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Tight regulation of IL-7Ra expression is essential for normal T-cell development. IL-7Ra gain-
of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL).
Although a subset of patients with T-ALL display high IL7Rmessenger RNA levels and cases
with IL7R gains have been reported, the impact of IL-7Ra overexpression, rather than muta-
tional activation, during leukemogenesis remains unclear. In this study, overexpressed
IL-7Ra in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential
thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell
precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ulti-
mately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, includ-
ing heterogeneity in immunophenotype and genetic subtype between cases, frequent
hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and
upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT,

PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may
no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7,
but remain sensitive to inhibitors of IL-7R–mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR),
palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the
fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resem-
bling that of IL-7–stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that
high expression of IL-7Ra can promote T-cell tumorigenesis, even in the absence of IL-7Ra mutational activation.

Introduction
Interleukin 7 (IL-7) and its receptor, a heterodimer constituted by
IL-7Ra (encoded by IL7R) and gc (encoded by IL2RG) subunits,
are essential for normal T-cell development and homeostasis,1-4

with IL7R genetic inactivation leading to severe combined immu-
nodeficiency.5 Contrarily, IL7R gain-of-function mutations, which
occur in roughly 10% of cases of T-ALL, are considered drivers
of leukemia, being largely mutually exclusive with other mutations
that affect downstream IL-7R signaling components, including
JAK1/3, STAT5B, PTEN, and Akt.6-13 In agreement with an onco-
genic role for excessive IL-7/IL-7R signaling, IL-7 transgenic mice
develop lymphomas,14 and xenotransplant models of human
T-ALL rely on microenvironmental IL-7 for tumor acceleration.15

Moreover, IL-7 prevents spontaneous apoptosis and promotes
proliferation of T-ALL cells in vitro,16-20 in large part by activating
JAK/STAT5 and PI3K/Akt/mTOR signaling pathways, conse-
quently promoting glucose uptake, upregulating Bcl-2 and

downregulating the cyclin-dependent kinase inhibitor
p27kip1.16,21-25 These studies highlight the importance of keeping
AQ2 IL-7/IL-7R–mediated signaling levels within strict boundaries
and, indeed, IL-7Ra expression at the cell surface is tightly regu-
lated throughout both human and mouse T-cell development.1,4

However, although IL7R gene amplification has been reported in
T-ALL,26,27 its functional consequences have not been explored,
and it is not known whether high levels of wild-typeIL-7Ra are
oncogenic, per se. In this study, forced expression of wild-type
IL-7Ra in tetracycline-inducible Il7r transgenic or Rosa26 IL7R
knockin mice promoted widespread leukemia/lymphoma with
features that resemble human T-ALL, and pediatric T-ALL
samples with high levels of wild-type IL7R displayed an
IL-7R–mediated gene expression profile similar to that observed
in IL-7–activated pro-T cells and, notably, in cases with oncogenic
IL7R gain-of-function mutations. These results provide strong evi-
dence, arising from 2 different mouse models and from human

KEY PO INT S

� Mice overexpressing
IL-7Ra develop leukemia
with features of human
T-ALL and sensitivity to
ruxolitinib, dactolisib,
and venetoclax.

� T-ALL patients with high
levels of wild-type IL7R
present with evidence of
ongoing, oncogenic-like
IL-7R–mediated activa-
tion of signaling.
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T-ALL patient samples, that high expression of IL-7Ra can contrib-
ute to T-ALL, even in the absence of mutational activation of the
receptor.

Methods
Mouse models
TreIL7R rtTA.C IL7rKO (TetIL-7R) tetracycline-inducible IL-7R trans-
genic mice have been described.28 T-cell receptor (TCR) trans-
genes were introduced to the TetIL-7R background by
intercrossing with class 1–restricted F5 TCR transgenic and class
2–restricted OTII transgenic lines to generate F5 TetIL-7R, F5
Rag1KO TetIL-7R, and OTII TetIL-7R strains. Mice were fed doxy-
cycline (dox) in food (3 mg/g) to induce IL-7Ra expression. Rosa26
IL7R (Rosa26-hIL-7R.huCD2-Cre) mice were generated as follows.
We generated a conditional loxP-STOP-human IL7R knockin
mouse line under the control of the ubiquitous Rosa26 promoter
on a C57Bl6 background. Homozygous animals were bred with
CD2iCre animals,29 to promote expression of human IL7R in T
cells. CD2-expressing F1 animals were viable and bred again
with homozygous conditional animals, to generate animals carry-
ing 2 alleles of the knocked-in human IL7R. CD22 hIL7R1/1 and
CD22 hIL7R1/2 animals were used as controls. Experimental
mice were weighed weekly and euthanized in a CO2 chamber
or via pentobarbital injection when they presented clear disease
symptoms, with a defined end point of loss of 20% of body
weight, breathing impairment, poor reaction to external stimuli,
and appearance of a fur ruff. Disseminated disease was confirmed
minimally by analyzing the thymus and spleen. Differences in sur-
vival curves were determined by log-rank (Mantel-Cox) test with
Prism v6.0. All animals were bred and kept in specific pathogen-
free facilities at the National Institutes of Medical Research or Insti-
tuto deMedicinaMolecular Jo~ao Lobo Antunes, and experiments
were performed according to the University College London Ani-
mal Welfare and Ethical Review Body and Home Office regula-
tions, United Kingdom, and Instituto de Medicina Molecular
Jo~ao Lobo Antunes' institutional and Portuguese (Direcç~ao-Geral
de Alimentaç~ao e Veterin�aria) regulations.

