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KEY PO INT S

l CC-90009 selectively
degrades GSPT1,
resulting in acute AML
apoptosis and
elimination of disease-
driving LSCs.

l The anti-AML activity
of CC-90009 is
regulated by the ILF2/
ILF3 complex, the
mTOR pathway, and
the integrated stress
response pathway.

A number of clinically validated drugs have been developed by repurposing the CUL4-
DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders
to eliminate disease-driving proteins. Here, we present the identification of a first-in-class
GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and
molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively
target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-
90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia en-
graftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35
independent AML samples, including those with adverse risk features. Using a genome-
wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and
ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/
ILF3 decreases the production of full-length cereblon protein via modulating CRBN
messenger RNA alternative splicing, leading to diminished response to CC-90009. The
screen also revealed that the mTOR signaling and the integrated stress response spe-

cifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR
pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing
CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1
degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells.
Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts
and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were
registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982). (Blood. 2021;137(5):661-677)

Introduction
Small-molecule degraders that hijack an E3 ubiquitin ligase to
target disease-driving proteins for degradation are emerging as
a promising therapeutic modality.1-3 Substantial advancements
in this field are reflected by the development of immunomod-
ulatory (IMiD) drugs, next-generation cereblon E3 ligase mod-
ulating (CELMoD) agents, and numerous heterobifunctional
proteolysis-targeting chimeras.4-11 Acting as “molecular glue,”
cereblon-modulating agents repurpose the CRL4CRBN E3 ubiq-
uitin ligase to promote the ubiquitination and proteasomal
degradation of cereblon neosubstrates.12-17 Molecular insights
into the mechanism of action of immunomodulatory drugs in
multiple myeloma and myelodysplastic syndrome with deletion
of chromosome 5q accelerated the identification of novel

cereblon neosubstrates14-17 and laid out a solid foundation for the
discovery and development of next-generation cereblon modu-
lators. Recently, a number of novel neosubstrates of IMiDs in-
cluding ZFP91, SALL4, and WIZ were discovered,18-22 and several
novel cereblonmodulators, such as CC-122, CC-220, and CC-885
targeting well-established or novel cereblon neosubstrates, were
developed to treat various hematological malignancies.5-7

Although several promising therapies have been developed for
acute myeloid leukemia (AML) that target specific genetic and
epigenetic mutations,23-25 effective options for patients with
poor risk cytogenetic features, or relapsed and refractory disease
are still needed. GSPT1 is a small GTPase, which forms a
complex with the translation termination factor eRF1 to mediate
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translation termination. GTP hydrolysis by GSPT1 promotes a
conformational change in eRF1, thereby triggering peptide
release from the ribosome-bound transfer RNA adjacent to a
stop codon.26 Inactivation of the eRF1/GSPT1 complex results in
translational read-through.27 GSPT1 was also known to recruit
UPF1 to stalled ribosomes to induce nonsense-mediated decay
of messenger RNAs (mRNAs) containing premature stop co-
dons.28 Targeted degradation of GSPT1 by CC-885 elicits broad
antitumor activity in AML.5 However, the clinical development of
CC-885 was challenging owing to unmanageable off-target tox-
icities associated with the degradation of multiple neosubstrates
includingGSPT1, CK1a, HBS1L, IKZF1 (Ikaros), and IKZF3 (Aiolos).
Moreover, although the degradation of GSPT1 is required for the
anti-AML activity of CC-885, themissingmechanistic link between
GSPT1 degradation and the subsequent anti-AML effect further
hindered the development of CC-885.5 Here, we describe the
discovery of a GSPT1-selective CELMoD agent (CC-90009), the
mechanisms of its action, and preclinical efficacy across a wide
spectrum of primary AML patient samples.

Methods
Genome-wide CRISPR screen
A total of 63 108 U937 cells stably expressing Cas9 protein were
inoculated with a small guide RNA (sgRNA) library-containing
lentiviral supernatant at a multiplicity of infection of 0.3 according
to the Cellecta CRISPR screening guide. Cells were grown in 2-L
flasks with agitation and at least 200 million cells were kept after
each passage to exceed the 150,000 library complexity by more
than 1000-fold, maintaining library representation. CC-90009 was
replenished after the first 5 days of treatment. A total of 9 3 107

cell pellets were collected in technical duplicates at day 3 and day
12 postinfection for genomic DNA isolation and sequencing li-
brary preparation.

Detailed materials and methods can be found in the supple-
mental Methods, available on the Blood Web site.

