
Regular Article

HEMATOPOIESIS AND STEM CELLS

UTX maintains the functional integrity of the murine
hematopoietic system by globally regulating
aging-associated genes
Yasuyuki Sera,1,* Yuichiro Nakata,2,* Takeshi Ueda,3,* Norimasa Yamasaki,4 Shuhei Koide,5 Hiroshi Kobayashi,6 Ken-ichiro Ikeda,4

Kohei Kobatake,4 Masayuki Iwasaki,1 Hideaki Oda,7 Linda Wolff,8 Akinori Kanai,9 Akiko Nagamachi,9 Toshiya Inaba,9 Yusuke Sotomaru,10

Tatsuo Ichinohe,11 Miho Koizumi,1 Yoshihiko Miyakawa,1 Zen-ichiro Honda,12 Atsushi Iwama,5 Toshio Suda,13 Keiyo Takubo,6

and Hiroaki Honda1

1Human Disease Models, Institute of Laboratory Animals, Tokyo Women’s Medical University, Tokyo, Japan; 2Chromatin Dynamics in Stem Cells and Cancer
Laboratory, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL; 3Department of Biochemistry, Faculty of Medicine, Kindai University,
Osakasayama, Japan; 4Department of Disease Models, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; 5Division of
Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo,
Japan; 6Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; 7Department of Pathology, Tokyo
Women’s Medical University, Tokyo, Japan; 8Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD; 9Department
ofMolecular Oncology, Research Institute for Radiation Biology andMedicine, 10Natural Science Center for Basic Research andDevelopment, and 11Department of
Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan; 12Health Care Center and Graduate
School of Humanities and Sciences, Institute of Environmental Science for Human Life, Ochanomizu University, Tokyo, Japan; and 13Cancer Science Institute of
Singapore, National University of Singapore Center for Translational Medicine, Singapore

KEY PO INT S

l Utx deficiency
genetically
compromises various
metabolic and
signaling pathways
and phenotypically
induces
hematopoietic aging.

l UTX maintains
hematopoietic stem
cell function via both
demethylase-
dependent and
-independent
epigenetic
programming.

Epigenetic regulation is essential for the maintenance of the hematopoietic system, and its
deregulation is implicated in hematopoietic disorders. In this study, UTX, a demethylase for
lysine 27 on histone H3 (H3K27) and a component of COMPASS-like and SWI/SNF com-
plexes, played an essential role in the hematopoietic system by globally regulating aging-
associated genes. Utx-deficient (UtxD/D) mice exhibited myeloid skewing with dysplasia,
extramedullary hematopoiesis, impaired hematopoietic reconstituting ability, and in-
creased susceptibility to leukemia, which are the hallmarks of hematopoietic aging. RNA-
sequencing (RNA-seq) analysis revealed thatUtx deficiency converted the gene expression
profiles of young hematopoietic stem-progenitor cells (HSPCs) to those of aged HSPCs.
Utx expression in hematopoietic stem cells declined with age, and UtxD/D HSPCs exhibited
increased expression of an aging-associated marker, accumulation of reactive oxygen
species, and impaired repair of DNA double-strand breaks. Pathway and chromatin im-
munoprecipitation analyses coupled with RNA-seq data indicated that UTX contributed to
hematopoietic homeostasis mainly by maintaining the expression of genes downregulated
with aging via demethylase-dependent and -independent epigenetic programming. Of
note, comparison of pathway changes in UtxD/D HSPCs, aged muscle stem cells, aged fi-

broblasts, and aged induced neurons showed substantial overlap, strongly suggesting common aging mechanisms
among different tissue stem cells. (Blood. 2021;137(7):908-922)

Introduction
Covalent modifications of histone tails, such as methylation,
acetylation, and ubiquitination play essential roles in appropriate
cell fate decisions. Trimethylated H3K27 (H3K27me3) is regarded
as a repressive histone mark that functions in gene silencing.1

H3K27 methylation is mediated by polycomb repressive complex
2 (PRC2), which comprises the catalytic subunit EZH2 and at least
2 noncatalytic subunits, EED and SUZ12.2 On the other hand,
demethylation of H3K27 is regulated by 2 distinct enzymes:
ubiquitously transcribed tetratricopeptide repeat, chromosome X

(UTX), also known as KDM6A, and Jumonji-C (JmjC) domain-
containing protein-3 (JMJD3), also known as KDM6B,3,4 both of
which contain the JmjC domain, which exerts the demethylase
activity.3,4 However, unlike JMJD3, UTX possesses the tetra-
tricopeptide repeat (TPR) domain that mediates protein-protein in-
teractions and functions as a component of COMPASS (complex of
proteins associated with Set 1)-like and SWI/SNF complexes.5-8

