
Regular Article

IMMUNOBIOLOGY AND IMMUNOTHERAPY

Invariant natural killer T-cell subsets have diverse graft-
versus-host-disease–preventing and antitumor effects
Kristina Maas-Bauer,1,2,* Juliane K. Lohmeyer,1,* Toshihito Hirai,1 Teresa Lopes Ramos,1 Furqan M. Fazal,3 Ulrike M. Litzenburger,3

Kathryn E. Yost,3 Jessica V. Ribado,4 Neeraja Kambham,5 Arielle S. Wenokur,1 Po-Yu Lin,1 Maite Alvarez,1 Melissa Mavers,1,6

Jeanette Baker,1 Ami S. Bhatt,1,4,7 Howard Y. Chang,3,8 Federico Simonetta,1,9,10,† and Robert S. Negrin1,†

1Division of Blood and Marrow Transplantation, Stanford University, Stanford, CA; 2Department of Hematology, Oncology, and Stem Cell Transplantation, Uni-
versity of FreiburgMedical Center, Freiburg, Germany; 3Center for Personal Dynamic Regulomes, 4Department of Genetics, and 5Department of Pathology, Stan-
ford University, Stanford, CA; 6Division of Stem Cell Transplantation and Regenerative Medicine, Bass Center for Childhood Cancer and Blood Diseases,
Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA; 7Division of Hematology and 8Howard Hughes Medical Institute, Stanford Uni-
versity, Stanford, CA; 9Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; and 10Translational Research Center
for Oncohematology, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland

Invariant natural killer T (iNKT) cells are a T-cell subset with potent immunomodulatory prop-
erties. Experimental evidence inmice and observational studies in humans indicate that iNKT
cells have antitumor potential as well as the ability to suppress acute and chronic graft-ver-
sus-host-disease (GVHD). Murine iNKT cells differentiate during thymic development into
iNKT1, iNKT2, and iNKT17 sublineages, which differ transcriptomically and epigenomically
and have subset-specific developmental requirements. Whether distinct iNKT sublineages
also differ in their antitumor effect and their ability to suppress GVHD is currently unknown.
In this work,we generated highly purifiedmurine iNKT sublineages, characterized their tran-
scriptomic and epigenomic landscape, and assessed specific functions. We show that iNKT2

and iNKT17, but not iNKT1, cells efficiently suppress T-cell activation in vitro and mitigate murine acute GVHD in vivo.
Conversely, we show that iNKT1 cells display the highest antitumor activity against murine B-cell lymphoma cells both
in vitro and in vivo. Thus, we report for the first time that iNKT sublineages have distinct and different functions, with
iNKT1 cells having the highest antitumor activity and iNKT2 and iNKT17 cells having immune-regulatory properties.
These results have important implications for the translation of iNKT cell therapies to the clinic for cancer immunotherapy
as well as for the prevention and treatment of GVHD.

Introduction
Allogeneic hematopoietic cell transplantation (HCT) is a highly
effective therapy for a broad range of life-threatening hematologic
malignancies, genetic abnormalities, and bone marrow failure sta-
tus. It is unfortunately, however, associated with significant mor-
bidity and mortality related to transplant complications, namely
acute graft-versus-host disease (GVHD) and immune deficiencies.
During acute GVHD, the interaction with host tissues induces
donor-derived T-cell activation, proliferation, andmigration to tar-
get organs, notably skin, liver, and intestine, leading to cell dam-
age and clinical manifestations.1 Preclinical murine models of
GVHD strongly support the feasibility of selectively preventing
GVHD by using cellular immunotherapy.

Invariant natural killer T (iNKT) cells are an innate lymphocyte pop-
ulation expressing a semi-invariant T-cell receptor that recognizes
glycolipids presented in the context of the non-polymorphic mol-
ecule CD1d. Through modulation of innate and adaptive immune
cells, iNKT cells display an extremely versatile panel of func-
tions,2,3 ranging from antitumor effects to immune-regulatory
activity. Experimental evidence in mice4-8 and observational

studies in humans9,10 indicate that iNKT cells have the potential
to suppress acute and chronic GVHD.11

It is now well established that murine iNKT cells differentiate dur-
ing thymic development into at least 3 distinct sublineages,
iNKT1, iNKT2, and iNKT17 cells; these sublineages are classified
based on the expression of transcription factors and effector mol-
ecules.12-15 Several studies provided insights into the develop-
mental requirements16-19 and molecular characteristics15,20,21 of
the distinct iNKT sublineages, but no formal evidence of their
functional heterogeneity exists. Therefore, whether one or multi-
ple sublineages are suitable for antitumor and/or GVHD immuno-
therapy is not known.