Results
Identification of CC-90009, a novel CELMoD agent
that possesses potent anti-AML activity
To identify compounds that possess anti-AML activity in a library
of cereblonmodulators, we performed aCellTiter-Glo cell viability
screen in 11 human AML cell lines, peripheral blood mononuclear
cells (PBMCs) from healthy donors, and THLE-2, a hepatocyte cell
line expressing phenotypic characteristics of normal adult liver
epithelial cells. We identified a novel CELMoD agent, CC-90009,
which demonstrated potent antiproliferative activity in 10 of 11
cell lines (Figure 1A-B; supplemental Figure 1A), with much less
effect on the cell viability of PBMCs and THLE-2. By contrast,
CC-885 was cytotoxic in all tested cell lines and PBMCs,
whereas lenalidomide and pomalidomide showed no activity
(supplemental Figure 1A-B). The antiproliferative effect of CC-
90009 is associated with apoptosis induction in all tested AML
cell lines except OCI-AML3 (supplemental Figure 1C). CC-
90009 resistance in OCI-AML3 is associated with insufficient
GSPT1 degradation, and RNA interference-mediated partial
GSPT1 knockdown restored CC-90009 activity (supplemental
Figure 1D).

The anti-AML activity of CC-90009 was further evaluated using
the PharmaFlow assay on a panel of diagnostic bone marrow
samples obtained from 9 AML patients.29 Rapid and highly ef-
ficient loss of viable leukemic cells was detected in 8 of 9 patient
samples at 48 hours posttreatment with CC-90009 (Figure 1C),
and nearly all leukemic cells were eliminated within 96 hours
(supplemental Figure 1E). By contrast, CC-90009 showed much
lower activity against normal lymphocytes obtained from the
same patient (Figure 1D; supplemental Figure 1E-F).

Next, we assessed the effect of CC-90009 on the global pro-
teome in KG-1 AML cells using mass spectrometry. CC-90009
treatment reduced the GSPT1 protein abundance with minimal
effect on the rest of the proteome (Figure 1E), and immuno-
blotting confirmed the specific degradation of GSPT1 but
not other known CC-885 neosubstrates including IKZF1, HBS1L,
and CK1a (Figure 1F). The CC-90009-induced GSPT1 down-
regulation can be blocked by proteasomal inhibition with bor-
tezomib, or inactivation of the CRL4CRBN complex with MLN4924
or CRBN knockout (Figure 1F-G; supplemental Figure 1G-H).
Moreover, CC-90009 promoted the binding of cereblon toGSPT1
but not IKZF1 when added directly into the binding assays per-
formedwith cell extracts, whereas lenalidomide exhibited binding
selectivity toward IKZF1 over GSPT1 (supplemental Figure 2A).
The cereblonY384A/W386A(YWAA)12,13,30 mutant defective in binding
cereblon modulators cannot interact with GSPT1 or IKZF1 in the
presence of CC-90009 or lenalidomide, respectively (supple-
mental Figure 2A). These data suggest that CC-90009 specifically
recruits GSPT1 to cereblon for ubiquitination and degradation.

Targeted degradation of GSPT1 by CC-90009 via a
glycine-containing degron mediates the
anti-AML activity
To further define the molecular basis of CC-90009’s activity, we
cocrystalized it in complex with GSPT1, DDB1, and cereblon
(Figure 1I-J; supplemental Figure 2B-C). The overall binding
mode of DDB1-cereblon-GSPT1-CC-90009 is similar to the
previously reported structure of DDB1-cereblon-GSPT1-CC-885
(PDB: 5HXB).5 GSPT1 interaction with cereblon and CC-90009 is
mediated by a b-hairpin degron loop formed by GSPT1 residues
568 through 576 (Figure 1J). Hydrogen bond interactions are
formed between the backbone carbonyls of GSPT1 residues
K572, K573, and S574 and cereblon residues N351, H357, and
W400, respectively (Figure 1J). The glutarimide moiety of CC-
90009 binds the cereblon tritryptophan pocket,12,13 presenting
the isoindolinone ring above the cereblon surface such that it
forms Van der Waals and hydrophobic interactions with GSPT1
residue G575 (supplemental Figure 2C). As observed with CC-885,
the GSPT1 G575N mutation conferred complete resistance to CC-
90009-induced degradation (Figure 1K; supplemental Figure 2E-F).
CC-90009 extends from the isoindolinone, making a hydrogen
bond interaction between the difluoroacetamide moiety and the
side chain of cereblon residue H353 and positioning the chlor-
ophenyl moiety proximal to the b-sheet core of GSPT1 domain 3
(supplemental Figure 2C). A notable difference in the side chain
position of cereblon residue E377 is observed relative to the CC-
885 structure, suggesting a lack of interaction between E377 and
CC-90009, which might contribute to the differential substrate
selectivity of CC-90009 and CC-885 (supplemental Figure 2D).