Organ analysis
The animals were dissected, and the organs were mechanically
disintegrated into single-cell suspensions in RPMI/2%(w/v)/bovine
serum albumin. Bone marrow was extracted by flushing from
or crushing the femurs. Cell counts were determined with an
automated cell counter (CASY 1, Scharfe System, Reutlingen,
Germany), and the cells were subsequently transferred, immuno-
phenotyped, or lysed for immunoblot analysis.

Adoptive transfer
To assess the malignancy of thymus-recovered cells, 10 3 106

cells per 250 mL Iscove’s modified Dulbecco’s medium/BSA
were injected via the tail vein into 6- to 8-week-old Rag12/2

mice. The animals were fed 3 mg/g dox-containing food, moni-
tored daily, and euthanized in a CO2 chamber when moribund
or at the scheduled time points. Bones, spleen, and thymus
were collected for flow cytometry and histological analysis. Leuke-
mic cells (4 3 105) from the Hu-IL7Ra-expressing model were
transferred IV into sex and age-matched Rag22/2gc

2/2 and
Rag22/2gc

2/2 Il72/2 mice. The animals were monitored daily
and euthanized via pentobarbital injection when moribund.

Bones, spleen, and thymus were collected for flow cytometry
and histological analysis.

Immunophenotype
Splenic, thymic, and bone marrow cell suspensions were sub-
jected to immunophenotypic analysis by standard methodology.
In brief, 2 3 105 to 5 3 105 cells were stained with specific anti-
bodies for 20 minutes at 4�C in phosphate-buffered saline with
2% BSA. Phycoerythrin-conjugated antibody against human
IL-7Ra from R&D or ebioscience and Per-CP, PE-Cy7, APC,
APC-Cy7, BV421, BV510, BV605, and BV710 conjugated antibod-
ies against CD4, CD5, CD45, CD8, CD44, CD25, CD3, and TCRb
(H57-597), all from Biolegend, were used in diverse combinations.
When lineage1 cells were excluded, biotin coupled anti-Gr-1,
-CD11b, -CD19, -Ter119, and -CD11c were used and subse-
quently stained with BV711 streptavidin. Intracellular staining for
Ki67 (APC-conjugated; Biolegend) or Bcl-2 (Phycoerythrin-conju-
gated; Biolegend) was performed with the Foxp3 staining kit
from ebiosciences. Eight- and 10-color analyses were performed
on LSR Fortessa II (Becton Dickinson San Jose, CA) flow cytome-
ters. Results were analyzed with FlowJo (Tree Star Inc, Ashland,
OR) software.

Immunoblot analysis
Cells were lysed as described elsewhere.21 Equal amounts of pro-
tein (50 mg/sample) were analyzed by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis, transferred onto nitro-
cellulose membranes, and immunoblotted with the antibodies at
1:1000 dilution: p27Kip1, actin (Santa Cruz Biotechnology, Santa
Cruz, CA), PTEN, and p-Akt (S473; Cell Signaling Technology,
Danvers, MA). Immunodetection was performed by incubation
with horseradish peroxidase–conjugated anti-mouse (1:5c000),
anti-rabbit IgG (1:10c000), or anti-goat (1:5c000) (Promega, Mad-
ison, WI) and developed by enhanced chemiluminescence (Amer-
sham-Pharmacia, Piscataway, NJ).