In the current work, the molecular and functional heterogeneity
of murine iNKT subsets was assessed and the function of
iNKT1, iNKT2, and iNKT17 cells was tested with respect to their
antitumor effects. Moreover, we assessed the ability of each
iNKT cell sublineage to prevent GVHD in murine models of
HCT. For the first time, we show that iNKT2 and iNKT17 cells,
but not iNKT1 cells, display an immune-regulatory effect
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� iNKT2 and iNKT17, but
not iNKT1, cells mitigate
murine acute GVHD.

� iNKT1 cells exert
stronger antitumor
effects in vitro and
in vivo.
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mitigating murine acute GVHD and that iNKT1 cells have the
strongest antitumor effect.

Methods
Mice
BALB/cJ (H-2kd), C57Bl/6J (H-2kb), and FVB/NJ (H-2kq) mice were
purchased from The Jackson Laboratory. Luc1 transgenic FVB/N
L2G85 mice22 were bred at Stanford University. All animal experi-
ments were approved by the Administrative Panel on Laboratory
Animal Care at Stanford University.

Flow cytometric analysis
Reagents used for fluorescence-activated cell sorting (FACS) anal-
ysis are summarized in the supplemental Methods (available on
the Blood Web site). Samples were acquired on a BD LSRII (BD
Biosciences) andwere analyzed by using FlowJo 10.5.0 (Tree Star).

Genomics analyses
Materials andmethods used for genomics analyses are detailed in
the supplemental Methods.

Isolation of iNKT sublineages
Single-cell suspensions from thymi harvested from 6- to 8-week-
old FVB/N mice were incubated with biotinylated anti-CD19,
anti-CD8a, anti-CD62L, anti-TCR-gd, anti–GR-1, anti-Ter119, and
streptavidin beads (BD) and negatively enriched. After staining
with anti–inducible T-cell costimulator (ICOS), anti-CD27, anti–T-
cell receptor (TCR)-b, anti-CD24, anti-CD4, anti–programmed
cell death protein 1 (PD-1), streptavidin, and PBS-57–CD1d tetra-
mer, cells were sorted on an FACSAria II (BD). Cell purity was
assessed by FACS after transcription factor staining with anti-
PLZF and anti-RORgT and was consistently .92%.

In vitro cytotoxicity assay
The CD1d-transduced A20 B-cell lymphoma cell line was a kind
gift of Mitchell Kronenberg (La Jolla Institute for Immunology, La
Jolla, CA). A20-CD1d cells were loaded for 4 hours with 250 ng/
mL a-galactosylceramide (KRN7000, REGiMMUNE), washed,
stained by using a CellTrace CFSE Proliferation Kit (Life Technolo-
gies), and plated in round bottom 96-well plates at 10000 cells
per well. FACS-sorted iNKT1, iNKT2, and iNKT17 cells were
mixed with A20-CD1d cells at an effector:target ratio of 4:1. After
24 hours, cells were stained for CD19 and B220 and viability dye,
and analyzed by FACS. iNKT-mediated cytotoxicity was calculated
as percentage of death compared with A20-CD1d cells cultured
alone.

In vivo tumor model
CD1d-transduced A20 B-cell lymphoma cells (2 3 10e4) resus-
pended in phosphate-buffered saline were injected intravenously
by tail vein into alymphoid BALB/c Rag12/2 gC2/2 mice or into
sublethally (4.4 Gy) irradiated wild-type BALB/c mice. Sorted
splenic CD41 iNKT cells, iNKT1, iNKT2, or iNKT17 cells (5 3

10e4), were injected intravenously on the same day. Mice were
monitored daily and euthanized if moribund or when lower limb
paralysis appeared.