Although ablation of CRBN completely abolished the anti-
proliferative effect of CC-90009 in U937, OCI-AML2, and
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Figure 1. CC-90009, a GSPT1-selective cereblonmodulator, induces cereblon-andGSPT1-dependent anti-AML activity. (A) The chemical structures of CC-90009, CC-885,
and lenalidomide (LEN) with the glutarimide ring shown in red. (B) The antiproliferative effect of CC-90009 in AML cell lines. Cells were incubated with DMSO or CC-90009 at the
indicated concentrations. At day 3, cell proliferation was assessed by the Cell-Titer Glo (CTG) assay. (C-D) The effect of CC-90009 on cell viability of leukemic cells (C) and normal
lymphocytes (D) in bone marrow aspirates of AML patients. Cells were treated with DMSO or increasing concentrations of CC-90009 for 48 hours. Cells were then stained with
fluorescently labeled antibodies and Annexin-V, followed by flow cytometry to determine the cell number of live leukemic cells and lymphocytes. Data shown in panels C and D
are presented as the percentage of viable cell counts in CC-90009-treated patient samples relative to DMSO controls. (E) Volcano plot of differentially abundant proteins in
response to CC-90009 treatment relative to DMSO control. KG1 cells were treated with DMSO or 100 nM CC-90009 for 4 hours and subjected to tandem mass tag proteomics
analysis. The x-axis indicates the log2–fold change of CC-90009 vs DMSO control for each protein. P values were corrected for multiple hypothesis testing using the Benjamini-
Hochberg method to arrive at an adjusted P value (adj-P; also known as a false discovery rate). The y-axis is the -log10 (adj-P) values indicating statistical significance such that
proteins lying above the dotted red line are statistically significant findings with adj-P,.05. (F) Immunoblot analysis of KG1 and U937 cells treated with DMSO or CC-90009 for 4
hours. Where indicated, cells were pretreated with mortezomib or MLN4924 or 30 minutes. (G-H) Immunoblot analysis (G) and cell proliferation (H) of U937-Cas9 parental cells or
cells stably transduced with lentiviral vectors expressing a nontargeting sgRNA (sgNT-1), an sgRNA targeting a noncoding region (sgNC-8), or an sgRNA targeting CRBN
(sgCRBN-8). Cells were treated with DMSO or CC-90009 at indicated concentrations. Crystal structure of GSPT1 in complex with cereblon, DDB1 and CC-90009. (I) Surface
representation of the complex with DDB1 shown in purple, cereblon in blue, and GSPT1 in orange. The position of CC-90009 is shown with an arrow. (J) GSPT1 interaction with
cereblon is mediated by a b-hairpin loop. Hydrogen bond interactions between cereblon and the GPST1 b-hairpin are shown as yellow dashes. (K-L) Immunoblot analysis (K) and
cell proliferation (L) of U937 parental cells or cells stably expressing HA-GSPT1-G575N. Cells were treated with DMSO or CC-90009 at the indicated concentrations. Data in
panels B-D, G, and L are shown as mean 6 standard deviation (SD), n 5 3 technical replicates. Result shown in all figure panels is representative of 3 biological replicates.

CC-90009, A CEREBLON MODULATOR FOR TREATING AML blood® 4 FEBRUARY 2021 | VOLUME 137, NUMBER 5 663

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/5/661/1798890/bloodbld2020008676.pdf by guest on 11 June 2024



MOLM-13 (Figure 1H; supplemental Figure 1G-H), it is possible
that the anti-AML activity of CC-90009 is mediated through
GSPT1 and/or additional substrate(s) that cannot be detected by
mass spectrometry owing to technological limitations. To ex-
plore this hypothesis, we determined the antiproliferative effect
of CC-90009 in U937, OCI-AML2 and MOLM-13 parental cells,
and cells stably overexpressing GSPT1-G575N. GSPT1 stabiliza-
tion completely inhibited the response to CC-90009 (Figure 1L;
supplemental Figure 2E-F), ruling out the participation of other
substrates in the anti-AML effect of CC-90009. Moreover, RNA
interference-mediated GSPT1 knockdown led to rapid loss of cell
fitness in U937 cells (supplemental Figure 2G), consistent with our
previous observations.5 Thus, GSPT1 degradation is both necessary
and sufficient to account for the anti-AML activity of CC-90009.

Genome-wide CRISPR screen reveals the
mechanism of action of CC-90009 in AML
To further elucidate the mechanism of action of CC-90009 in
AML, we performed a genome-wide CRISPR-Cas9 screen to
delineate genes and pathways that govern the response to
CC-90009 (Figure 2A). U937 cells stably expressing Cas9 were
transduced with a pooled lentiviral library targeting ;19,000
protein-encoding genes, followed by treatment with CC-90009
or dimethyl sulfoxide (DMSO). As expected, CC-90009 treat-
ment led to cell growth arrest and significantly affected the
sgRNA distribution as compared with DMSO control (Figure 2B;
supplemental Figure 3A).