UTX is an X-chromosome–specific enzyme, and the male coun-
terpart is on the Y chromosome, named ubiquitously transcribed
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tetratricopeptide repeat gene, Y chromosome (UTY), also known
as KDM6C.3,4 UTX and UTY have a high structural similarity, in-
cluding in the TPR and JmjC domains4; however, UTY possesses
very low demethylase activity.4,9 Knockout studies for UTX
demonstrated that Utx-deficient female mice died in utero but
Utx-deficient male mice possessing the Uty gene survived em-
bryogenesis, indicating that UTY can compensate for the function
of UTX during development.10,11

UTX contributes to various biological processes: it regulates
body patterning by binding to Hoxb1 promoter,3,12 promotes
myogenesis by demethylating muscle-specific genes,13 de-
termines cell fate by controlling the retinoblastoma pathway,14

supports cardiac development during embryogenesis,15 reg-
ulates hematopoietic cell migration,16 plays essential roles in
embryonic stem cell differentiation,17,18 and coordinates ste-
roid hormone-mediated autophagy.19 In addition, UTX plays
demethylase-independent roles in T-box factor–mediated
gene expression, mesoderm differentiation of embryonic stem
cells, and prenatal development.8,10,20-22

UTX dysfunction has been identified in human diseases. Somatic
inactivating mutations of Utx were identified in various human
malignancies.23-30 In addition, functional loss of Utxwas reported
to contribute to drug resistance and disease relapse.31,32 These
findings indicated that UTX functions as a cell-fate determinant,
as well as a tumor suppressor; however, its role(s) in the he-
matopoietic system remains to be fully understood. In this study,
by generating and analyzing Utx-deficient mice, we found that
UTX plays essential roles in the functional integrity of hemato-
poietic stem-progenitor cells (HSPCs) by globally regulating
aging-associated genes.

Methods
Mice
The procedures for construction of the targeting vector and
generation ofUtx conditional knockout mice are described in the
supplemental Information, available on the Blood Web site. All
the animal experiments were performed in accordance with the
recommendations in the Guide for the Care and Use of Labo-
ratory Animals of Hiroshima University Animal Research Com-
mittee (permission no. 25-107) and Tokyo Women’s Medical
University (permission no. GE 19-066).

Statistics
Mouse survival curves were constructed by using the Kaplan–
Meier methodology and compared by using the log-rank test,
using GraphPad Prism software. Other statistical analyses were
performed using the Student t test, unless otherwise stated.

A complete and detailed description of the methods is provided
in the supplemental Methods.

Results
Acquired deficiency of UTX-induced abnormal
hematopoietic parameters with dysplasia
To conditionally abrogate UTX function, we generated mice in
which exons 11 and 12 of the Utx gene were flanked by 2 loxP
sites and crossed them with tamoxifen-inducible ERT2Cre1 mice

(supplemental Figure 1A). Utx is an X-chromosome–specific gene
with amale counterpart,Uty; hence, the results of crossingwere sex
dependent, producing Utxflox/flox, ERT2Cre1 females and Utxflox/Uty,
ERT2Cre1males. Quantitative polymerase chain reaction (PCR) and
western blot analysis of bone marrow (BM) cells showed that, in
tamoxifen-treated females, Utx mRNA and UTX protein were al-
most completely absent in Utxflox/flox, ERT2Cre1 (UtxD/D) mice
compared with Utxflox/flox, ERT2Cre– (Utx1/1) mice, whereas in
tamoxifen-treated males, Uty messenger RNA and UTY protein
were comparable in Utxflox/Uty, ERT2Cre– (Utx1/Uty) and Utxflox/Uty,
ERT2Cre1 (UtxD/Uty) mice (supplemental Figure 1B; primer se-
quences for quantitative PCR are listed in supplemental Table 1). In
addition, immunofluorescent staining of long-term hematopoi-
etic stem cells (LT-HSCs) [for surface markers of hematopoietic
stem-progenitor cell (HSPC) subfractions, see supplemental Ta-
ble 2] of Utx1/1, Utx1/D, and UtxD/D females and of Utx1/Uty and
UtxD/Uty males exhibited graded and significant increases in
H3K27me3 levels, along with Utx deficiency, confirming that UTX
functions as a demethylase for H3K27 in primitive HSCs (supple-
mental Figure 1C).