In vitro suppressive assay
CD41 conventional T cells (Tcon) were enriched from splenocytes
of luc1 FVB/N mice with CD4 MicroBeads (Miltenyi Biotec). After

staining with a Violet Proliferation Kit (Life Technologies), cells
were plated in a round bottom 96-well plate at a concentration
of 30000 cells per well with anti-CD3/anti-CD28 activation beads
(1:1 ratio; Invitrogen). FACS-sorted iNKT1, iNKT2, and iNKT17
cells were mixed with CD4 Tcon at a 1:1 ratio. After 96 hours, cells
were stained for CD25, ICOS, and fixable viability dye and ana-
lyzed by FACS. iNKT-mediated suppression was calculated as a
percentage of reduction of mean number of cell cycles per cell
compared with control cells cultured without iNKT cells.

Allogeneic bone marrow transplantation
Donor CD41 andCD81 conventional T cells (Tcon) were prepared
from splenocytes of luc1 FVB/N mice and enriched with CD4 and
CD8 MicroBeads (Miltenyi Biotec). Cell purity was consistently
.95%. T-cell–depleted bone marrow (TCD-BM) was prepared
by crushing bones from FVB/N mice and depleting T cells with
CD4 and CD8 MicroBeads. BALB/c recipient mice were lethally
irradiated with 8.8 Gy in 2 doses administered 4 hours apart. On
the same day, 4 3 106 TCD-BM cells and 1.0 3 106 Tcon from
luc1 FVB/N mice were injected intravenously. Sorted iNKT1,
iNKT2, or iNKT17 cells were coinjected. Transplanted animals
housed with food containing sulfamethoxazole and trimethoprim
were monitored daily, and weight and GVHD scores23 were
assessed weekly. Survival was analyzed by using the Kaplan-
Meier method and log-rank test. Weight loss and GVHD clinical
score were analyzed by 2-way analysis of variance with Bonferroni
correction. A value of P , .05 was considered statistically signifi-
cant. All transplant experiments were performed with sex-
matched mice between 8 and 12 weeks of age.

Multiplex cytokine assays
Sera were collected from recipient mice on day 7 after transplan-
tation. Cytokines were analyzed by using a multiplex assay system
(Th1/Th2 Cytokine 11-Plex Mouse ProcartaPlex Panel; Invitrogen)
and quantitated by using the Luminex 200 System (Luminex).

Histopathology
Tissues were fixed in 10% neutral buffered formalin. Tissue proc-
essing, staining with hematoxylin and eosin, and digital photomi-
crography were conducted by HistoWiz. Tissue sections were
evaluated and scored for GVHDblindly by an experienced pathol-
ogist (N.K.) according to a previously published system.24

Statistical analysis
Statistical analyses were performed by using Prism 6 (GraphPad
Software) and R 3.5.1 with R studio 1.1.453 (RStudio, Public
Benefit Corporation).

Results
Single-cell RNA sequencing identifies surface
molecules for isolation of highly purified iNKT
sublineages
In agreement with previous reports,14 thymic iNKT from BALB/c
mice, but not C57BL/6 mice, display sizeable populations of
iNKT1, iNKT2, and iNKT17, defined by the differential expression
of the transcription factors PLZF and RORgT (supplemental Figure
1A-B), whereas splenic iNKT cells were dominated by iNKT1 cells
in both mouse strains (supplemental Figure 1A,C). Thymic iNKT
cells from FVB/N mice displayed all 3 sublineages, with a slight
dominance of iNKT2 cells, whereas splenic iNKT cells were mostly
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represented by iNKT1 cells. Given the distribution of iNKT subli-
neages, FVB/N thymi were selected as a cellular source.

We next performed single-cell RNA sequencing (scRNA-seq) on
thymic FVB/N iNKT cells sorted from individual animals based
on PBS57-loaded tetramer staining. The cells segregated into 3
clearly defined clusters expressing genes characteristic of iNKT1,
iNKT2, and iNKT17 cells (Figure 1A). Expression of Tbx21,
Zbtb16, and Rorc genes, encoding the key lineage-defining tran-
scription factors T-Bet, PLZF, and RORgT, respectively, further
confirmed the identities of the clusters (Figure 1B). iNKT1 cells
expressed the highest levels of transcripts from genes associated
with cytotoxic effector function (Nkg7, Gzma, and Ccl5), iNKT2
cells expressed the highest level of Il4, and iNKT17 cells preferen-
tially expressed genes previously reported to identify Th17-like
iNKT cells, namely Sdc1 (Figure 1C).