Pathway enrichment analysis of top-ranked genes yielded a few
protein complexes and signaling cascades that regulate the
response to CC-90009 (Figure 2C-D; supplemental Figure 3B;
supplemental Tables 1 and 2). As expected, a significant fraction
of CC-90009-enriched genes encode proteins known to be es-
sential for the biological activities of all cereblon modulators,
including subunits of the CRL4CRBN complex and the COP9 sig-
nalosome, ubiquitin conjugation enzymes UBE2D3 and UBE2G1,
components of the NEDD8 conjugation pathway, and the Cullin
Ring E3 ligase assembly factor CAND1 (Figure 2D-E).31-35 Addi-
tionally, we uncovered a few candidate genes that have not been
previously reported to affect the response to other cereblon
modulators. These includemodulators of RNA alternative splicing
including ILF2 and ILF3, suppressors of mTOR signaling including
TSC1 and TSC2, and key components of the integrated stress
response pathway including GCN1(GCN1L1), GCN2(EIF2AK4),
and ATF4 (Figure 2C,F).

Loss of ILF2 or ILF3 blocks the maturation of
full-length CRBN mRNA, thereby diminishing the
response to CC-90009
To ascertain if inactivation of ILF3 abrogates the response to CC-
90009, we used a flow cytometry-based CRISPR competition
assay to discern the effect of ILF3 knockout on cell fitness with or
without CC-90009 treatment (Figure 3A). Doxycycline-induced
expression of sgILF3, but not a control sgRNA, sgNT, or sgNC,
triggered effective knockout of ILF3 in U937 cells, leading to
significant enrichment of ILF3-depleted cells over control cells,
consistent with the CRISPR screen (Figure 3B-C). ILF3 loss
drastically reduced cereblon expression, and hence CC-90009-
induced GSPT1 degradation and growth inhibition (Figure 3B,D;
supplemental Figure 4C). ILF2(NF45) and ILF3(NF90) form a
heterodimeric complex, which is known to regulate gene ex-
pression at multiple levels.36-40 ILF2 knockout displayed the

same effect as did ILF3 knockout in U937 (supplemental
Figure 4A-C). Additionally, the effects of ILF2 or ILF3 ablation on
cereblon expression and CC-90009 response can also be ob-
served in OCI-AML2 cells (supplemental Figure 4D-E).

To investigate the mechanism by which the ILF2/ILF3 complex
regulates cereblon expression, we performed mRNA-sequencing
on U937-Cas9 cells expressing sgNT and sgILF3. ILF3 loss
significantly affected the expression level of 645 genes, many
of which are related to influenza infection and replication
(Figure 3E). Additionally, ILF3 loss drastically changed the level of
alternatively spliced transcripts of 967 genes involved in several
cellular functions including pre-mRNA and ribosomal RNA pro-
cessing, chromatin modification, and non-sense-mediated mRNA
decay (Figure 3E). This transcriptomic analysis revealed a drastic
change of exon usage of CRBN, but not its total mRNA level, in
response to ILF3 loss (Figure 3E-F; supplemental Table 3). Human
CRBN has 15 splicing variants, 2 of which (CRBN-201 and CRBN-
203) produce a full-length functional protein (supplemental
Figure 4F). ILF3 knockout reduced the mRNA level of CRBN-201
and CRBN-203 and increased the level of splicing variant CRBN-
213, which is composed of exons 1 through 4 and a cryptic exon 5
containing a premature stop codon (Figure 3F; supplemental
Figure 4F). Quantitative reverse transcription-polymerase chain
reaction (RT-PCR) analysis confirmed the effect of ILF3 loss on
cereblon alternative splicing without affecting its total mRNA level
(Figure 3G; supplemental Figure 4G).