Then, we analyzed hematopoietic parameters in the peripheral
blood (PB), BM, and spleen in Utx1/1, Utx1/D, and UtxD/D females
and also in Utx1/Uty and UtxD/Uty males. Although no obvious
changes were observed in Utx1/1 and Utx1/D mice, UtxD/D mice
exhibited a significant increase in white blood cell (WBC) count,
mainly of myeloid-lineage (Mac11). A significant decrease was
noted in platelets in the PB (Figure 1A, top); significant increases
in LT-HSCs, short-term HSCs (ST-HSCs), and Mac11 cells and
significant decreases in T-lineage (Thy1.21) and erythroid-
lineage (Ter1191) cells in the BM (Figure 1A, middle); sig-
nificant increases in LSK cells (LSKs), LT-HSCs, common
myeloid progenitor cells, granulocyte-monocyte progenitor
cells, and Mac11 cells and a significant decrease in Thy1.21

cells in the spleen (Figure 1A, bottom). Compared with UtxD/D

mice, the changes in UtxD/Uty mice were less evident, showing
an increase in WBC count in the PB, an increase in common
myeloid progenitor cells, and a decrease in Thy1.21 cells in
the BM, and increases in LT-HSCs, granulocyte-monocyte
progenitor cells, and Mac11 cells in the spleen (supplemen-
tal Figure 2A).

In addition, morphological abnormalities were observed in UtxD/D

mice (Figure 1B), which included WBCs with abnormal nuclei,
including pseudo Pelger-Huët anomalies (Figure 1B1-2), neu-
trophils with hypersegmentation (Figure 1B3), giant platelets
(Figure 1B4), erythrocytes with Howell-Jolly bodies (Figure 1B5),
apoptotic cells (Figure 1B6), myeloid progenitor cells with ab-
normal nuclei (Figure 1B7,9-10), and micromegakaryocytes
(Figure 1B8-9). These results indicate that acquired deficiency of
UTX induces abnormal hematopoietic parameters with trilineage
dysplasia, reminiscent of human myelodysplastic syndrome
(MDS), as previously described.16,33,34

Extramedullary hematopoiesis in UtxD/D mice
Macroscopically, the femurs of UtxD/D mice were pale and
the spleens were enlarged, compared with those of Utx1/1

mice (supplemental Figure 3A, left). Pathological analyses
revealed that the UtxD/D BM contained markedly reduced
erythroid cells and megakaryocytes and the UtxD/D spleen
contained an increased number of myeloid cells and mega-
karyocytes (supplemental Figure 3A, right). These phenotypes
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are characteristic of extramedullary hematopoiesis and suggest
the transition of HSPCs from the BM to the spleen through the
PB. To address this possibility, we subjected HSPCs in the PB
to flow cytometry and colony formation assays. The results
exhibited significant increases in c-kit1 and LSK cells in the

UtxD/D PB (supplemental Figure 3B), which generated a con-
siderable number of trilineage hematopoietic cell colonies
containing dysplastic cells, as observed in theUtxD/D PB and BM
(supplemental Figure 3C-D), indicating circulating HSPCs in
UtxD/D mice.
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Figure 1. Analysis of hematopoietic parameters and morphological changes in Utx-deficient mice. (A) Analysis of hematopoietic parameters in the PB (top), BM (middle),
and spleen (bottom) of Utx1/1, Utx1/D, and UtxD/D female mice. Hgb: hemoglobin concentration, Plt: platelet number. *P , .05; **P , .01; ***P , .001; comparison of Utx1/1,
Utx1/D, and UtxD/D mice, assessed with a 1-way analysis of variance followed by Tukey’s test. (B) Morphological changes of hematopoietic cells in the PB (panels 1-6) and BM
(panels 7-10) of UtxD/D mice. WBCs with abnormal nuclei (panels 1-3), including Pseudo Pelger-Huët anomalies (arrows) and hypersegmentation (arrowhead). A giant platelet
(panel 4, arrowhead). An erythrocyte with a Howell-Jolly body (panel 5, arrow). Apoptotic cells (panel 6, arrows). Myeloid progenitor cells with abnormal nuclei and micro-
megakaryocytes (panels 7-10, arrows and arrowheads, respectively).
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Impaired reconstitution ability of UtxD/D HSPCs
Analysis of Utx and Uty expression in HSPC subfractions showed
similar patterns, being highest in the LT-HSC subfraction and
decreasing as the cells differentiated (Figure 2A; supplemental
Figure 2B). To investigate the repopulating ability of Utx1/1 and
UtxD/D LSKs, competitive repopulation assays were performed
(Figure 2B, top). In the first bone marrow transplantation (BMT),
the total PB chimerism of UtxD/D cells was similar to that of Utx1/1

cells at 1 month, but became significantly lower at 2 and
3 months (Figure 2B, middle left). In the second BMT, the re-
duced PB chimerism of UtxD/D cells was more pronounced, and
almost no contribution was detected (Figure 2B, middle right).
Analysis of the lineage-positive cells in the first BMT showed that
the percentage of UtxD/D cells was significantly reduced in all
myeloid, B-cell (B2201), and T-cell (Thy1.21) lineages (Figure 2B,
bottom), indicating the severely impaired repopulation potential
of UtxD/D HSPCs. We also performed a rescue experiment in
which Utx1/1 LSKs were transduced with an empty vector (EV)
(Utx1/11EV),UtxD/D cells with empty vector (UtxD/D1EV), orUtxD/D

cells with Utx-expressing vector (UtxD/D1Utx) were subjected to
competitive reconstitution assays. Although the results were not
statistically significant, UtxD/D1Utx cells exhibited an enhanced
engraftment capacity compared with UtxD/D1EV cells, indicating
that the impaired repopulating ability of UtxD/D HSPCs was a
direct effect of Utx deficiency (Figure 2C).