This analysis revealed several differentially expressed tran-
scripts encoding cell surface–expressed molecules. In particu-
lar, Icos and Pdcd1 (encoding PD-1) were expressed at high
levels in iNKT2 and iNKT17 cells, whereas they were barely
detectable in iNKT1 cells (Figure 1D). In agreement with previ-
ous reports, iNKT1 and iNKT17 cells were almost devoid of Cd4
transcripts. Combining these molecules with others reported
in the literature (CD2712), we developed a FACS-isolation strat-
egy yielding highly purified iNKT sublineages, as confirmed by
intracellular staining for RORgT and PLZF (Figure 1E). Bulk RNA-
seq analysis of the sorted populations confirmed the distribu-
tion of differentially expressed genes identified by scRNA-seq
(Figure 1F).

Assay for transposase-accessible chromatin
sequencing reveals distinct chromatin accessibility
profiles of iNKT sublineages
We next profiled the chromatin accessibility of the obtained iNKT
sublineages using assay for transposase-accessible chromatin
sequencing (ATAC-seq). Pairwise analyses showed that iNKT2
and iNKT17 cells had more accessibility differences compared
with iNKT1 cells, with relatively fewer differences detected
between iNKT2 and iNKT17 cells (Figure 2A). Hierarchical cluster-
ing further confirmed that iNKT2 and iNKT17 cells displayed
closer chromatin accessibility profiles compared with iNKT1 cells
(Figure 2B). Focusing on differential ATAC-seq peaks at promoter
and transcription start sites for immunologically relevant genes,
iNKT1 cells displayed increased accessibility at the interferon-g
(Ifng) locus as well as at the granzyme A (Gzma) and granzyme B
(Gzmb) loci. In iNKT2 cells, we observed increased chromatin
accessibility in the promoter of the gene encoding the T helper
2 (Th2)-chemokine receptor CCR4, as well as in Il4 promoter.
Finally, iNKT17 cells selectively displayed increased chromatin
accessibility at promoters of genes encoding Th17-related cyto-
kines (Il17a and Il17f) and subset-specific cytokine receptors

(Il1r1 and Il23r). iNKT1-specific chromatin accessibility regions
were enriched for Runt-related and ETS-related-gene transcription
factors as well as for T-bet and Eomes binding motifs (supplemen-
tal Figure 2), as previously reported.25 iNKT2-specific regions
were enriched for GATA family transcription factor binding sites.
Finally, iNKT17-specific regions were enriched for binding sites
of the Th17-regulating factors RORgT and BATF. Collectively,
these data reveal that each iNKT sublineage has distinct chromatin
accessibility profiles and that iNKT2 and iNKT17 cells are more
epigenomically similar to one another than to iNKT1 cells.

iNKT1 cells display epigenomic and transcriptomic
potential for cytotoxic molecule production and
exert the strongest antitumor effect in vitro
and in vivo
Wenext examined chromatin accessibility and expression levels of
genes encoding molecules involved in antitumor effects of iNKT
cells.26 iNKT1 cells were the only subset displaying high promoter
chromatin accessibility and active transcription of Gzmb and Prf1
(Figure 3A). Moreover, multiple peaks were specifically enriched
in iNKT1 cells at putative distal regulatory regions for the Gzmb
gene (supplemental Figure 3). The promoter of the gene encod-
ing for Fas-ligand (Fasl), a key molecule in iNKT killing of tumor
cells,26,27 was accessible in all three sublineages, but higher acces-
sibility was detected in iNKT1. Similarly, we observed higher chro-
matin accessibility at putative distal regulatory regions both
upstream and downstream of the Fasl gene in iNKT1 cells.
Accordingly, iNKT1 cells uniquely expressed Fasl transcripts at
detectable levels. To assess each iNKT sublineage cytotoxic activ-
ity against target tumor cells, we incubated sorted iNKT1, iNKT2,
or iNKT17 cells together with a-galactosylceramide–loaded,
CD1d-transduced murine A20 lymphoma cells. iNKT1 cells dis-
played significantly higher cytotoxic activity against CD1d-
expressing A20 cells while iNKT2 and iNKT17 cells had minimal,
if any, effect (Figure 3B). We next assessed the antitumor activity
of iNKT sublineages in vivo. We first used spleen-derived CD41

iNKT cells in a B-cell lymphoma model allowing the use of very
low numbers of iNKT cells (supplemental Figure 4A). Lownumbers
of spleen-derived CD41 iNKT cells (53 10e4) had no effect when
coinjected with CD1d-expressing A20 cells (23 10e4) into Rag12/2

