation in
congenital HA plasma identified several biAbs that increased
thrombin levels above baseline. Of these, biAb46376 was
selected as the initial lead. It is composed of human anti-FIXa
and anti-FX arms from Kymouse and phage display, respectively,
and was subsequently reformatted to the immunoglobulin G4
(IgG4) isotype. In the screening assay, the maximum peak throm-
bin level was observed at 12.3 nM biAb46376, reaching 14% of
the level observed for a sequence-identical analogue (SIA) of

C

Position

VL

60 90 107300

Un
iq

ue
su

bs
tit

ut
io

ns

VH

0

5

15

10

20

60 90 122300

B

Parent anti-FX

Parent anti-FIXa

Anti-FIXa variants

Anti-FX variants

All variants

Fc-fragment

biAb

Q
ua

lit
y 

co
nt

ro
l

an
ti

-F
IX

a 
O

A

A
ffi

ni
ty

V
is

co
si

ty

X
-r

ay
 s

tr
uc

.

st
im

ul
at

io
n

TG
T

A
C

-S
IN

S 
+

 T
m

OA

mAb

Selected variants
Design of new anti-FIXa mAbs

Mim8 anti-FIXa OA

biAb46376
anti-FIXa OA

Rounds of mutational optimization

D

FI
Xa

 st
im

ul
at

io
n

(fo
ld

)

0.1

10

1

100

10,000

1,000

biAb (nM)

E

Pe
ak

 th
ro

m
bi

n
(n

or
m

al
ize

d)

0.00

0.25

0.75

0.50

30020010030 40 50200

1.00

1.25

A
In

 ci
rc

ul
at

io
n

Si
te

 o
f i

nj
ur

y
biAb

FIX

FIXa

FX

FXa

Activated platelet surface

Minimal FIX(a)/FX
binding in solution

Efficient complex assembly and
stimulation of FX activation

on the activated platelet

Figure 1. High-throughput screening for FVIIIa-mimetic activity. An overview of the pursued mechanism of action of Mim8 (A) and screening and optimization strategy
(B) is shown. Assays used to investigate functional, structural, and biophysical properties of biAb, anti-FIXa OA, and mAb variants are indicated. (C) Number of unique amino
acid substitutions explored at individual positions (using consecutive numbering) in the heavy (VH) and light (VL) chain variable domains of the Mim8 anti-FIXa arm.
Complementarity-determining region (CDR) loops are highlighted in gray. (D) Evolution of FIXa stimulation of variants of the parental Mim8 anti-FIXa arm during rounds
of mutational optimization. FIXa stimulation was measured in high throughput at pH 7.4 in the presence of 0.15 to 1 nM FIXa, 100 nM FX, 500 mM PS:PC vesicles, and a single
concentration (800 nM) of anti-FIXa OA. A total of 1308 variants were investigated, with the distribution of activities within each round shown as a violin plot. (E) Plasma
activity of a representative subset of biAbs from cycles of anti-FIXa arm optimization. Variant anti-FIXa arms (identified by symbol and color coding as in panel D) were
assembled with the parental anti-FX arm. Activity (mean, n ¼ 2) was measured in a TF-triggered thrombin generation assay in human congenital HA plasma at 4 biAb con-
centrations and normalized to the response obtained with 333 nM emicizumab SIA. Green triangles and blue circles represent biAbs containing the parental (biAb46376)
and final Mim8 anti-FIXa arm, respectively. The final engineered Mim8 is included for reference and shown by blue diamonds and a dashed line.
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emicizumab at a clinically relevant concentration of 333 nM6 (Fig-
ure 1E; green triangles) (supplemental Methods). Consistent with
the early activity optimum for this biAb, ITC experiments showed
that the 2 constituent arms bind to FIXa and FX in solution with rel-
atively low equilibrium dissociation constant (KD) values of 1.7 6

0.5 nM and 101 6 12 nM, respectively (supplemental Table 2).
To investigate the direct stimulation of FIXa by the anti-FIXa arm
itself, this arm was prepared in monovalent OA format by assem-
bly with a Fab-less Fc fragment as described earlier for the
biAbs.27 This was done to avoid avidity effects with the standard
bivalent mAb format resulting in a bell-shaped activity depen-
dence (hook) as also seen for the biAbs. In the OA format, the
anti-FIXa arm enhanced the FIXa-mediated activation of FX four-
fold (Figure 1D, green triangle).