The efficiency of BM reconstitution correlates strongly with the
homing ability of HSPCs. Thus, we performed homing assays
and also measured the expression of CXCR4, a key chemokine
receptor for HSC homing.35 Consistent with the results of a
previous report,16 UtxD/D LSKs exhibited a significantly reduced
homing ability, despite comparable expression of Cxcr4
(Figure 2D).

Increased leukemia susceptibility of UtxD/D mice
Utx is frequently mutated in human cancers23,28 and is a tumor
suppressor in mice.33,34,36 To investigate the effect of UTX de-
ficiency on leukemogenesis, we performed retrovirus-insertional
mutagenesis using MOL4070A, a retrovirus capable of inducing
leukemia.37 Utx-expressing (Utx1/1 and Utx1/Uty) and Utx-deficient
(UtxD/D and UtxD/Uty) mice were infected with MOL4070A as
neonates, and their hematopoietic parameters were analyzed
(Figure 3A, top).

During a 250-day observation period, although no disease was
observed inUtx1/11MOL4070A andUtx1/Uty1MOL4070Amice,
all the UtxD/D1MOL4070A and UtxD/Uty1MOL4070A littermates
developed leukemia; the former died within 150 days and the
latter within 250 days (Figure 3A, middle; supplemental Table 3).
To determine the lineage of the leukemias, enlarged spleens
containing infiltrating leukemic cells, were subjected to flow
cytometric and gene rearrangement analyses. Leukemias were
mostly acute myeloid leukemia (AML) or T-cell acute lympho-
blastic leukemia (T-ALL), along with B-cell ALL in a few cases
(Figure 3A, bottom; supplemental Table 3), closely corre-
sponding to the phenotypes of human leukemias with UTX
deficiency.23,28

Next, we investigated virus integration sites by inverse PCR.37 Six
common integration sites (Sox4, Mecom, Osbpl1a, Notch1,
Ikaros, and Tax1bp1) were identified (supplemental Figure 4;
supplemental Table 4), most of which were reported as leukemia-

associated genes.38-40 Because Sox4 was highly expressed in tu-
mors (supplemental Figure 4) and reported as a cooperative gene
in leukemia development,41,42 we examined the cooperative role of
Sox4 overexpression with Utx deficiency (Figure 3B, top). Sox4-
expressing UtxD/D (UtxD/D1Sox4) cells generated significantly in-
creased colony-forming and replating abilities (Figure 3B, second
row) and developed leukemia, classified as AML, at significantly
higher frequency than Sox4-expressing Utx1/1 (Utx1/11Sox4) cells
(Figure 3B, third row and bottom left). RNA-sequencing (RNA-sea)
and gene set enrichment analysis (GSEA) identified the most
positively enriched pathway in UtxD/D1Sox4 cells as “Hedgehog
signaling” (Figure 3B, bottom right), which was reported to con-
tribute to hematopoietic malignancies.43 Utx deficiency rendered
hematopoietic cells susceptible to leukemia and additional gene
alterations, such as Sox4 overexpression, and promoted acute
transformation, possibly through activation of aberrant signal(s).

UtxD/D LSKs exhibited the molecular signature of
aged HSPCs
To clarify the molecular mechanisms underlying the Utx
deficiency–induced hematopoietic abnormalities, we analyzed
the gene expression profiles of Utx1/1 and UtxD/D LSKs. GSEA
indicated that the most positively enriched gene set in UtxD/D

LSKs was “Oxidative phosphorylation” characterized by the
upregulation of ATPases, NADH dehydrogenases, and cyto-
chrome c oxidases (Figure 4A, left; supplemental Figure 5A, left;
supplemental Table 5). In contrast, the most negatively enriched
gene set was “TGF-b signaling,” with downregulation of TGF-b
receptors, Activin receptors, and Smad proteins (Figure 4A,
right; supplemental Figure 5A, right; supplemental Table 5).

