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The myelodysplastic syndromes (MDSs) is a group of blood
cancers that originate in the hematopoietic stem cell compart-
ment.1 Therapy-related MDS emerging after chemotherapy
treatment of myeloma has been well described.2,3 This condition
is considered to be associated with mutations caused by DNA
damage induced by cytostatic drugs or by positive selection of
premalignant clones.4-6 Epidemiological data from registries,
however, also demonstrate an increased risk of development of
MDS in patients with monoclonal gammopathy of undetermined
significance (MGUS) who have not been treated, indicating
a common biological pathway for the emergence of the 2
diseases.7,8 The association between MDS and clonal plasma-
cell disorders (PCDs; ie, multiple myeloma [MM] and MGUS) is
also supported by several case reports and series.9-13 Recent
data have demonstrated that a proportion of patients with MM
exhibit dysplastic features in the myeloid cell lineages at di-
agnosis and that these are associated with an inferior progno-
sis.14 It has been shown that T-cell lymphoma shares some of its
recurrent mutations with MDS and the diseases may appear
simultaneously, carrying the same mutations.15-17 In contrast,
T-cell clones with the large granular lymphocyte phenotype
commonly seen in MDS, seem not to share a comment genetic
background.12,18,19 Similarly, we have reported that mature T cells
are not part of theMDS clone.20 Several biologicalmodels ofMDS
and PCD have been proposed: one suggests a genetic lesion in
the primitive stem cell that is then propagated to both myeloid
cells and plasma cells. An alternative model suggests distur-
bances in the bone marrow microenvironment facilitating the
emergence of independent clones that do not share a common
genetic lesion.21 We report herein the clinical characteristics of
patients with cooccurring MDS and PCD and the genetic profiles
of isolated myeloid and plasma cell compartments.

Consecutive patients with MDS or mixed myelodysplastic syn-
drome/myeloproliferative neoplasms (MDS/MPN) and PCD di-
agnosed at the Karolinska University Hospital from 2008 through
2019 were included. Patients with therapy-related MDS sec-
ondary to MM treatment were excluded. Clinical data were
obtained from patient records. All bone marrow aspirates
and biopsy specimens were reviewed centrally. The study was
approved by the local ethics committee. Research was conducted
in accordance with the Declaration of Helsinki. Samples for DNA
sequencing were collected at the time of MDS diagnosis or after
MDS diagnosis, but before any disease-modifying treatment of
MDS or PCD had been given. Both diseases were present at the
time of sampling in all cases.

We included 27 patients with MDS and MM (n 5 6), MGUS
(n5 20), or plasmocytoma (n5 1) (Table 1). Most of theMDS and
MDS/MPN subgroups were represented. Lower-risk MDS domi-
nated the cohort, with only 3 patients belonging to the revised
International Prognostic Scoring System (IPSS-R) high- and very-
high-risk groups. Two of the patients with MM had smoldering
MM. The M component of type IgG, IgA, and free light chain
was seen in 15, 7, and 4 patients, respectively. In 5 patients, the
diagnosis of MGUS preceded the diagnosis of MDS (median
40 months); in 1 patient, the MDS diagnosis preceded PCD by
26 months; and in 21 patients, MDS and PCD were diagnosed at
the same time. Five of the patients with MM were diagnosed
with MDS simultaneously, whereas the MDS preceded MM in
1 patient.

When characterized using targeted gene sequencing (n 5 11)
and whole-exome sequencing (WES; n 5 13 prepared from
myeloid cells; see supplemental Methods, available on the
Blood Web site, and the description that follows), the most
common mutations observed were TET2 (n 5 9), SRSF2 (n 5 6),
and SF3B1 (n 5 4; supplemental Figure 2). Median estimated
survival after the MDS diagnosis was established was 44 months,
with a median follow-up of 46 months (supplemental Figure 3).
MDS-specific therapy consisted of erythropoietin (n 5 15; re-
sponse, 8), azacitidine (n 5 4; marrow complete remission [CR],
2; stable disease [SD], 1; progressive disease [PD], 1). Myeloma-
specific therapy consisted of bortezomib (n5 3; partial remission
[PR], 1; CR/very good PR, 2) and lenalidomide (n5 3; SD, 1; PD,
1; data not available, 1). One patient with MM received high-
dose melphalan and remained in CR for 30 months. One patient
with del(5q) MDS and MM underwent allogeneic stem cell
transplantation and was alive without relapse 9 months after
transplantation. The survival was similar to what could be
expected from the IPSS-R risk profile of the cohort.22

To perform WES on purified cells containing the MDS and PCD
clone, we used fluorescence-activated cell sorting to purify
myeloid (CD331/CD192/CD32), plasma (CD3811/CD45dim/
CD32/CD192), and T cells (CD451/CD31/CD562) from vital
frozen cells from 12 patients (supplemental Methods). WES li-
braries were generated from the xGen Exome Research Panel
(Integrated DNA Technologies; supplemental Methods). Mu-
tation calling was performed with Genomon2 pipeline v2.6, as
previously described,23 using the paired sample mode where
CD31 T cells from the same marrow specimen were used as
germline controls (supplemental Methods). In 3 patients, the
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DNA content of the plasma cell population was insufficient, and
hence complete sequencing of all 3 cell populations was suc-
cessfully performed in 9 patients. We observed a total of 194 and
445 mutations in the myeloid and plasma cell compartment,
respectively (supplemental Table 1; supplemental Excel file).
Thirty-five mutations found in the myeloid compartment were
recurrent MDS mutations. We identified 5 mutations that could
be traced in both the myeloid and plasma cell compartments
(Figure 1). In all of these cases, the variant allele frequency (VAF)
was significantly lower than the largest VAFs of other mutations
in both compartments and therefore could not be considered to
be potential founder mutations. Moreover, the copy number
variation profiles of the myeloid and plasma cell compartments,

as illustrated in supplemental Figure 4, did not overlap. A detailed
list of all WES variants is available in the supplemental Excel file.