With these data suggesting that FIXa stimulation contributes to
the activity of biAb46376, we sought to further enhance the stim-
ulatory activity of the anti-FIXa arm through mutagenesis. As
depicted in Figure 1C, mutagenesis focused primarily on the 6
complementarity-determining region loops, initially addressing a
single or a few positions. Substitutions were then combined in a
data-driven and iterative fashion to further optimize activity and
address any biophysical liabilities. In total, 4056 variants of the
anti-FIXa arm were explored individually. The workflow for high-
throughput variant generation and screening included determina-
tion of biAb and anti-FIXa OA activity in a thrombin generation
test and FIXa stimulation assays, respectively. In addition, the ther-
mal melting point and propensity for self-association (using
affinity-capture self-interaction nanoparticle spectroscopy [AC-
SINS]28) were measured for each anti-FIXa mAb to capture poten-
tial developability issues (Figure 1B). The evolution of FIXa stimu-
lation and biAb activity during rounds of engineering are shown in
Figure 1D-E. In the high-throughput screening assays, the muta-
tions in the anti-FIXa arm enhanced the stimulation of FIXa
.1000 times, relative to the parental biAb46376 anti-FIXa arm
(Figure 1D, blue circle), and brought the activity of the biAb in
the context of the parental anti-FX arm above that of emicizumab
SIA (Figure 1E, blue circles).

The major aim of the optimization of the anti-FX arm was to
reduce the affinity to FX to minimize target-mediated clearance
and flatten out the bell-shaped activity–concentration depen-
dence generally observed for biAbs with this arm. Following
rounds of mutagenesis, the KD value for FX binding was increased
from 101 6 12 nM to 1.5 6 0.4 mM (supplemental Table 2) while
maintaining biAb activity (Figure 1E; blue diamonds). Combining
this armwith the optimized anti-FIXa arm using theDuoBody tech-
nology in the IgG4 background resulted in the final Mim8 biAb.

Structure determination of Mim8 Fab-FIXa
and -FX complexes
The crystal structures of the Mim8 anti-FIXa and anti-FX Fab frag-
ments in complex with EGR- chloromethylketone active-site inhib-
ited des-(gla-EGF1) FIXa or FXa were determined at 3.1 and 2.6 Å
resolution, respectively. As shown in Figure 2A,C, the anti-FIXa
Fab contacts a small 152-Å2 epitope (4-Å distance cutoff) on
FIXa composed of residues from the 170-loop (positions 340-
343 using standard FIX numbering) and preceding 160-helix
(334-339) as well as a single residue (354) in activation loop 2.
Of these, T340 and K341 and in particular R338 on FIXa are impor-
tant for binding as determined by mutagenesis and surface

plasmon resonance analysis (Figure 2C, right panel). Because
the anti-FIXa arm binds FIXa on the backside of the 170-loop
(ie, away from the active site), it allows for substrate docking in
the active site without any apparent steric clashes. Comparison
with the crystal structure of the complex between FIXa and anti-
thrombin also shows unimpeded access of antithrombin.30

As shown in Figure 2B, the anti-FX Fab recognizes a 370-Å2 epi-
tope on FX distributed between the EGF2 (40%) and protease
domain (60%). As for the other Mim8 arm, the anti-FX Fab leaves
the active site accessible to substrates and inhibitors and, based
on available structural models, is predicted to not interfere with
the prothrombinase assembly.31,32

The activity of Mim8 is dependent on the
stimulatory activity of the anti-FIXa arm
A full titration of FIXa with the Mim8 anti-FIXa OA revealed a
(23 6 0.4) × 103-fold stimulation of FX activation at saturation.
This is a 5700-fold enhancement, compared with the parental
(biAb46376) anti-FIXa arm, and 31 times higher than that of the
emicizumab SIA anti-FIXa OA (Figure 3A). Given the substantially
different activities of Mim8 and biAb46376 in HA plasma (Figure
1E), stimulation of the proteolytic activity of FIXa by the anti-
FIXa arm thus seems to make a considerable contribution to the
overall activity of Mim8.