Notably, the phenotypes of UtxD/D mice, such as myeloid
skewing with dysplasia, extramedullary hematopoiesis, impaired
reconstitution activity, and leukemia susceptibility, are charac-
teristics of hematopoietic aging.44-46 In addition, upregulation of
oxidative phosphorylation and downregulation of TGF-b sig-
naling are hallmarks of an aged hematopoietic system.47-49

Therefore, we compared the gene expression profiles of UtxD/D

LSKs with those reported for young and aged HSPCs.47 In-
terestingly, genes with enhanced expression in UtxD/D LSKs
correlated significantly with the top 200 upregulated genes in
aged HSPCs47 (Aging Up Top200; supplemental Table 6;
Figure 4B, left; supplemental Figure 5B, left). In addition, genes
with reduced expression in UtxD/D LSKs correlated significantly
with the top 200 downregulated genes in aged HSPCs47 (Aging
Down Top200; Supplemental Table 6; Figure 4B, right; sup-
plemental Figure 5B, right). Moreover, the gene expression
patterns of UtxD/D LSKs correlated conversely with molecular
signatures of young HSPCs50-52 (Figure 4C, top) and correlated
positively with the molecular signature of myeloid cells52

(Figure 4C, bottom). These results collectively indicate that the
acquired loss of UTX converts the gene expression patterns of
young HSPCs to those of aged cells.

UtxD/D HSPCs exhibited phenotypes of
hematopoietic aging
We then analyzed UtxD/D HSPCs from the perspective of aging.
We first examined changes in Utx expression with aging. The
expression levels of Utx in aged (20 months) LT-HSCs, ST-HSCs,
and multipotent progenitor cells decreased significantly com-
pared with those in young (2 months) cells, confirming the
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Figure 2. Expression of Utx in HSPCs, analysis of repopulating activity of UtxD/D HSPCs, and homing ability of UtxD/D HSPCs. (A) Relative expression levels of Utx in
hematopoietic stem and progenitor subfractions. The results are shown relative to levels in LT-HSCs. (B) Experimental procedure for serial competitive repopulation experiments
(top). Percentages of donor-derived cells in the PB of recipients of Utx1/1 or UtxD/D cell transplants at first and second BMTs. Percentages of lineage-committed, donor-derived
cells in the PB of recipients at first BMT (bottom). *P , .05; **P , .01; ***P , .001. (C) Engraftment of Utx1/11EV, UtxD/D1EV, and UtxD/D1Utx cells at 3 months after
transplantation. The percentages of donor-derived cells in the PB are shown relative to that of Utx1/11EV. *P , .05. (D) Homing ability (left) and expression (right) of Cxcr4 in
Utx1/1 and UtxD/D cells. ***P , .001.
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aging-associated decline in Utx expression in HSC subfractions
(Figure 5A). Similarly, the expression levels ofUtywere significantly
reduced in aged HSCs (supplemental Figure 2C).

A previous study reported that the expression of CD41, a
megakaryocyte/platelet marker, increases with age.53 After
confirming that aged (18 months) LSK-gated c-kit1 cells ex‐
pressed CD41 at a high level, we measured CD41 expression in
young (2 months) Utx1/1 and UtxD/D cells and found that UtxD/D

cells expressed CD41 at a significantly higher level than Utx1/1

cells (Figure 5B). In addition, the marked enrichment of the

oxidative phosphorylation inUtxD/D LSKs (Figure 4A, left) strongly
suggested an increase in reactive oxygen species (ROS), which is
implicated in the aging process.49 In fact, measurement of ROS
in Utx1/1 and UtxD/D LSKs and LT-HSCs demonstrated a signif-
icant accumulation of ROS in UtxD/D cells (Figure 5C). We also
found positive enrichment of glutathionemetabolism pathway in
UtxD/D cells (supplemental Figure 6A), which would be activated
to scavenge the accumulated ROS. Another aspect of aged
HSPCs is impaired recovery from the DNA damage response
(DDR).54,55 The analysis of the behavior and localization of DNA
repair proteins in irradiated Utx1/1 and UtxD/D LT-HSCs showed
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Figure 3. Analysis of leukemias developed inMOL4070A-infectedUtxD/DandUtxD/Utymice. (A) Experimental procedure of retroviral insertionalmutagenesis (top). Neonates
were infected with MOL4070A, and leukemic mice were analyzed for disease phenotypes and virus integration sites (middle); survival curves are shown. Representative
fluorescence-activated cell sorting results of leukemia cells (bottom), including acute myeloid leukemia (AML), T-lineage acute lymphoblastic leukemia (T-ALL), and B-lineage
acute lymphoblastic leukemia (B-ALL). (B) Experimental procedure (top). c-kit1 cells were transduced with Sox4-IRES-EGFP EV and EGFP1 cells were subjected to serial replating
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Figure 4. GSEAof RNAexpression profiles ofUtxD/DLSKs. (A) GSEAplots ofUtxD/D vsUtx1/1 LSKs. The results of themost positively enriched plot (Oxidative phosphorylation)
and most negatively depleted plot (TGF beta signaling) in UtxD/D LSKs are shown with normalized enrichment score (NES) and false discovery rate (FDR). (B) GSEA plots
comparing differently expressed genes in UtxD/D and Utx1/1 LSKs and aging-associated genes in HSPCs.47 The results of plots that increased with age (Aging Up Top200) and
decreased with age (Aging Down Top200) are shown with NES and FDR. (C) GSEA plots comparing UtxD/D LSK genes with HSPC and myeloid gene signatures. The results of
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Laboratory)52 are shown with NES and FDR.
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Figure 5. Analysis of aging-associated phenotypes
in UtxD/D HSPCs. (A) Expression changes of Utx in
young (2 months [M]) and aged (20 months) HSC
subfractions. The results are shown relative to that in LT-
HSCs. *P , .05. (B) Expression of CD41, an aging-
related marker, in LSK-gated c-kit1 cells of aged (18
months) wild-type (WT) and young (2 months) Utx1/1