gC2/2 BALB/c mice. Conversely, in a fully immune competent
model of partial and transient lymphopenia induced by sublethal
(4.4 Gy) irradiation, low-dose splenic CD41 iNKT cells significantly
extended animal survival (supplemental Figure 4B), indicating an
interplay between adoptively transferred allogeneic iNKT cells
and host cells. We then used this model to assess the in vivo anti-
tumor potential of each iNKT sublineage. Invariant NKT1 cells sig-
nificantly extended animal survival in this model, whereas upon
adoptive transfer of iNKT2 cells and iNKT17 cells, we observed
a trend toward improved survival that did not reach statistical
significance (Figure 3C). Collectively, these results indicate that

Figure 1. Identification of surface molecules for sorting of iNKT sublineages using scRNA-seq. (A) Uniform manifold approximation and projection (UMAP) plot of
scRNA-seq data showing distinct clusters of iNKT cell subsets: iNKT1 (blue), iNKT2 (red), and iNKT17 (green) cells. (B) Dot-plot showing the proportion of cells (dot
size) and the scaled (z score) gene expression of genes encoding for the iNKT sublineage-defining transcription factors T-Bet (Tbx21), PLZF (Zbtb16), and RORgT
(Rorc). (C) Single-cell heatmap representing the 10 most highly differentially expressed genes in thymic iNKT cell subsets. Expression for each gene is scaled (z scored)
across single cells. (D) Normalized counts of Icos, Pdcd1, and Cd4 RNA expression. (E) FACS-sorting strategy for isolation of iNKT sublineages based on surface molecules
starting from CD19–, CD8a–, CD62L–, TCRgd–, GR-1–, Ter119–, and CD24– cells. Cell purity of FACS-sorted iNKT sublineages assessed by intranuclear staining for the tran-
scription factors PLZF and RORgT. (F) Heatmap representing the 10 most highly differentially expressed genes identified in scRNA-seq analysis in bulk RNA-seq analysis
performed on sorted populations. Expression for each gene is scaled (z scored) across single rows.
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iNKT1 cells exert stronger antitumor activity than iNKT2 and
iNKT17 cells both in vitro and in vivo.

iNKT sublineages display different immune-
regulatory effects in vitro
We next analyzed the potential of iNKT sublineages to produce
cytokines. We detected the highest Ifng chromatin accessibility
at the promoter site (Figure 4A) and at putative distal regulatory
sites (supplemental Figure 5) in iNKT1 cells. We also detected
high levels of Ifng transcripts in iNKT1 cells, whereas this transcript
was virtually undetectable in iNKT2 and iNKT17 cells. Similar lev-
els of Tnf accessibility and transcripts were detectable in all 3 sub-
lineages. Regarding the Il4 locus, encoding for interleukin-4 (IL-4),
a cytokine playing a crucial role in iNKT-mediated immune-regu-
lation,4,23 iNKT2 displayed the highest chromatin accessibility at
the promoter site and the highest levels of messenger RNA

transcripts. We observed at this site enrichment for binding motifs
of transcription factors with highest accessibility in iNKT2, includ-
ing Gata3, Lef1, and Znf263. iNKT17 cells partially shared with
iNKT2 cells an increased accessibility at the Il4 locus compared
with iNKT1 cells, which expressed the lowest levels. Conversely,
chromatin accessibility and generally limited transcripts were
detectable at the IL-13 (Il13) locus in the 3 sublineages. Regarding
Th17-related cytokines, both chromatin accessibility and transcrip-
tion of Il17a and Il22 genes were restricted to iNKT17 cells.

We next tested the immune-regulatory abilities of the iNKT subli-
neages in vitro. The 3 iNKT sublineages displayed a mild but sig-
nificant inhibitory effect on CD4 Tcon proliferation (Figure 4B-C,
left panels). This effect was mainly independent from cell death
induction by iNKT cells, as iNKT2 cells (but not iNKT1 and
iNKT17 cells) induced a slight but significant reduction in CD4
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Tcon viability (supplemental Figure 6A). Interestingly, iNKT2 cells,
and to a lesser extent iNKT17 cells, inhibited CD25 and ICOS
upregulation on CD4 Tcon, whereas we observed no phenotypic
differences in CD4 Tcon cocultured with iNKT1 cells. Similarly,
coculture with iNKT2 and iNKT17 cells, but not with iNKT1 cells,
induced a significant reduction in the proportion of interferon-g
(IFN-g)–expressing CD4 Tcon (supplemental Figure 6B). Con-
versely, coculture of iNKT1 cells was associated with a slight but
significant increase in tumor necrosis factor-a (TNF-a)–expressing
CD4 Tcon (supplemental Figure 6B). Collectively, these results
show that distinct iNKT sublineages have different cytokine pro-
duction potential and immune-regulatory effects in vitro.