Mim8 preferentially assembles with FIXa and FX
on the phospholipid membrane
The interaction of Mim8 with its targets was characterized by ITC,
which provided KD values for FIX(a) and FX(a) binding of 4.76 0.7
(2.3 6 0.3) and 1.5 6 0.4 (0.3 6 0.1) mM, respectively (activated
forms in parentheses) (supplemental Figures 2 and 3; supplemen-
tal Table 2). All titrations were performed at pH 7.4 and 37�C,
except for FXa, for which the temperature had to be lowered to
25�C to obtain a measurable endothermic signal. The peak activ-
ity of Mim8 concentrations much below these solution-phase KD

values (Figure 1E) suggested an effect of membrane on complex
assembly. To explore this theory, titrations were performed in the
presence of FX, phospholipid, and limitingMim8, which produced
a saturable increase in FX activation as the concentration of FIXa
was increased. Because the omission of membrane resulted in
greatly reduced FX turnover, it could be concluded that the bind-
ing isotherm represented a quaternary Mim8-FIXa-FX-membrane
formation for which a global assembly KD of 166 2.9 nMwas esti-
mated. In comparison, an assembly KD of 0.46 0.1 nMwas deter-
mined for emicizumab SIA (Figure 3B).

Activity of Mim8 in plasma- and whole
blood–based assays
The ability of Mim8 to promote thrombin generation was tested
in human plasma using either FXIa or TF as a trigger to address
the intrinsic and extrinsic pathway, respectively. To mimic the
human physiological conditions as closely as possible, the con-
centration of FXIa trigger in congenital HA plasma was opti-
mized to place the dynamic part of the dose response with
FVIII in the range of 0 to 100 IU/dL (Figure 4A). Under these
conditions, Mim8 provided a maximum level of thrombin gener-
ation exceeding that of emicizumab SIA and with a 13-fold
improved potency (50% effective concentration) (Figure 4B).
With TF as the activator in FVIII-neutralized platelet-rich plasma,
normalization was reached at 156 nM Mim8 and with a 50%
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effective concentration of 23 6 4.5 nM. Above 625 nM, throm-
bin generation declined, indicating lower activity due to the
hook effect under these conditions. In comparison, in this assay,
emicizumab SIA failed to normalize thrombin generation at
the highest tested concentration of 4000 nM (Figure 4C). A
subsequent comparison of emicizumab SIA to emicizumab

revealed a highly similar activity for both molecules (supplemen-
tal Figure 5).

In HA-induced whole blood initiated by TF, Mim8 shortened the
clot time (R-time) and increased the clot development rate
(a-angle). At $10 nM Mim8, both parameters were close to or
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within the normal range. In agreement with the results obtained in
HA plasma, the potency of Mim8 based on R-time was improved
18-fold, relative to emicizumab SIA (Figure 4D).

Mim8 and FVIII concurrently restore thrombin
generation in HA plasma
Structural analysis of Mim8 revealed a recognition site in FIXa
known to also be engaged by FVIIIa,33,34 and we therefore
exploredwhetherMim8would affect plasma procoagulant activity
in the presence of exogenous FVIII. Titrations were performed in
HA plasma using FXIa as a trigger and with a fixed normalizing
concentration (100 U/dL) of FVIII. As shown in Figure 4B,
Mim8 caused only a modest dose-dependent reduction in

thrombin generation, indicating that plasma procoagulant activity
could be restored by FVIII in a wide concentration interval of
Mim8.

Mim8 restores hemostasis in HA animal models
In vivo efficacy was tested in HAmousemodels of moderate (TVT)
and severe (tail clip) bleeding. In the TVT model, it has previously
been shown that FVIII administration reduces bleeding to the
same level observed for wild-type mice.24 In the tail clip model,
a moderate response was observed when FVIII was administered
at 14 IU/dL, whereas 59 IU/dL normalized bleeding (Figure 5C).
Thus, in both models, administration of FVIII was able to fully
restore hemostasis. To overcome the lack of mouse cross-
species reactivity of Mim8, HA mice were supplemented with
human FIX and FX before the bleeding experiments (Figure 5A).