andUtxD/Dmice. Representative results of fluorescence-
activated cell sorting and a comparison of percentages
of CD411, LSK-gated c-kit1 cells in young Utx1/1 and
UtxD/D mice are shown. **P, .01. (C) ROS levels in LSKs
and LT-HSCs of Utx1/1 and UtxD/D mice. The repre-
sentative histograms and fluorescence intensities are
shown. **P , .01; ***P , .001. (D) Kinetics of DDR in
Utx1/1 and UtxD/D LT-HSCs (0, 3, 18, and 24 hours) after
2 Gy of irradiation. Representative images of gH2AX
(green) and 53BP1 (red) foci (top) and the number of
gH2AX/53BP1-overlapping foci (bottom) in cells are
shown, respectively. Residual gH2AX and 53BP1 foci
in UtxD/D cells at 18 hours after irradiation (arrow).
**P , .01.
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that, although a similar number of gH2AX/53BP1-overlapping
foci developed at 2 hours and finally cleared by 24 hours, UtxD/D

LT-HSCs exhibited significantly delayed repair kinetics and DDR
remnants at 18 hours (Figure 5D). Because expression levels of
DDR-associated genes were comparable between Utx1/1 and
UtxD/D LSKs, although there was a slight decrease in Xrcc5 in
UtxD/D cells after irradiation56,57 (supplemental Figure 6B), this
phenotype may be related to Utx deficiency–induced altered
chromatin accessibility at the DNAdamage sites, as reported in a
previous study.34

Introduction of Utx in aged HSPCs partly restored
the impaired repopulating activity and reversed
the expression of aging-associated genes
We investigated whether the reexpression of Utx can rescue the
functional defects of aged HSPCs in terms of reconstitution
ability. To examine the contribution of the demethylase activity
of UTX, we transduced aged (20 months) LSKs with EV-, wild-
type Utx (UtxWT)-, or demethylase-dead Utx (UtxDD)10-IRES-EGFP
vector (referred to as EV-, UtxWT-, or UtxDD-IRES-EGFP), and
c-kit1, EGFP1 cells were subjected to competitive repopulation
assays (Figure 6A, top). Whereas all transplant-recipient
mice receiving EV-IRES-EGFP–transduced or UtxDD-IRES-EGFP–
transduced aged LSKs (Aged1EV and Aged1UtxDD) exhibited
failed reconstitution (,1% PB chimerism),58 several recipients
transplanted with UtxWT-IRES-EGFP-transduced aged cells
(Aged1UtxWT) were successfully reconstituted (.1% PB
chimerism)58 (reconstituted mice numbered 1-3; Figure 6A, bot-
tom left). Interestingly, the degree of reconstitution correlated
well with increased levels of Utx expression and decreased
myeloid-biased differentiation (Figure 6A, bottom right). In ad-
dition, we found that the enforced Utx expression in aged cells
significantly reduced the H3K27me3 levels and also significantly
reversed the expression of P-selectin (Selp) and clusterin (Clu), the
hallmark genes of hematopoietic aging (Figure 6B).52 These
findings indicate that Utx restores the aging-related phenotypes,
at least in part, through reprogramming the H3K27 methylation
status.