Hyperactivation of the mTOR signaling pathway
attenuates the response to CC-90009 via blockage
of GSPT1 degradation
In response to amino acid and glucose stimulation, mTOR is
translocated to the lysosomal surface, where it is activated by
Rheb.41 The mTOR lysosomal translocation is negatively reg-
ulated by the KICSTOR complex and the GATOR1 complex,
whereas Rheb is suppressed by the TSC complex.41 In the
CRISPR screen, nearly every sgRNA targeting genes encoding
subunits of the TSC complex, the GATOR1 complex, or the
KICSTOR complex was enriched by CC-90009 treatment
(Figure 2F). Knockout of TSC1 or TSC2 resulted in enhancement
of S6K1 phosphorylation, indicating mTOR hyperactivation
(Figure 4A; supplemental Figure 5A). Consistent with the CRISPR
screen, TSC1 or TSC2 deficiency conferred a growth advantage
in the presence of, but not in the absence of, CC-90009 in U937
and OCI-AML2, when tested in the CRISPR competition assay
(Figure 4B-C; supplemental Figure 5B). TSC1 or TSC2 loss partially
blocked CC-90009-induced GSPT1 degradation (Figure 4D; sup-
plemental Figure 5C). Cotreatment with everolimus, an mTORC1
inhibitor, restored the CC-90009-induced degradation and
growth inhibition (supplemental Figure 5D-E), suggesting that
activation of themTORC1 signaling attenuates the degradation of
GSPT1, leading to diminished CC-90009 response.

To understand whether the effect of mTOR activation on CC-
90009-induced GSPT1 degradation can be ascribed to an in-
creased rate of GSPT1 protein synthesis and/or a decreased rate
of GSPT1 degradation, we determined the change of GSPT1
protein half-life in response to TSC1 or TSC2 loss in the presence
or absence of CC-90009. Cotreatment with CC-90009 and cy-
cloheximide, a protein synthesis inhibitor, downregulated
GSPT1 expression and TSC1 or TSC2 loss largely abrogated this
effect, whereas cycloheximide treatment alone showed little
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Figure 2. Identification of genes and pathways modulating the response to CC-90009 via CRIPSR/Cas9 screen. (A) Schematic showing the design of the genome-wide
CRISPR screen to identify molecular determinants of CC-90009 response. At day 3 posttransduction, cells were treated with 10 mM CC-90009 or DMSO vehicle control for an
additional 9 days, followed by amplification of sgRNA coding regions and next-generation sequencing. The log2 fold change (log2FC) in sgRNA read count in the CC-90009-
treated sample as compared with DMSO control was designated as the enrichment score, and the average log2FC value of all sgRNAs for a gene of interest was used to quantify
the effect of gene knockout on CC-90009 response. (B) Cell proliferation curve of U937-Cas9 cells transduced with the lentiviral sgRNA library and treated with DMSO or CC-
90009. Three days posttransduction, cells were treated with DMSOor 10mMCC-90009 for 9 days. (C) Pathway enrichment analysis of genes enriched by CC-90009 treatment with
log2FC.2 and false discovery rate (FDR),0.05 relative to DMSO control. The color and size of the dots represent adjusted significance level and gene ratio, respectively. Gene
ratio refers to the number of input genes annotated to an individual pathway as a ratio of all input genes annotated to any Reactome pathway. (D) Scatter plot of 78 genes
significantly enriched by CC-90009 (log2FC .2 and FDR ,0.05). X-axis, CC-90009 enrichment score shown as log2FC (T12_CC-90009 vs T12_DMSO); y-axis, gene essentiality
score shown as log2FC (T12_DMSO vs T3_DMSO). Some of these genes were grouped into 10 functional modules with different color coding. (E,F) Log2FC values of sgRNAs
targeting CC-90009 enriched genes in the functional modules as indicated. Background shown in dark blue represents the log2FC values of all sgRNAs in the library. Each solid
line with a color representing a functional module indicates the log2FC value of an individual sgRNA. Well-characterized genes known to be essential for the activity of the
cereblon E3 ligase complex (E); novel genes that regulate the response to CC-90009 with no clear mechanistic understanding (F). Note that in panels E and F, multiple sgRNAs
targeting each of these top-ranked genes were significantly enriched by CC-90009, strongly supporting the on-target gene knockout effect.
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Figure 3. Regulation of CRBN splicing and CC-90009 response by the ILF2 and ILF3 complex. (A-C) Assessment of the effect of ILF3 knockout on CC-90009 response by a
flow cytometry-basedCRISPR competition assay. U937 cells stably expressingCas9 were infectedwith lentiviral vectors coexpressing RFP and a nontargeting sgRNA (sgNT-1), an
sgRNA targeting a noncoding region (sgNC-1), or an sgRNA targeting ILF3 (sgILF3-2 or sgILF3-4). The expression of RFP is driven by an EF1a-HTLV hybrid promoter, whereas the
expression of sgRNAs was under the control of a doxycycline-inducible H1/TO promoter. Three days after sgRNA induction with 1 mg/mL doxycycline, the cells were mixed at
a 1:1 ratio with U937 Cas9 cells infected with a lentiviral vector constitutively expressing GFP and a nontargeting sgRNA (sgNT-1) and treated with DMSO or 10 mMCC-90009.
The change of RFP1/GFP1 ratio was monitored by flow cytometry every 2 days thereafter. (A) Schematic design of the flow cytometry-based CRISPR competition assay. (B)
Immunoblot analysis of U937-Cas9 cells inducibly expressing sgNT-1, sgNC-1, sgILF3-2, or sgILF3-4. Cells were treated with doxycycline (DOX) for 6 days. (C) The RFP1/GFP1