In the TVT model, dose-response studies showed a significant
reduction in blood loss, reaching levels observed in wild-type
mice at $0.1 mg/kg Mim8 and $10 mg/kg emicizumab SIA,
corresponding to measured plasma levels $10 nM and $300
nM, respectively. This difference was mirrored in the estimated
50% effective doses exhibiting a 12-fold difference between
Mim8 and emicizumab (Figure 5B). In the tail clip model, a pro-
gressive reduction in blood loss was observed from 0.1 to 10
mg/kg Mim8, with the 10 mg/kg dose resulting in a significant
blood loss reduction compared with vehicle (Figure 5C). Inter-
estingly, the highest tested dose of 22 mg/kg was less effica-
cious. With a measured plasma exposure of 2486 nM, we
speculate that this is caused by the hook effect. In this model
of severe bleeding, emicizumab SIA did not exhibit any signifi-
cant blood loss reduction at the 3 tested doses of 4.6, 10, and
22 mg/kg.

Pharmacokinetic parameters in
cynomolgus monkeys
With affinities of Mim8 for cynomolgus monkey FIX and FX com-
parable to those measured for the human factors (supplemental
Figure 4), this species was chosen for pharmacokinetic studies.
The study included 4 different IV doses (0.3, 1.0, 3.0, and 6.0
mg/kg) distributed between 2 arms and 2 dosing occasions, and
1 SC administration performed at 1 mg/kg (Figure 6, top panel).
Estimated pharmacokinetic parameters indicate dose linearity in
the tested interval and comparable terminal half-lives (12-14
days) and mean residence times (16-20 days) for the 2 administra-
tion routes (supplemental Table 3). The data revealed an absorp-
tion half-life of 15 hours and a bioavailability of 97% after SC
administration, indicating a fast and almost complete absorption
of Mim8 in the cynomolgus monkey. No target-mediated drug
disposition of Mim8, nor build-up of endogenous FIX or FX, was
observed with any of the doses tested (Figure 6).

Discussion
The molecular design of Mim8 focused on 3 key mechanisms
defining the cofactor activity and regulation of FVIII(a). The first
mechanism involves the ability of FVIIIa to efficiently assemble
with FIXa and FX on the procoagulant membrane surface while
interacting minimally with the 2 factors in circulation. With KD val-
ues in the low micromolar range for binding of FIX and FX in solu-
tion, <0.2% of Mim8 is estimated to engage both factors at
relevant plasma levels <350 nM. Consistent with this, a normal
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Figure 3. Mechanisms contributing to the cofactor activity of Mim8. (A)
Concentration-dependent stimulation of FX (25 nM) activation by monovalent
anti-FIXa OA antibodies (as indicated) in the presence of 0.02 to 2 nM FIXa and
500 mM PS:PC vesicles at pH 7.4. FIXa stimulation (mean 6 standard deviation, n
¼ 3) was calculated as the ratio of FX activation in the presence and absence of
antibody and fitted to a 1:1 binding model (solid lines) to obtain stimulation indices
at saturation of (23 6 0.4) × 103 and 3.3 6 0.16 for Mim8 and biAb46376, respec-
tively. In comparison, emicizumab SIA stimulated FX activation 729 6 11.3–fold rel-
ative to free FIXa. (B) FX (25 nM) activation by FIXa (varying concentrations) in the
presence of a limiting concentration of Mim8 or emicizumab SIA (0.1 nM) and
PS:PC vesicles as indicated (mean 6 standard deviation, n ¼ 3). Curve fitting
was performed as described in the supplemental Methods to derive a functional
KD value of 16.0 6 2.9 nM for the Mim8-FIXa-FX complex assembly in the presence
of membrane. A functional KD value of 0.4 6 0.1 nM was observed for emicizumab
SIA.