Mouse transcriptome data
PolyA1 RNA-seq libraries of mouse tumors and normal samples
were sequenced as paired-end 75-bp reads, using the standard
Illumina pipeline. Data quality were assessed with FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Gene expression levels were determined by mapping RNA-seq
reads to the mouse genome (mm10) with Kallisto v.2.8.4.30 Com-
parative transcriptome analysis between mouse tumors and
human T-ALL was performed using previously published microar-
ray data.31 First, the raw microarray data were normalized and
summarized by using the robust MultiArray average method, as
implemented in the “affy” package32 from R (https://www.r-
project.org/). Second, human-mouse orthologues were obtained
from Ensembl v95 through the “biomaRt” R package.33 Third,
human microarray data and mouse RNA-sequencing expression
levels were centered and scaled to remove technical bias. Finally,
similarities between human and mouse transcriptome profiles
were assessed by Pearson correlation, by using previously defined
gene signatures for human T-ALL subgroups.31 The correlation
coefficients were graphically represented in an unsupervised clus-
tering heat map. To evaluate signaling pathways affected in
tumors, we used the Gene Set Enrichment Analysis (GSEA)
tool34 and Kyoto Encyclopedia of Genes and Genomes gene
sets from the Molecular Signature Database. This analysis was
based on the moderated Student t test values between tumor
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and normal samples estimated from voom-transformed values, as
implemented in the “limma” R package.35

Additional details of themethods used are provided in the supple-
mental Data, available on the Blood Web site.

Results
Overexpression of IL-7Ra perturbs normal T-cell
development in young Il7r transgenic mice
To evaluate whether high levels of IL-7Ra expression are sufficient
to promote development of T-cell leukemia, we first used amouse
model in which expression of an Il7r transgene on an Il7r-null back-
ground, is induced in T-lineage cells by a tetracycline-responsive
promotor (TreIl7r rtTAhuCD2 Il7r2/2 mice,28 hereinafter referred
to as TetIL-7R). Consistent with earlier studies,28 young adult
TetIL-7R animals continuously fed dox from birth (TetIL-7RON) dis-
played some rescue of peripheral T-cell reconstitution, compared
with dox-free mice (TetIL-7ROFF), in line with the requirement of
IL-7R signaling for normal thymopoiesis (supplemental Figure
1A). However, thymi showed evidence of perturbed develop-
ment, with increased frequency of immature TCRlo CD8 single-
positive (ISP) thymocytes (supplemental Figure 1B). This finding
may reflect a partial differentiation block at the ISP stage, which
would be in accordance with exacerbated IL-7R–mediated signal-
ing during b-selection.36 Interestingly, mouse recipients of bone
marrow progenitor cell transplants expressing JAK3 mutants dis-
play a similar accumulation of ISP CD81 cells,37 in line with
JAK3 being downstream of IL-7–mediated signals. Inducible
IL-7Ra expression was particularly elevated on the CD8 ISP popu-
lation and a subset of double-positive (DP) thymocytes (supple-
mental Figure 1C). Elevated IL-7Ra levels were associated with
increased cell size (supplemental Figure 2A) and increased prolif-
eration, as assessed by both DNA content (supplemental Figure
2B) and Ki67 expression (supplemental Figure 2C). Of signifi-
cance, DNA content distribution indicated that immature CD8
SP thymocytes in TetIL-7RON mice were highly proliferative (sup-
plemental Figure 2B). Accordingly, the Ki67 profile of TetIL-
7RON CD8SP cells resembled that of WT ISP, which are known
to have high division rates, and not of mature WT CD8SP, which
exhibit much less proliferation (supplemental Figure 2C).

TetIL-7R mice display progressive thymic
hyperplasia and eventually develop fatal T-cell
leukemia/lymphoma
To assess the consequence of abnormal thymic development in
TetIL-7R mice, we analyzed lymphoid compartments in TetIL-7R
strains28 over time. Ageing is usually associated with thymic atro-
phy38,39 as confirmed in the control mice. Instead, TetIL7RON

strains exhibited progressive increases in thymic cellularity with
age (Figure 1A). Hyperplasia was associated with a broad range
of aberrant phenotypes that eventually spread to peripheral lym-
phoid tissues, as hyperplasia progressed to full-blown leukemia/
lymphoma (Figure 1B). Disseminated disease was also associated
with hyperproliferation in both thymus and periphery, as assessed
by Ki67 expression (Figure 1C). The majority of the mice (90%)
eventually died of late-onset fatal leukemia/lymphoma (Figure
1D), with kinetics resembling those of other major T-cell onco-
genes such as TAL1 or LMO2.40,41 Importantly, disease progres-
sion was dependent on induced TetIL-7R expression, because
TetIL-7R mice that were not fed dox, as well as control mice that

lacked the rtTA driver transgene, remained healthy. Moreover,
disease was transferrable, confirming its malignant nature. Adop-
tive transfer of thymic cells from TetIL-7R mice with evidence of
disseminated leukemia/lymphoma (Figure 1E) to immunodeficient
Rag12/2 mice resulted in the rapid onset of disease in all recipi-
ents (not shown), which displayed a similar pattern of lymphoid
organ infiltration as the host, including bone marrow (Figure 1F).
Bone marrow involvement and widespread disease are character-
istic features of advanced-stage T-ALL.