ratios of U937-Cas9 cells coexpressing RFP and sgNT-1, sgNC-1, sgILF3-2, or sgILF3-4 mixed with cells coexpressing GFP and sgNT-1 at each indicated timepoint were
normalized to the RFP1/GFP1 ratio of the cell mixtures on day 0. (D) Immunoblot analysis of U937-Cas9 cells stably expressing sgNT-1 or sgILF3-2 under the control of the H1/
TO promoter. Cells were treated with or without DOX for 4 days, followed by incubation with DMSO or an increasing concentration of CC-90009 for 6 hours. (E) RNA
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effect on GSPT1 protein level in U937 parental, TSC12/2 and
TSC22/2 cells (Figure 4E). mTOR hyperactivation also exhibited
the same effect on the degradation of hemagglutinin (HA)-
tagged GSPT1 induced by CC-90009, as compared with that of
endogenous GSPT1 (supplemental Figure 5F). By contrast, TSC1
or TSC2 deficiency affected neither the pomalidomide-induced
degradation of IKZF1 nor the half-life of IKZF1 in the presence or
absence of pomalidomide (supplemental Figure 5G-H); we
reasoned that mTOR activation might limit the accessibility of
GSPT1 by cereblon without affecting the activity of the CRL4CRBN

ligase or the 26S proteasome. Consistent with this hypothesis,
TSC1 loss significantly reduced the interaction between HA-
tagged GSPT1 and endogenous cereblon induced by CC-90009
(Figure 4F).

GSPT1 degradation triggers the activation of the
integrated stress response pathway resulting in
acute apoptosis
The integrated stress response (ISR) is an evolutionarily con-
served homeostatic pathway that is activated by the phos-
phorylation of the translation initiation factor eIF2a by 1 of 4
homologous stress-sensing kinases, PERK, GCN2, HRI, or PKR,
resulting in the inhibition of global protein translation and
preferential translation of ISR effectors including ATF4.42,43

GCN2 forms a complex with GCN1 on translating ribosomes and
activates the ATF4 pathway when sensing cellular stresses.44 In
the CRISPR screen, nearly all sgRNAs targetingGCN1,GCN2, as
well as ATF4 and its downstream transcriptional target gene
DDIT4 were significantly enriched by CC-90009 (Figure 3F),
whereas enrichment of sgRNAs targeting other eIF2a kinases
including PERK(EIF2AK3), HRI(EIF2AK1), and PKR(EIF2AK2) was
not observed (supplemental Table 1). Using the CRISPR com-
petition assay we confirmed that loss of GCN1, GCN2, ATF4, or
DDIT4 protected the cells against CC-90009-induced growth
inhibition in U937 and OCI-AML2 (Figure 5A-D; supplemental
Figure 6A-G), suggesting that activation of the GCN2-mediated
ISR plays a critical role in the anti-AML effect of CC-90009.
Indeed, CC-90009 treatment triggered the rapid phosphory-
lation of eIF2a; accumulation of ATF4 and its transcriptional
targets DDIT4, CHOP, and ATF3; and subsequent induction of
apoptosis (Figure 5E; supplemental Figure 6H). Quantitative
RT-PCR analysis confirmed the marked induction of ATF4
target genes ATF3, CHOP, and DDIT4 at the mRNA level upon
CC-90009 treatment (Figure 5F; supplemental Figure 6I). CC-
90009 resistance in OCI-AML3 cells is linked to insufficient
GSPT1 degradation and ISR activation, and partial knockdown
of GSPT1 completely restored the response (supplemental
Figure 1D). Stabilization of GSPT1 completely blocked the CC-
90009-induced ISR activation and apoptosis, whereas knock-
down of GSPT1 was sufficient to activate ISR (supplemental
Figure 2E-G).

To determine if the ISR activation by CC-90009 is solely mediated
byGCN2,we evaluated the effect ofGCN2 ablation onCC-90009
response. GCN2 knockout inhibited eIF2a phosphorylation, in-
duction of ATF4 and its target gene DDIT4, and caspase-3
cleavage in U937 cells treated with CC-90009 (Figure 5E-F).
GCN2 loss largely, but not completely, blocked the induction of
other ATF4 target genes ATF3 and CHOP (Figure 5F), suggesting
the involvement of additional signaling pathways capable of in-
ducing these 2 genes. Reintroduction of GCN2 wild-type, but not
any of its enzymatically dead mutants T899A/T904A, K619R, and
F1143L/R1144L, significantly restored the response to CC-90009
in U937 GCN22/2 cells (Figure 5G-H). Collectively, these findings
suggest that the ISR activation following GSPT1 degradation at
least partially modulates the anti-AML activity of CC-90009.