A POTENT FVIIIa-MIMETIC BISPECIFIC ANTIBODY blood® 7 OCTOBER 2021 | VOLUME 138, NUMBER 14 1263

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/138/14/1258/1827162/bloodbld2020010331.pdf by guest on 07 M

ay 2024



antibody half-life was observed in cynomolgus monkeys, with no
indications of target mediated drug disposition of Mim8 or accu-
mulation of endogenous FIX and FX. Conversely, inclusion of pro-
coagulant membrane efficiently promoted productive Mim8-
FIXa-FX assemblywith an apparent affinity that was orders ofmag-
nitude stronger than the individual affinities in solution. The most
likely explanation for this is a bridging mechanism, mediated by
Mim8, in which the 2 coagulation factors are bound in orientations
that allow them both to engage the membrane through their

N-terminal Gla domains.35,36 Considering that the emicizumab
SIA assembled even more tightly on the membrane surface
despite solution phase affinities comparable to Mim8 suggests
that a considerable orientation element is involved for efficient
assembly, as would be expected. A conceptually similar mecha-
nism has been shown for bivalent mAb targeting of high-density
surface receptors.37,38 Thus, although the standard biAb format
does not incorporate a proteolytic switch as seen for FVIIIa, simul-
taneous engagement of FIXa and FX seems to provide enough
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Figure 4. Activity of Mim8 in HA plasma and whole blood. (A-B) Peak thrombin generation (mean 6 standard deviation, n ¼ 5-8) in FXIa-triggered (1 mU/mL) platelet-
poor severe congenital HA plasma supplemented with FVIII (A) or Mim8, emicizumab SIA, or Mim8 in combination with 100 U/dL FVIII (B). Using a variable slope
4-parameter model, 50% effective concentration of 12 6 2 nM (Mim8) and 153 6 29 nM (emicizumab SIA) were estimated. (C) Peak thrombin generation of Mim8 or
emicizumab SIA in platelet-rich plasma (250 000-320 000 platelets/mL) from healthy volunteers supplemented with neutralizing anti-FVIII polyclonal antibody and trig-
gered with 1 pM TF. (D) Effect of Mim8 or emicizumab SIA on the time to clot (R-time; mean 6 standard deviation, n ¼ 6) in whole blood from healthy volunteers sup-
plemented with neutralizing anti-FVIII polyclonal antibody. Clot formation was triggered with TF (~30 fM) and monitored by using thromboelastography (TEG). Using the
same model as in panels A and B, 50% effective concentrations of 0.18 6 0.02 nM (Mim8) and 6.2 6 0.9 nM (emicizumab SIA) were estimated. Ranges obtained under
normal or HA conditions are highlighted in light blue.
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avidity for efficient membrane-localized engagement to occur to
recapitulate this property.

The second aspect of the cofactor activity mechanism of FVIIIa
that the biAb assembly should be able to provide is facilitation

of productive FIXa–FX interactions. This property is depen-
dent on epitope location and affinities, a suboptimal combina-
tion of which may reduce activity or enhance the hook
effect.21,26 Even at low concentrations, the activity of the
high-affinity parental biAb46376 seemed to be compromised
by this effect, whereas the mutation-optimized Mim8 exhib-
ited a steady increase in activity up to ~600 to 1200 nM
depending on study conditions.

A third key mechanism of cofactor activity of FVIIIa is allosteric
activation of FIXa.16-19 Mechanistic studies suggest that con-
formational changes are propagated from the cofactor bind-
ing site in the 160-helix/170-loop region to the active site
where “unlocking” of surrounding loops facilitate efficient
substrate turnover.19,33,39 During rounds of mutagenesis, we
found that stimulatory activity could be gradually introduced
into the anti-FIXa arm of Mim8 and that this was a major con-
tributor to activity in the biAb format, although without pro-
viding sufficient procoagulant activity on its own
(supplemental Figure 6). The observation that stimulation
was solely dependent on the isolated anti-FIXa arm excluded
a mechanism driven by standard antibody bivalency. Interest-
ingly, significant stimulatory activity was also observed with
the emicizumab SIA anti-FIXa arm, although substantially
less than observed for the Mim8 anti-FIXa arm. Considering
that this arm recognizes a different epitope on FIXa,21 it may
suggest the existence of multiple mechanisms by which the
proteolytic activity of FIXa can be enhanced. Anti-FIX antibod-
ies capable of enhancing FIXa-catalyzed FX activation have
also been reported previously, with modest rate enhance-
ments in purified membrane-containing systems of ~10-
fold.40 However, because these were tested in the bivalent
mAb format and exhibited bell-shaped concentration depen-
dencies, an avidity-driven mechanism relying on improved
FIXa localization to the membrane surface cannot be
excluded. The molecular details of the mechanism of stimula-
tion are currently an area of investigation.