Given the oncogenic potential displayed by high IL-7R expression,
we next addressed whether IL-7R overexpression could engage a
self-renewal program before development of leukemia. We dis-
continued dox in TetIL-7R mice at 8 weeks of age and analyzed
their phenotype 12 weeks after dox removal. Of 14 animals, 1 dis-
played near-normal thymic T-cell distribution, 6 showed signs of
preleukemia (aberrant T-cell development with evidence of differ-
entiation blockade), and 2 developed leukemia, altogether sug-
gesting that self-renewal was engaged by Il7r overexpression
before 8 weeks in most of the cases (supplemental Figure 3).
The remaining Off-dox mice did not display (abnormal) T-cell
development or signs of disease, indicating that removal of IL7R
early on can, in a minority of the cases, prevent T-cell precursor
self-renewal and leukemogenesis. As expected, all mice that con-
tinued receiving dox (n5 17) displayed an aberrant phenotype or
full-blown leukemia at 12 weeks or earlier (supplemental Figure 3).
Altogether, our data suggest that IL-7Ra overexpression may
engage a self-renewal program in T-cell precursors, which is
established by 8 weeks of age in most cases, eventually leading
to development of leukemia.

Leukemia development downstream from IL-7R is
influenced by Rag1 expression, but not by TCR
signaling
Triggering TCR-dependent signaling in T-ALL using high-affinity
self-peptide/major histocompatibility class or anti-CD3 monoclo-
nal antibodies has recently been shown to induce apoptosis of
T-ALL cells,42 demonstrating the therapeutic potential of activat-
ing TCR signals in this malignancy. The relevance of TCR-
mediated signaling for T-ALL development is less clear. Because
IL-7R expression in TetIL-7RON mice was maximal in immature
SP and DP thymocytes, we asked whether TCR-dependent thymic
selection signaling could affect the development of the disease.
To assess this notion, we compared disease progression of
TetIL-7R mice on a polyclonal Tcr background to strains express-
ing either class 1– or class 2–restricted TCR transgenes (F5 and
OTII, respectively). In polyclonal mice, only a small fraction of
DPs received stronger TCR signals compatible with selection,
whereas, in TCR transgenic mice, all cells expressed TCRs capable
of continuing disease development. Despite this, progression in
the 3 strains revealed near identical kinetics of disease develop-
ment, irrespective of TCR specificity (Figure 2A), arguing against
a major role for TCR signaling in modulating IL-7R-dependent leu-
kemogenesis. This result is in line with what has been reported for
STAT543 transgenic mice, in which modulation of TCR expression
did not affect the development of leukemia/lymphoma.

The contribution of Rag activity for T-cell leukemogenesis has long
been recognized in the context of TCR recombination-driven
chromosomal reciprocal translocations displayed by T-ALL
patients and recently has been found to be highly involved in
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leukemogenesis in ETV6-RUNX11 B-cell ALL.44 Also, we previ-
ously showed that T-ALL–associated PTEN microdeletions result-
ing in loss of PTEN expression are RAG mediated.45 Because
some of the tumors displayed low or absent PTEN protein levels,
we analyzed the requirement of RAG activity for IL-7R–mediated
tumor development. RAGs are essential for TCR gene rearrange-
ment and subsequent T-cell development past the double-
negative (DN) stages. As such, lack of RAG activity could affect
T-ALL development, merely because it prevents thymocyte differ-
entiation. To avoid this confounding factor, we analyzed TCR-
transgenic F5 mice, which do not require RAG activity for T-cell
maturation in the thymus. Comparison of F5 TetIL-7R Rag12/2

and F5 TetIL-7R mice revealed that the absence of Rag1

expression significantly delayed, although it did not fully prevent,
tumor development (Figure 2B). This observation suggests that
RAG activity contributes to acceleration of leukemia, although it
is not absolutely required for leukemia development downstream
from IL-7R overexpression in T-cell precursors.