iNKT2 and iNKT17 cells, but not iNKT1 cells,
protect from acute murine GVHD
To assess in vivo the ability of each iNKT sublineage to protect
from acute GVHD, we used a major histocompatibility complex
mismatch murine model of acute GVHD, in which sorted FVB/N
iNKT1, iNKT2, or iNKT17 (5 3 104) cells were injected together
with luciferase-expressing FVB/N Tcon (1 3 106; Tcon/iNKT ratio
of 20:1) and TCD-BM cells (43 106) into lethally irradiated BALB/c
mice. Compared with mice that only received Tcon, mice that
received iNKT2 or iNKT17 cells displayed a significant survival
benefit (Figure 5A), whereas those that received iNKT1 cells
showed no survival benefit. In addition, weight and GVHD score
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sible ATAC-seq peaks. (B) In vitro cytotoxicity by iNKT sublineages against a-galactosylceramide (aGalCer)-loaded CD1d-transduced A20 lymphoma (A20-CD1d) cells after
24 hours of coculture (effector:target ratio of 4:1). Represented data are pooled from 3 independent experiments performed in triplicate. (C) Survival after A20-CD1d (2 3

10e4) cells intravenously injected into sublethally irradiated (4.4 Gy) wild-type BALB/c mice treated with iNKT cell subsets (53 10e4 cells; iNKT1, blue; iNKT2, red; iNKT17,
green) or untreated (black). Results are pooled from 2 independent experiments with a total of 10 mice per group. Survival curves were plotted by using the Kaplan-Meier
method and compared by using a log-rank test. P values are indicated when significant.

DIFFERENT FUNCTIONS OF iNKT CELL SUBSETS blood® 9 SEPTEMBER 2021 | VOLUME 138, NUMBER 10 863

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/138/10/858/1821500/bloodbld2021010887.pdf by guest on 07 M

ay 2024



were also improved in the groups that received iNKT2 or iNKT17
cells compared with mice that received iNKT1 cells. Importantly,
transfer of as few as 13 104 (Tcon/iNKT ratio of 100:1) iNKT2 cells,
but not iNKT1 or iNKT17 cells, were able to significantly suppress
GVHD (Figure 5B). No significant differences were observed in cell
proliferation, activation marker expression (ICOS and CD25), or
cytokine production (TNF-a and IFN-g) in CD4 and CD8 Tcon cells
recovered from mice transplanted in the presence or absence of
different iNKT sublineages (data not shown). Similarly, we did

not observe any significant difference in serum levels of proinflam-
matory cytokines, including IFN-g, TNF-a, IL-2, IL-6, and IL-18 (Fig-
ure 5C). Conversely, iNKT1 treatment was associated with a
significant reduction in the Th2-like cytokines IL-5 and IL-13. These
results indicate a different balance between Th1 and Th2 cytokines
during GVHD depending on the iNKT sublineage administered.
Collectively, these results indicate that iNKT2, and to a lesser
extent iNKT17, but not iNKT1, exerted significant immune-
regulatory function in a murine model of acute GVHD.
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Transcriptomic analysis of Tcon during GVHD
reveals differential immune-modulation induced by
iNKT sublineages
To gain further insights into the functional heterogeneity of
iNKT sublineages in GVHD prevention, we performed RNA-
seq analysis on CD4 and CD8 Tcon recovered at day 7 after
HCT with or without iNKT sublineages. Principal component
analysis clearly segregated CD4 and CD8 Tcon recovered
from recipients treated with iNKT cells from untreated mice
along PC1 (Figure 6A-B). iNKT cell treatment was associated
with higher transcription of genes encoding the immunomodu-
latory cytokine receptor Il27ra, as well as of the transcription