UTX regulates aging-associated genes via
demethylase-dependent and -independent
mechanisms
To analyze aging-associated genes regulated by UTX-mediated
demethylation, Utx1/1 and UtxD/D LSKs were subjected to
chromatin immunoprecipitation sequencing (ChIP-seq) for
H3K27me3. The number of H3K27me3 peaks was higher in
UtxD/D LSKs than inUtx1/1 LSKs (Figure 7A). The genomic regions
with H3K27me3 peaks in UtxD/D LSKs were subjected to the
biological processes of DNA binding and transcriptional regu-
lation in gene ontology enrichment analysis (Figure 7B). Of note,
motif and pathway analyses revealed that the regions with
H3K27me3 peaks in UtxD/D LSKs were significantly enriched in
the expected binding sites of SMAD, SP1, and EGR1, which are
downstream transcription factors of TGF-b and are expected to
functionally decline during aging47,48 (Figure 7C-D). To in-
vestigate the direct regulation of UTX at TGF-b signaling-
associated gene loci, we searched for genes with decreased
expression and increased H3K27me3 levels around the tran-
scription start site (TSS) 6 5 kb. The results identified Hnf4a and
Col1a1, which are TGF-b signaling-associated genes59,60 and are
included in Aging Down Top200,47 suggesting that these are
direct targets of UTX (Figure 7E).

UTX regulates gene expression in a demethylase-independent
manner as a component of COMPASS-like and SWI/SNF
complexes.5-8 To analyze demethylase-independent roles of
UTX in the expression of aging-associated genes, we picked up
commonly upregulated and downregulated genes between
RNA-seq data of UtxD/D LSKs and Aging Up/Down Top200
(Figure 7F, named Up genes and Down genes, respectively) and
searched for the binding of KMT2D and BRG1/SMARCA4, the
key components of COMPASS-like and SWI/SNF complexes,
respectively, to the regulatory regions (TSS6 5 kb) of the genes,
by referring to published data sets.61-68 We found KMT2D peaks
only in Down genes (;20%; Figure 7G). In addition, although
SMARCA4 binds to both Up and Down genes, the total peak
number was much higher in Down genes than in Up genes (430
vs 132) and co-occupancy of KMT2D and SMARCA4 was ob-
served in 13 genes (Figure 7H). These results collectively suggest
that UTX mainly regulates the expression of genes down-
regulated with aging, through both demethylase-dependent
and -independent mechanisms.

Discussion
There has been increasing interest in how stem cells main-
tain tissue homeostasis and in how their dysfunctions induce
aging.69,70 Epigenetic deregulation has been reported to con-
tribute to the aging process of HSPCs.71,72 For example, deletion
of sirtuin (Sirt) family genes encoding histone deacetylases, such
as Sirt1, Sirt3, Sirt6, and Sirt7, was reported to induce hema-
topoietic aging through accumulating DNA damage, reduced
resistance to oxidative stress, aberrant activation of WNT sig-
naling, and impaired mitochondrial biogenesis.73-77 Deregulation
of histone methylation is also deeply implicated in aging47,78;
however, the underlying molecular mechanisms remain less
understood.

In this study, we demonstrated that deficiency of UTX, a de-
methylase for H3K27 and a component of the COMPASS-like
and SWI/SNF complexes, induces phenotypes characteristic of
hematopoietic aging. UtxD/D mice exhibited abnormal hema-
topoietic differentiation with myeloid skewing, MDS-like mor-
phological changes, extramedullary hematopoiesis, impaired
repopulation ability, and high susceptibility to leukemia (Figures
1-3). RNA-seq analysis revealed that Utx deficiency converted
the gene expression profiles of young HSPCs to those of aged
cells (Figure 4). The expression levels of Utx in HSCs decline with
age, and UtxD/DHSPCs exhibited an increase in the expression of
an aging-associated marker, accumulation of ROS, and impaired
DDR after irradiation (Figure 5). These findings collectively in-
dicate that Utx deficiency genetically compromises various
metabolic and signaling pathways and phenotypically induces
hematopoietic aging.

It remains controversial whether UTX functions as an oncogene
or antioncogene.79 In T-ALL cases, a previous report showed that
UTX acts as an oncogene in TAL1-driven T-ALL.80 In contrast, we
and others36,81 have provided evidence that UTX functions as an
antioncogene in T-ALL. The results seem contradictory. How-
ever, interestingly, in the report by Van der Meulen et al,81 all the
T-ALL cases with UTXmutations were associated with TLX3 and/
orNOTCH1mutations, and none of them cooccurred with TAL1
mutations. In addition, in our mutagenesis study, Tal1 was not
detected as a cooperative gene (supplemental Table 4). Thus,
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percentages of Up genes, Downgenes, KMT2Dpeak-positive genes with SMARCA4peaks, respectively. The number of the horizontal axis shows the overlap of SMARCA4 peaks
from different data sets. The overlay of SMARCA4 and KMT2D peaks (TSS6 5 kb) at the indicated Down genes loci in which SMARCA4 peaks were observed in 3 data sets and a
KMT2D peak was overlapped with $1 SMARCA4 peaks (right).
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whether UTX functions as an oncogene or antioncogene may
depend on the drivermutation, and its tumorigenic rolemay vary
in different cellular contexts.