Maintenance of established TetIL-7R tumors may
occur in the absence of high IL-7Ra
Making use of our inducible model, we next assessed whether
IL-7Ra expression is necessary for maintenance and expansion of
established tumors. Malignant cells isolated from 3 independent
primary F5 TetIL-7R tumors were transferred into Rag12/2-recipient
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Figure 1. IL-7Ra expression results in progressive thymic hyperplasia and disseminated, fatal T-cell leukemia/lymphoma. (A) Thymus cellularity vs age from wild-type
F5 control and F5 TetIL-7RON mice. Numbers indicate slope of line fit and 95% confidence intervals. (B) CD4 vs CD8 expression by thymocytes and splenocytes from TetIL-
7RON mice (n 5 36). Lymphoma/leukemia present in thymus and spleen, characterized by their expression of CD4 and CD8 into DN, CD8 SP, DP, and CD4 SP. A repre-
sentative example of each phenotype is shown and the percent incidence of phenotype indicated under the phenotypic label. (C) CD4 vs CD8 expression by thymocytes
and splenocytes from TetIL-7RON or control C57Bl6/J mice. Histograms are of Ki67 labeling of thymocytes (top) and splenocytes (bottom) of the indicated subpopulation
from either TetIL-7RON or C57Bl6/J control mice. (D) Survival of cohorts of TetIL-7RON (n 5 8) vs TetIL-7ROFF (n 5 4) and TreIL-7R1 rtTA– Il7r2/2 mice (n 5 4). Mice were
culled when they reached the defined humane end point (see “Methods”). P 5 .0003. (E) Phenotype in the indicated organs of F5 TetIL-7RON mice identified with clinical
signs of disease (tumor), as compared with IL-7RWT F5 control mice (control). Density plots are of CD4 vs CD8 in the thymus, spleen and bone marrow of the indicated
conditions. (F) Malignant thymocytes from donor mouse in (E) were transferred into Rag12/2 recipients (n 5 8). Four weeks later, thymus, spleen, and bone marrow
were analyzed for the presence of donor cells. Shown is pooled data of 2 (D) or 6 (A-B) independent experiments or mean results of 3 (C,E-F) independent experiments.
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mice, either fed doxycycline (On dox), to maintain Il7r expres-
sion, or kept dox free, to cease gene induction. Both groups
of mice were culled 4 weeks after transplantation because of
disease symptoms ($20% weight loss). As expected, cells
recovered from Off-dox recipient mice showed major downre-
gulation of IL-7Ra to levels comparable to DP cells of F5 control
mice, which express low-to-undetectable levels of IL-7Ra
(Figure 3A). However, the leukemia cells presented a similar
immunophenotype (Figure 3B) and were found in numbers sim-
ilar to those recovered from dox-fed hosts. These results sug-
gest that, at least in some cases, high levels of wild-type
IL-7Ra expression may be redundant for the maintenance of
fully established leukemias once transformation has occurred.

TetIL-7R tumors display hyperactivation of PI3K/
Akt pathway and mimic multiple features of human
T-ALL
Remarkably, Tet-IL-7R tumors mimicked numerous important fea-
tures of human T-ALL. First, their immunophenotype varied con-
siderably between animals (from CD4,CD8 DN to DP, to CD4 or
CD8 SP cells), reflecting the different stages of maturation block
known to occur in the human disease (Figure 1C).46,47 Second,
heterogeneity extended to the genetic subset of T-ALL affecting

each animal. Transcriptomic analyses showed that tumors resem-
ble different major human T-ALL subsets,31 tending to cluster into
2main groups (TAL/LMO1proliferative or HOXA/TLX1immature;
Figure 4A). Taken together, these results suggest that
IL-7R–mediated transformation is not restricted to a particular
T-ALL oncogenetic subtype, in agreement with what appears to
happen with mutant IL7R in human T-ALL,6,12 or to a single matu-
ration stage, in accordance with the fact that human T-ALL cells
respond to IL-7, irrespective of their stage of differentiation.19

Third, similar to most primary T-ALL cases, most tumors displayed
hyperactivation of the PI3K/Akt pathway,45,46,48 sometimes asso-
ciated with absence or decreased Pten protein expression (Figure
4B) and Pten mutation (supplemental Table 1). In agreement,
GSEA of differentially expressed genes between tumors and con-
trols revealed a strong enrichment for phosphatidylinositol and
mTOR (Figure 4C-D) signaling in tumors. Fourth, in accordance
with increased IL-7R–mediated signaling, and similar to human
T-ALL,6,23,24,49-53 the tumors were enriched in genes upregulated
in JAK/STAT pathway signaling (Figure 4E). Fifth, we found evi-
dence of Notch1mutation (supplemental Table 1) and Notch sig-
naling activation (Figure 4F), a hallmark of both mouse and human
T-ALL. Sixth, in accordance with increased proliferation (Figures
1C and 4G), the cell cycle inhibitor p27Kip1 was frequently down-
regulated (Figure 4B), a molecular characteristic of human T-ALL
cells,54 particularly of IL-7–responsive cases.16,21 Finally, the
expression of Bcl-2, which is upregulated by and mandatory for
IL-7–mediated viability of primary human T-ALL cells,15-17 was
also higher in the tumors (Figure 4H).