factor Stat, and reduced transcription of genes encoding
Ctla4 and Il18r1, as well as chemokine receptors such as
Ccc9 in CD4 Tcon and Ccr2 in CD8 Tcon cells. Differential
impact of different iNKT sublineages on Tcon transcriptome
was revealed by principal component 2 that explained 14%
and 21% of the variance in CD4 and CD8 Tcon, respectively.
iNKT1-treated CD4 (Figure 6A,C) and CD8 (Figure 6B,D)
Tcon segregated separately from iNKT2- and iNKT17-treated
cells that were partially overlapping, especially for CD8 T cells.
Gene Set Enrichment Analysis for Hallmark gene sets revealed
that iNKT2 and iNKT17 cells, but not iNKT1 cells, induced a sig-
nificant reduction in G2M checkpoint and mitotic spindle gene
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sets in CD4 Tcon, whereas only iNKT2 cells suppressed themitotic
spindle gene sets in CD8 Tcon (supplemental Figure 7A-B).

Interestingly, iNKT1 cells, but not iNKT2 or iNKT17 cells, induced
a downregulation of genes of the oxidative phosphorylation set
both in CD4 and CD8 Tcon. iNKT2 and iNKT17 cells induced fur-
ther upregulation of Il27ra and further downregulation of Il18r1 in
Tcon compared with Tcon treated with iNKT1 cells (Figure 6C-D).
In addition, iNKT2 and iNKT17 cells induced the downregulation
of genes encoding cytokine receptors and integrins involved in
Tcon migration to target tissues, including Itgam in CD4 and
Ccr2, and Itga4 and Itga1 in CD8 Tcon. Importantly, iNKT subline-
age administration did not prevent the upregulation of gene sets
involved in T-cell effector responses, namely Th1 differentiation of
CD4 T cells (supplemental Figure 7C-D) and cytotoxicity of CD8

T cells (supplemental Figure 7E-F). Collectively, these results indi-
cate that distinct iNKT sublineages differentially modulate Tcon
transcriptome.

iNKT2 and iNKT17 cells, but not iNKT1 cells,
reduce intestinal tissue damage during murine
acute GVHD
We next aimed to confirm at the protein level the differential
modulation of molecules by different iNKT sublineages. We first
focused our attention on the gene encoding for IL-18Ra, a mole-
cule essential for IL-18 signaling and for sustaining IFN-g transcrip-
tion crucial in GVHD.28 iNKT2 and iNKT17 cells, but not iNKT1
cells, significantly suppressed IL-18Ra expression at CD8 and
evenmore at the CD4 Tcon cell surface (Figure 7A). Next, we ana-
lyzed the surface expression of CD49d or integrin a4, encoded by
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the Itgam gene and necessary for the constitution of the a4b1
integrin, recently reported to play a crucial role in T-cell migration
to GVHD-target tissues.29 As shown in Figure 7B, iNKT2 and
iNKT17 cells, but not iNKT1 cells, induced a significant downregu-
lation in CD49d expression in CD4 Tcon, with iNKT2 cells also hav-
ing a significant impact on CD49d levels on CD8 Tcon cells.

To assess whether the iNKT17 cell immune-modulation observed
in mice receiving iNKT2 and iNKT17 cells was associated with
reduced damage at GVHD target sites, we performed a histo-
pathologic analysis of the small intestine and colon at day 7 after
transplantation.We found that recipients receiving iNKT2 and to a
lesser extent iNKT17 cells displayed reduced composite GVHD
pathology scores compared with recipients of conventional T cells

alone, whereas iNKT1 cells did not display any significant effect
(Figure 7C). Collectively, these results indicate that iNKT2 and
iNKT17 cells, but not iNKT1 cells, suppress pathways involved in
GVHD pathophysiology, including IL-18R and CD49d expression,
and reduce intestinal tissue damage in a murine model of acute
GVHD.

Discussion
iNKT cells are a cell subset with pleiotropic functions ranging from
cytotoxic effects to immune-regulatory activity. The demonstra-
tion of the existence of iNKT sublineages expressing distinct tran-
scription factors and cytokines12 provided a potential explanation
for iNKT cell pleiotropic activity. However, our knowledge of the
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functions of iNKT sublineages has been limited to observational
studies,30-33 and formal demonstration of their distinct functional
roles has been missing. The current study shows, for the first
time, that distinct iNKT cell sublineages display differential effec-
tor and immune-regulatory functions.