In summary, we did not find evidence of candidate founder
mutations resulting in the emergence of both MDS and PCD.
The genetic profiles of the sorted cell populations are funda-
mentally different, which argues that our sorting strategy suc-
cessfully separated the different cell compartments. The few
overlapping mutations observed have lower VAFs than the
private mutations, and hence they cannot be considered
founding mutations for both the MDSs and PCDs. Possible
explanations for the overlapping mutations are sequencing er-
rors or cell contamination during the sorting procedure. It should
be noted, however, that because we have sequenced only
exomes, we cannot exclude the possibility that there are com-
mon genetic events outside the exomes, something that could
be investigated by whole-genome sequencing. Further, be-
cause we used T cells as reference DNA (germline control), we
cannot rule out the possibility that a potential founding mutation
is also present in the T cells and therefore would be filtered out.
We have checked our WES data for common variants in genes
known to be associated with clonal hematopoiesis but have not
found evidence of any common drivingmutations in these genes
(data not shown). Hence, we believe that a common founder
mutation including T cells is unlikely; to rule out this scenario, our
experiment would have to be repeated using nonhematopoietic
cells (eg, skin cells) as the germline control. The development of
the 2 different diseases may be the result of a disturbed bone

Table 1. Patient characteristics

Values

Sex, male/female, n (%) 20/7 (74/26)

Age at diagnosis, median (range) 76 (52-90)

MDS characteristics
Treatment related, n 4
WHO classification, n

MDS-SLD 3
MDS-MLD 9
CMML-0 1
CMML-1 1
MDS with isolated del(5q) 2
MDS-RS-SLD 3
MDS-RS-MLD 1
MDS-EB1 2
MDS-EB2 2
MDS-U 2
MDS/MPN-U 1

IPSS cytogenetic risk group, n
Very good 0
Good 19
Intermediate 5
Poor 1
Very poor 1

IPSS-R, n
Very low 5
Low 15
Intermediate 3
High 2
Very high 1

Cellularity, median % (range) 60 (20-100)
Marrow blasts, median % (range) 1.8 (0.2-15)
Fibrosis, grade 1 or higher 7
Hemoglobin, g/L, median (range) 103 (83-138)
Absolute neutrophil count 3109, median

(range)
2.7 (0.5-7.8)

Platelets 3109/L, median (range) 161 (13-439)
Transfusion dependent Y/N, n 4/23
MDS treatment, n

ESA 15
Hypomethylating agents 3
Lenalidomide 1
Allogeneic stem cell transplantation 1

Table 1. (continued)

Values

PCD characteristics
MGUS, n 20

IgG 12
IgA 5
FLC 3
Plasma cells (%), median, range 3 (0.6-6.6)
M-component level at diagnosis, median g/L

(range)
7 (0.5-23)

Plasmocytoma, n 1
Myeloma, n 6

ISS
Stage I 0
Stage II 1
Stage III 2
Data not available 1

Smoldering myeloma 2
IgG 3
IgA 2
FLC 1
Plasma cells %, median (range) 17 (10.2-39.8)
Beta2 microglobulin, median (range) 3 (1.9-8.25)
M-component level at diagnosis, median g/L

(range)
28 (10-87)

Myeloma specific therapy, n
Bortezomib 4

CMML, chronic myelomonocytic leukemia; EB excess of blasts; ESA, erythropoietin stimulating
agent; FLC, free light chain; ISS, International Staging System;MLD,multiple-lineagedysplasia;
PCD plasma cell disorder; RS, ring sideroblast, SLD single-lineage dysplasia.
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marrow niche that facilitates the emergence of both myeloid and
plasma cell clones. A characterization of the bone marrow niche
in these patients would be highly relevant.
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Figure 1. Estimated clone size of shared and private mutations observed in whole-exome sequencing. Putative driver mutations were variants reported in COSMIC or are
protein truncating variants. No drivers were seen in shared mutations. Vertical axis shows copy number variation–adjusted clone size of the variants. Mutations in the copy
number–altered region are marked with asterisks. COSMIC, Catalogue of Somatic Mutations in Cancer.
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von Willebrand factor (VWF) monomers dimerize through their
C-terminal domain in the endoplasmic reticulum (ER). The un-
usual process of disulfide bond formation between N-terminal

D9D3 assemblies (Figure 1) of neighboring dimers during tubule
formation in the Golgi apparatus then forms the ultralong, tail-to-
tail, head-to-head concatemers required for VWF activation in
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