Human IL-7Ra expression leads to the dose-
dependent development of T-cell leukemias that
are sensitive to inhibition of different IL-7R down-
stream effectors
Next, we evaluated whether the human wild-type IL-7Ra had an
oncogenic potential similar to that of the mouse and assessed
whether higher levels of receptor expression are more efficient in
driving T-cell malignancy. To do this, wemodified the ubiquitously
expressed Rosa26 locus to express human IL7R. LoxP-flanked
TpA stop signals prevented constitutive IL7R gene expression.
However, introducing an huCD2-Cre transgene generatedmice
in which human IL-7Ra expression was released in lymphoid
precursors (Rosa26-hIL-7R.huCD2-Cre, hereinafter referred to as
R26-hIL-7R) developing on an otherwise normal immune back-
ground. As expected, homozygous mice (hIL-7R1/1), with 2 cop-
ies of hIL7R, displayed higher surface hIL-7Ra levels than
heterozygous (hIL-7R1/2) mice (Figure 5A-B), whereas expression
of other gc family cytokine receptors was not affected by IL-7R
overexpression (supplemental Figure 5). Notably, hIL-7R1/1 ani-
mals also developed malignant disease significantly faster than
hIL-7R1/2 (Figure 5C), indicating an IL-7Ra dose-dependent leu-
kemogenic effect. Analysis of hIL-7R1/1 mice with disease
revealed expansion of CD81CD42 TCRlo thymocytes (Figure
5D) with a proliferative phenotype (Figure 5E) and an increased
thymus size (Figure 5F). Malignant T cells spread to the bone mar-
row (Figure 5D-E) and spleen (Figure 5D-F), which presented with
splenomegaly (Figure 5F). Full necropsy showed leukemia spread
to the lymph nodes, heart, lung, liver, kidney, and central nervous
system (supplemental Figure 6A). Flow cytometry did not reveal
any B-cell malignancies, all leukemias being CD192 and display-
ing only T-cell markers (supplemental Figure 6B). Transplant
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experiments into Rag12/2 Il2rg2/2 vs Rag12/2 Il2rg2/2 Il72/2

mice showed that established tumors remained IL-7 responsive,
although leukemia/lymphoma was eventually propagated, even
in the absence of IL-7 (Figure 5G). These results were in line
with those from the dox-inducible model and indicated that full-
blown leukemias triggered by high levels of IL-7R expression
were no longer necessarily fully reliant on microenvironmental
IL-7–mediated signals for their propagation.

To examine putative mechanisms justifying these observations
and identify secondary hits collaborating with high IL-7R expres-
sion in driving T-ALL, we performed whole-exome sequencing
of leukemia samples from R26-hIL-7R mice. As expected,Notch1,
a major T-ALL oncogene, was frequently mutated (Figure 5H; sup-
plemental Table 2). In addition, we found mutations in Rb1, Atrx,
Ptchd4, and Idh1, which are known cancer drivers, including in
T-ALL. Other affected genes included Fat3 (belonging to the
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same functional family as the T-ALL driver Fat1), Csfr3 (which is
mutated in myeloid leukemias), and Klf13 (involved in B- and
T-cell development). Notably, some of the tumors displayed
mutations in genes that are directly related to IL-7R downstream
signaling, such as Ptprc (CD45), whose loss-of-function mutation
in T-ALL potentiates JAK/STAT signaling55; Ago2, which inter-
plays with KRAS signaling56; and Asns, known to be upregulated
by IL-7R signaling57 (Figure 5H; supplemental Table 2). In addi-
tion, although IL-7 levels were not significantly different between
IL-7R–overexpressingmice and controls, asmeasured by quantita-
tive polymerase chain reaction in lymph nodes and enzyme-linked
immunosorbent assay in the blood (supplemental Figure 7), we
found that some of the tumors displayed detectable IL-7 transcript
levels (Figure 5I), suggesting that, similar to human T-ALL,58 some
mouse leukemias may display IL-7 autocrine production.

Irrespective of the mechanism, leukemias arising from hIL-7R over-
expression displayed activation of IL-7R signaling, as assessed by
Bcl-2 upregulation (Figure 5J). Accordingly, the Bcl-2 inhibitor ven-
etoclax triggered leukemia cell death andprevented IL-7–mediated
viability in a dose-dependent manner (Figure 5K). Similar results
were obtained with inhibitors of other IL-7R effectors, such as
JAK1,24,52,59 PI3K/mTOR,21,22 PIM1,23,60 and Cdk4/6,16 all of which
also had cytotoxic effects on T-ALL cells (supplemental Figure 8).
Taken together, these observations suggest that acquisition of sec-
ond hits leading to activation of downstream IL-7R signalingmay be
the reason that some cases are no longer fully dependent onmicro-
environmental IL-7 or require high IL-7R surface expression and yet
still display clear evidence of IL-7/IL-7R downstream activation.