CC-90009 reduces leukemic engraftment in AML
xenograft models
To further assess the antileukemia activity of CC-90009 across a
spectrum of primary AML samples with extensive heterogeneity
at the genetic, phenotypic, and clinical level, AML cells from 23
patients were treated in vitro with different concentrations of CC-
90009 for 24 hours. Treatment with 100 nM CC-90009 reduced
GSPT1 expression by .70% in 9 samples, 50% to 70% in 8
samples, and ,50% in 6 samples (Figure 6A). Consistently, CC-
90009 decreased viability and induced apoptosis of AML cells
with good correlation to GSPT1 reduction (supplemental
Figure 7A-B). CC-90009 was also cytotoxic to primitive AML
progenitors evidenced by significantly decreased colony num-
bers (supplemental Figure 7C).

Next, the antileukemia efficacy of CC-90009 was determined
in vivo using xenografting of 35 primary AML samples in
NOD.SCID mice (Figure 6B). GSPT1 was quickly degraded in
most AML xenografts within 24 hours after treatment of recipient
mice with CC-90009 (Figure 6C). All the mice were healthy and
tolerant to CC-90009 during the 4-week period of treatment. In
24 samples, CC-90009 significantly reduced CD451331 AML
cells by 52% to 100% in injected femur (RF) and 62% to 99% in
noninjected bones (BM), compared with vehicle-treated mice
(Figure 6D; Table 1). These samples were termed “responders” in
keeping with the classification scheme we previously developed.45

Eight “partial responders” had a less robust response to CC-
90009, with 20% to 60% relative reduction. Three “nonre-
sponders” had very little or negligible response to CC-90009, with
,20% relative reduction (Table 1). The CC-90009-induced AML
graft reduction was accompanied by increased cell death in both
RF and BM (supplemental Figure 7D); this effect was greater in
responders and partial responders compared with nonresponders.

The majority of xenografts derived from patients with high risk
features (secondary and relapsed AML, MRC cytogenetic risk,

Figure 3 (continued) sequencing analysis of U937-Cas9 cells with inducible expression sgNT-1 or sgILF3-2 for 7 days. Evidence of differential splicing was observed in a total
of 967 unique genes by up- and/or downregulated exon usage with ILF3 knockout in U937 cells, reaching a corrected significance level (FDR) ,0.05. At the gene level, 791
genes were found to be significantly (FDR,0.05) up- or downregulated with ILF3 knockout. Top: Venn diagram showing the overlap of genes with significant differential exon
usage (DEU; LHS) and genes with differential expression at the gene-level (DEG; RHS). Bottom: pathway enrichment analysis of DEU and DEG genes. The color and size of the
dots represent adjusted significance level and gene ratio respectively. Gene ratio refers to the number of input genes annotated to an individual pathway as a ratio of all input
genes annotated to any Reactome pathway. (F) DEU analysis revealed significant differential splicing of individual CRBN exons (red bars) with knockout of ILF3. An exon,
which annotates to the truncated transcript, CRBN.213 (exon bin no.13), is significantly elevated (FDR, 0.02) with ILF3 knockout relative to NT controls. Conversely, exons
downstream of this isoform are significantly underrepresented (FDR, 0.05; exon bin no. 14) in the ILF3 knockout cells relative to parental. (G) Quantitative PCR analysis of the
expression levels of CRBN transcripts as indicated in U937-Cas9 cells with inducible expression sgNT-1 or sgILF3-2 for 7 days. Data in panel G are shown as mean6 standard
deviation (SD), n 5 4 technical replicates. Result shown in all figure panels is representative of 3 biological replicates.
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and abnormal cytogenetics) responded to CC-90009 as well as
those derived from relatively more favorable (de novo, in-
termediate risk, and normal cytogenetics) cases (Figure 6E;
Table 2). We previously reported a 17-gene stemness cell score
(LSC17) that is highly predictive of survival and treatment re-
sponse in newly diagnosed AML patients.46 In our cohort, 7 of 8
samples with low LSC17 scores and 17 of 27 samples with high
LSC17 scores were good responders to CC-90009, with .50%
relative reduction of leukemic engraftment in RF and BM

(Figure 6E; Table 2). Of potential therapeutic importance, 12 of
27 high-LSC17 score cases showed .90% depletion of the leu-
kemic graft. Together, these data indicate that CC-90009 has
potent growth inhibitory effects on AML cells from patients with
adverse prognostic features.