The efficient FX activation mediated by Mim8 in assays with
purified components was reflected by robust thrombin gen-
eration and clot formation in plasma- and whole
blood–based assays, respectively. Potency of Mim8 was 13
to 18 times higher than that of the emicizumab SIA. Despite
an overlapping recognition site with FVIIIa on FIXa, titration
of Mim8 into HA plasma supplemented with normal levels of
FVIII only modestly affected thrombin generation at the
highest concentrations. These results suggest that, if
needed, administration of FVIII during Mim8 therapy will
achieve a normal procoagulant state.

Assessment of the hemostatic activity of Mim8 in vivo is ham-
pered by the lack of cross-reactivity to FIX and FX from rele-
vant nonclinical species, except non-human primates. To
circumvent this issue and enable the use of established bleed-
ing models in HA mice, animals were codosed with human FIX
and FX similar to the dosing regimen recently used by Ferri�ere
et al.41 In both moderate (TVT) and severe (tail-clip) chal-
lenges, a dose-dependent reduction of blood loss was
observed with Mim8. In the moderate challenge model, the
plasma concentration–response profile closely followed that
obtained in human plasma–based assays, and both Mim8
and emicizumab SIA normalized bleeding but with a 12-fold
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Figure 5. Hemostatic effect of Mim8 and emicizumab SIA in HA mouse models
of moderate and severe bleeding. (A) Outline of bleeding studies in HA mice
after TVT or tail clip. Before vascular injury, mice received sequential IV administra-
tions of human FIX (1.5 mg/kg), human FX (0.9 mg/kg), and Mim8 or emicizumab
SIA at indicated doses. (B) Blood loss (mean 6 standard error of the mean
[SEM], n ¼ 3-6) after TVT. At a given dose, plasma exposure levels of Mim8 and
emicizumab SIA were similar, with mean levels (nM) provided on a separate
X-axis. The bleeding ranges in vehicle-treated HA and normal animals, respec-
tively, are marked by light blue bars. Applying a 3-parameter inverse log(dose)
response model, 50% effective doses of 0.06 mg/kg [0.04-0.14] (Mim8) and 0.7
mg/kg [0.5-1.5] (emicizumab SIA) were estimated (95% confidence intervals in
square brackets). (C) Blood loss (mean6 SEM, n ¼ 12; n ¼ 16 for HA control group)
following tail clipping. The mean plasma exposure level (nM) of biAb is shown
below each dose. Bars on the right depict the blood loss (mean 6 SEM, n ¼ 12)
in HA mice after administration of three IV doses of FVIII in the absence of supple-
mented human FIX and FX. Measured plasma levels of FVIII (mean6 SEM) are indi-
cated. Groups were compared with vehicle by using one-way analysis of variance
with Dunnett’s multiple comparison test. In addition, groups receiving emicizumab
SIA were compared with Mim8 groups receiving the same dose by using a Student
t test (2-way, unpaired). P < .05 was considered statistically significant (*P < .05; **P
< .01). n.s., not significant.
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potency difference in favor of Mim8. In the severe challenge
model, additional greater efficacy of Mim8 was illustrated by
significantly reduced blood loss, which was not observed for
emicizumab SIA. The potency observed for Mim8 indicates
that an effective dose for humans could be contained within
a small volume (<1 mL). These results, taken with a predictable
pharmacokinetic profile, indications of dose linearity, and the
observation that SC dosing results in fast and near-complete
absorption with good bioavailability, support Mim8 as a
next-generation FVIIIa-mimetic candidate, and it is currently
undergoing clinical evaluation.
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