T-ALL patients with high wild-type IL7R expression
display evidence of oncogenic IL-7R–dependent
signaling activation
To further confirm the relevance of our findings for human disease,
we next analyzed IL7R expression in a cohort of IL7R wild-type
T-ALL cases. We found highly heterogeneous expression of IL7R
(Figure 6A). We then compared the 20 cases with the highest to
the 20 cases with the lowest IL7R expression, and GSEA of differ-
entially expressed genes showed enrichment of genes that are tar-
gets of IL-7 stimulation61 (normalized enrichment score [NES],
2.044; P , .001) in the IL7R-high samples. These data demon-
strate that human T-ALL cases with high levels of wild-type IL7R
displayed evidence of active IL-7 receptor signaling (Figure 6B).
Importantly, genes upregulated in IL7R-mutant T-ALL samples
were also enriched in wild-type IL7R-high cases (NES, 1.635; P
5 .01), whereas genes downregulated in IL7R-mutant cases
showed negative enrichment (NES, 21.277; P 5 .0069; Figure
6C). These results indicate that high levels of expression of wild-
type IL-7Ra in patients with T-ALL are associated with a gene
expression signature that resembles that of IL7R-mutant cases.

Discussion
IL7R mutational activation is a known driver of T-ALL.6-13 In addi-
tion, several mechanisms can lead to increased expression of

wild-type IL-7Ra in T-ALL (eg, Notch activation,62 RPL10 R98S
mutation,63 or ZEB2 translocation).64 Mutations in genes such as
DNM2,65 which regulate IL-7Ra trafficking and surface availabil-
ity,66 also potentially contribute to oncogenic IL-7R-mediated sig-
naling. Most notably, there are reported cases of IL7R gene
amplification in T-ALL.26,27 However, whether high IL-7Ra levels
can drive T-ALL remains unaddressed. Although correlative evi-
dence associates expression of IL-7Ra in AKR/J mice with devel-
opment of leukemia,67 and a recent study has shown a
correlation between high levels of IL-7R expression and increased
leukemia stem cell activity in established human T-ALL,68 there is
no direct proof of the oncogenic potential of overexpression of
IL-7Ra without gain-of-function mutation. This finding is of clinical
relevance, because there is a significant fraction of patients with
T-ALL who present with very high IL7R levels and, as we demon-
strated in this study, gene expression profiling indicates that the
leukemia cells display evidence of ongoing IL-7/IL-7R signaling
activation that resembles that of oncogenic IL7R-mutant T-ALL
cases. Deep characterization of the similarities and differences
between mutant and high-level wild-type IL-7R signaling and
downstream gene expression changes may expose therapeutic
vulnerabilities and merits investigation. Our analyses of patient
data suggest that not only mutational activation of IL-7Ra but
also high levels of expression are oncogenic. We confirmed this
possibility by providing clear evidence, using 2 different in vivo
models, that IL-7Ra is oncogenic, even in the absence of muta-
tional activation. Again, this finding is clinically relevant, because
it implies that T-ALL cases with high IL-7Ra expression also benefit
from treatment with inhibitors of IL7R-mediated signaling, includ-
ing JAK1/3, PIM1, PI3K, and IL-7R itself.25,69,70 Anti-IL-7Ra anti-
bodies are promising new therapeutic tools against T-ALL,69,70

and their impact, particularly on IL7R high T-ALL cases, warrants
investigation. However, our findings indicating that some mouse
T-ALLs no longer require high levels of IL-7R expression for leuke-
mia maintenance serve as an alert that targeting of the receptor
may not always be effective therapeutically. This lack of efficacy
may be caused by genetic lesions on Notch1, Atrx, Ptchd4, or
Idh1, which could drive a shift in oncogene addiction, or it may
be because of the acquisition of mutations, such as those we
found in Ptprc, Ago2, Asns, Pten, or Rb1, which are either regu-
lated by, or interact with, signaling pathways activated by IL-7R
and thus canmimic or lead to IL-7R–mediated downstream signal-
ing activation. In agreement with the latter, leukemia samples
remain sensitive to pharmacological inhibitors of IL-7R signaling
effectors, such as JAK1 (ruxolitinib), PI3K/mTOR (dactolisib), or
PIM1 (AZD1208).6,21-24,27,52,59,60