It remains to be clarified whether UTX maintains the func-
tional integrity of HSPCs via demethylase-dependent and/
or -independent mechanisms. H3K27me3 staining of Utx1/1

and UtxD/D LT-HSCs showed graded and significant increases
in H3K27me3 levels, along with Utx-deficiency (supplemen-
tal Figure 1C). In addition, in our experimental system,
demethylase-dead Utx did not rescue the aged phenotype
(Figure 6A). Moreover, motif and pathway analyses of the
H3K27me3 ChIP data identified transcription factors involved
in TGF-b signaling (Figures 7C-D), the most downregulated
pathway in UtxD/D HSPCs (Figure 4A). These data support
demethylase-dependent mechanisms. However, the overlap
between promoter regions with gains of H3K27me3 by Utx
deficiency and Aging Down Top200 was found in a small subset
(Figure 7E). In addition, comparison of RNA-seq data of HSPCs
deficient in Ezh2, encoding an H3K27 methyltransferase of
PRC2,82,83 with those of our UtxD/D HSPCs showed that EZH2
targets were classified into 2 groups that would represent
methylation-dependent and -independent genes (supple-
mental Figure 7A). Moreover, comparison of the same data
with Aging Up/Down Top200 exhibited much less enrichment
than UtxD/D HSPCs (supplemental Figure 7B). These findings
suggest that there are demethylase-independent mecha-
nism(s). Indeed, the search for binding of KMT2D and
SMARCA4, the key components of COMPASS-like and SWI/
SNF complexes, to the regulatory region of aging-associated
genes revealed that KMT2D selectively and SMARCA4 pref-
erentially bind to Down genes with frequent co-occupancy
(Figure 7F-H). These results collectively suggest that UTX con-
tributes to hematopoietic homeostasis, mainly by maintaining
the expression of genes downregulated with aging, through
both demethylase-dependent and -independent epigenetic
programming. The upregulation of oxidative phosphorylation
(Figure 4A) may be a secondary effect, because previous studies
demonstrated that TGF-b signaling suppresses oxidative
phosphorylation.84,85

Whether stem cell aging undergoes similar genetic and/or
epigenetic pathways in the different tissues is an intriguing
question. An increase in H3K27me3 levels at the transcription
start sites was reported, not only in aged HSPCs but also in
muscle stem cells (MSCs),86 suggesting that the functional de-
cline of UTX contributes to MSC aging as well as HSC aging. This
idea is supported by a study reporting that UTX promotes MSC
regeneration through the demethylation of H3K27me3.87

Therefore, we compared changes in signaling pathways be-
tween UtxD/D LSKs and aged MSCs.88 Interestingly, we found a
substantial overlap between positively and negatively enriched
pathways. In upregulated pathways, 10 of 17 positively
enriched pathways of aged MSCs88 overlapped with the top 50
positively enriched pathways of UtxD/D LSKs, and in down-
regulated pathways, 26 of the top 50 negatively enriched
pathways of aged MSCs88 overlapped with the top 50 nega-
tively enriched pathways ofUtxD/D LSKs (supplemental Figure 8;
see also supplemental Tables 5 and 7). Moreover, we com-
pared the changed pathways not only in aged MSCs but also in
aged fibroblasts and aged induced neurons (iNs)89 to those in
UtxD/D LSKs. We found that all of the statistically significantly

enriched pathways in aged fibroblasts and aged iNs89 were
included in the top 30 significantly downregulated pathways in
UtxD/D LSKs (supplemental Figure 9), strongly suggesting that
the deregulation of specific sets of pathways may underlie stem
cell aging in different tissues. Of note, the statistical change of
calcium pathway was commonly observed in all the cell types
examined (indicated by an asterisk in supplemental Figure 9),
suggesting that this pathway is pivotal in maintaining the
homeostasis of different stem cells, as suggested in previous
studies.90,91

Interestingly, although only minimal changes were observed in
the hematopoietic parameters of UtxD/Uty males (supplemental
Figure 2), retroviral insertional mutagenesis induced leukemia in
UtxD/Uty males (Figure 3A). Our findings, together with the results
of previous studies,10,11,16,81 indicate that UTY compensates for
the absence of UTX in steady-state hematopoiesis but cannot
compensate for UTX function as a tumor suppressor. UTY exerts
very low demethylase activity but possesses the TPR domain4,9;
hence, it is intriguing to clarify the compensatory roles of UTY for
UTX deficiency in different physiological and pathological
conditions.34,92,93

In summary, our findings demonstrate that UTX plays a pivotal
role in the functional integrity of HSPCs and maintenance of
hematopoietic homeostasis by globally regulating aging-
associated genes. Further studies are necessary to clarify how
UTX recognizes aging-related genes and whether the enhanced
expression of UTX can prevent aging.
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