Our analyses of the potential to produce cytotoxic molecules, as
well as the in vitro and in vivo tumormodels, point to a preferential
cytotoxic activity by iNKT1 cells comparedwith iNKT2 and iNKT17
cells. These results are in agreement with previous studies report-
ing the unique ability of iNKT1 cells to produce granzyme B upon
short-term stimulation.34 Moreover, after establishing an in vivo
B-cell lymphoma model allowing for the analysis of the antitumor
immunomodulatory effect of iNKT cells, we showed that iNKT1
cells display also the highest antitumor potential in vivo (Figure 3C).

iNKT cells have been reported to regulate GVHD through IL-4
production4,35 and cytotoxic activity against recipient antigen-
presenting cells.8 We found that iNKT2 and iNKT17 cells, but
not iNKT1 cells, are able to mitigate GVHD induced by allogeneic
Tcon. According to our genomic analysis, iNKT2, and to a lesser
extent iNKT17, displayed higher chromatin accessibility at the Il4
promoter site and detectable messenger RNA transcripts ex vivo,
pointing to both cell subsets as potential IL-4 producers. These
data are in agreement with the report fromGeorgiev et al,34 which
showed that iNKT2 and iNKT17 produce IL-4 at the protein level.

We can therefore speculate that IL-4 production ability by iNKT2
and iNKT17 is a key mechanism in their GVHD suppressive activ-
ity, although this hypothesis could not be experimentally tested as
IL-4 signaling is necessary for physiological development of iNKT
cell sublineages (Jung-Hyun Park, National Cancer Institute, oral
presentation, 28 September 2016), and IL-42/2 cells therefore
cannot be used for this purpose. Conversely, despite their higher
cytotoxic potential, iNKT1 cells did not display any significant
impact on GVHD progression. This scenario suggests that den-
dritic cell cytotoxicity might not be amajormechanism of suppres-
sion in our mouse model, although the paucity of dendritic cells
after transplantation did not allow us to experimentally assess
this hypothesis.

Our transcriptomic analysis points to some gene sets modulated
by all iNKT subsets, including upregulation of the immunomodu-
latory cytokine receptor Il27ra as well as downregulation of Ctla4.
At the same time, the analysis reveals the preferential modulation
of cell cycle genes by iNKT2 and iNKT17 cells. Moreover, some
pathways important for GVHD pathogenesis such as the IL-18/
IL-18Ra axis, necessary for IFN-g transcription induction andmain-
tenance inGVHD,28 and CD49d/integrin a4 expression, crucial for
T-cell migration to GVHD-target tissues,29 were preferentially
modulated by the administration of iNKT2 and iNKT17 cells. Inter-
estingly, iNKT1 cells seemed to downregulate Tcon gene sets
involved in oxidative phosphorylation, suggesting the induction
of a metabolic switch toward glycolysis, a proinflammatory meta-
bolic state in GVHD.36,37 Collectively, our data confirm at the tran-
scriptomic level that distinct iNKT sublineages differentially affect
Tcon during GVHD and increase our knowledge about mecha-
nisms involved in GVHD prevention by iNKT cells.

Finally, differences in iNKT sublineage tissuemigration might con-
tribute to the differences in GVHD suppression. It is well estab-
lished that iNKT sublineages have tissue-specific distribution at

steady state,14 and whether this might influence their immuno-
therapeutic potential remains to be investigated.

Recently, Erkers et al38 reported an extensive characterization of
human iNKT heterogeneity and identified a CD4–CD941 popula-
tion with iNKT1-like properties and a CD41 population producing
higher levels of IL-4. Due to the paucity of iNKT cells in human
peripheral blood, current clinical trials using iNKT cells involve
in vitro expansion protocols (#NCT03605953). The demonstration
that iNKT2 and to a lesser extent iNKT17 cells, but not iNKT1
cells, protect from murine GVHD suggest that in vitro expansion
protocols allowing the preservation or acquisition of the
IL-4–producing, Th2-like phenotype should be preferred for
GVHD suppression over protocols inducing a more cytotoxic
cell profile that would bemore suitable for antitumor applications.
We provide the first complete chromatin accessibility atlas of all 3
iNKT sublineages associated with paired transcriptomic analysis.
We believe that this transcriptomic and epigenomic atlas of
murine iNKT sublineages will be a valuable resource to guide
the development of iNKT cellular products for immunotherapy.

In summary, this study provides a formal demonstration of differ-
ential functions exerted by different iNKT sublineages. Our find-
ings have important implications to orient clinical translation of
iNKT-based therapies.
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