Our studies also suggest that IL-7Ra overexpression promotes
thymocyte self-renewal by 8 weeks of age, in most cases, eventu-
ally leading to subsequent leukemia development. An alternative
(not mutually exclusive) explanation as to why some of the cases
display a (pre)leukemic phenotype would be the acquisition of
secondary oncogenic hits, which would not necessarily involve
previous engagement of a self-renewal program. Further experi-
ments are warranted to determine more exactly how long high

Figure 5 (continued) (I) Il7 messenger RNA expression levels relative to Hprt1 in leukemic cells from CD2pos hIL-7R leukemias were quantified by quantitative real-time
reverse transcription polymerase chain reaction. Average of triplicate experiments and SD are shown. (J) Bcl-2 flow cytometry analysis of CD4posTCRbpos normal SP thy-
mocytes and CD8posTCRbneg leukemic cells of the same animal as in panels D-F. (K) Cells from 2 different leukemias (12895 and 14941) were cultured in the presence of the
indicated doses of the Bcl-2 inhibitor venetoclax and in the absence (red bars) or presence (purple bars) of IL-7. Data show viability at 48 hours. One-way analysis of variance
with Tukey’s correction for multiple comparisons. #P , .0001, venetoclax in the presence of IL-7 vs IL-7 alone; §P , .0001, venetoclax in the absence of IL-7 vs medium
alone.
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expression of IL-7R is needed to consistently engage self-renewal
and/or a leukemogenic program.

The mouse tumors that develop downstream from IL-7Ra mimic
multiple features of human T-ALL, including interpatient heteroge-
neity in immunophenotype and oncogenetic subtype, similar to
whatwas found for caseswith IL7Rmutation,whichoccur indifferent
T-ALL subtypes.12Our in vivomodelsmay thereforebe instrumental
for the thorough characterization of IL-7R–mediated T-ALL, the
potential unmasking of molecular targets for therapeutic interven-
tion, and the testing of novel treatment strategies. Obvious candi-
dates for therapeutic intervention include, as mentioned, inhibitors
of JAK/STAT/PIM pathway or PI3K/Akt signaling,21-24,27,52,60,71

whose efficacywe also demonstrated in this study by the use of rux-
olitinib, AZD1208, and dactolisib in IL-7R–overexpressing mouse

leukemias. Given the knownpositive impact of IL-7/IL-7R–mediated
signaling on Bcl-2 expression in T-ALL cells,16,17,21,23,72 we also
tested the BH3 mimetic drug venetoclax, which clearly promoted
cell death in vitro. These results are in line with other studies provid-
ingevidenceof thepotential of Bcl-2 inhibitors against T-ALL.73-75 In
addition, in agreement with IL-7 induction of cell cycle progression
in human T-ALL cells,16 wedemonstrated the efficacy of theCdk4/6
inhibitor palbociclib76 in our mouse T-ALLs.

Overall, our study provides the first direct evidence that IL-7Ra
can promote T-cell tumorigenesis in a dose-dependent manner,
even in the absence of IL7R gain-of-function mutations. Our find-
ings are of particular relevance for the understanding of the biol-
ogy and the treatment of T-ALL cases with high IL7R levels,
including those with IL7R gains.
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expression levels in T-ALL patients with wild-type IL7R (n 5 246). Dashed lines mark the 20 cases with the highest expression (above top line) and the 20 cases with lowest
IL7R expression (below bottom line), used for comparison in the subsequent analyses. Only IL7R wild-type cases were analyzed. (B-C) Ranked GSEA on differentially
expressed genes between IL7R-high and -low cases for the sets of IL-7 target genes in pro-T cells (B), and genes upregulated in IL7R-mutant T-ALL samples (left) and down-
regulated in IL7R-mutant cases (right) (C).

ELEVATED IL-7Ra PROMOTES T-CELL LEUKEMIA blood® 23 SEPTEMBER 2021 | VOLUME 138, NUMBER 12 1049

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/138/12/1040/1823694/bloodbld2019000553.pdf by guest on 07 M

ay 2024



Acknowledgments
The authors thank S. Tung and the Medical Research Council (MRC)
National Institute for Medical Research Biological Services staff for
assistance with mouse breeding and typing; the MRC National Institute
for Medical Research flow cytometry and high-throughput sequencing
core facilities; Pedro Ruivo and iMM’s Comparative Pathology Unit;
and Marta Fernandes for preparing the visual abstract.

The work was supported by the MRC under Programme Codes
U117573801 and MR/P011225/1, to and by the consolidator grant ERC
CoG-648455 from the European Research Council, under the European
Union's Horizon 2020 research and innovation programme, and the
FAPESP/20015/2014 grant from Fundaç~ao para a Ciência e a Tecnologia
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