CC-90009 treatment eliminates LSCs
To prevent relapse, therapies must target the disease-driving
LSCs. CC-90009 treatment reduced the proportion of primitive
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Figure 4. Loss of TSC1 or TSC2 attenuates the response to CC-90009. A-C) Assessment of the effect of TSC1 or TSC2 knockout on CC-90009 response by a flow cytometry
based CRISPR competition assay. U937 cells stably expressing Cas9 were infected with a lentiviral vector constitutively co-expressing GFP and sgNT-1, or with lentiviral vectors
constitutively co-expressing RFP and sgNT-1, sgNC-8, or 1 of the 3 sgRNAs targeting TSC1 or TSC2 as indicated. Three days after infection, RFP andGFP cells weremixed at a 1:1
ratio and treated with DMSOor 10mMCC-90009. The change of RFP1/GFP1 ratio wasmonitored by flow cytometry every 2 days thereafter. A) Left, schematic design of the flow
cytometry based CRISPR competition assay. Right, confirmation of TSC1 or TSC2 knockout by immunoblot analysis. B) and C) The RFP1/GFP1 ratios of U937-Cas9 cells co-
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Figure 5. CC-90009 activates the GCN2-mediated integrated stress response and subsequent apoptosis in AML. Characterization of the role of (A) GCN2, (B) GCN1, (C)
ATF4, and (D) DDIT4 in mediating CC-90009 response using a flow cytometry-based CRISPR competition assay. U937 cells stably expressing Cas9 were infected with a lentiviral
vector constitutively coexpressing GFP and sgNT-1, or with lentiviral vectors constitutively coexpressing RFP and sgNT-1, sgNC-8, or 1 of the gene-specific sgRNAs as indicated.
Three days after infection, RFP and GFP cells were mixed at a 1:1 ratio and treated with DMSO or 10 mM CC-90009. The change of RFP1/GFP1 ratio was monitored by flow
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CD341 AML blasts that are enriched for LSC in responding
samples (Figure 7A-B), with lesser reduction or even enrichment
of CD341 cells in partial and nonresponders (Figure 7B). In some
samples where the percentage of CD341 cells in the AML graft
was not reduced, the proportion of CD341 cells in the mouse
bone marrow was still significantly reduced owing to overall
reduction of AML engraftment in treated mice (Figure 7C). In
contrast, CC-90009 had lesser inhibitory effect on normal cord
blood CD341 primitive cells in the xenograft than AML CD341

cells (supplemental Figure 7E).

To determine whether CC-90009 decreased the frequency of
LSCs in primary treated mice, we carried out serial limiting

dilution assays in secondary recipients. A representative sample
(AML3) is shown in Figure 7D (left), which showed a ninefold
decrease in LSC frequency following CC-90009 treatment. Among
the 6 responders and 6 partial responders tested, 3 samples
demonstrated a statistically significant decrease in LSC frequency
following CC-90009 treatment (Figure 7D, right). One responding
sample, with regard to overall reduction in cellularity, had a
significant increase in LSC frequency; the rest had either decrease
or increase that were not statistically significant. Consistent with
the observed decrease in LSC frequency, those samples also had
reduced absolute LSC numbers in both injected RF and non-
injected BM of primary treatedmice; there was a.50% reduction
in LSC numbers compared with controls in most samples (8 of 12)

Figure 5 (continued) cytometry every 2 days thereafter. The RFP1/GFP1 ratios of U937-Cas9 cells coexpressing RFP and sgNT-1, sgNC-8, or 1 of 3 sgRNAs targetingGCN2 (A),
GCN1 (B),ATF4 (C), orDDIT4 (D) mixed with cells coexpressing GFP and sgNT-1 at each indicated timepoint were normalized to the RFP1/GFP1 ratio of the cell mixtures on day
0. (E-F) Immunoblot (E) or quantitative RT-PCR analysis (F) of U937 parental andGCN22/2 cells treated with DMSO or CC-90009 at the indicated concentrations for 24 hours. The
U937 GCN22/2 cell line is derived from a single clone of U937 parental cells stably infected with a lentiviral CRISPR vector targeting GCN2 (see “Methods and materials”). (G)
Immunoblot analysis of U937 parental cells and GCN22/2 cells with or without a stably transduced lentiviral vector expressing HA-tagged GCN2 wild-type or mutants as
indicated. Cells were treated with DMSO or CC-90009 for 24 hours. (H) The effect of CC-90009 on proliferation of cells shown in panel G. On day 3 after CC-90009 treatment, cell
proliferation was assessed by CTG. Data in panels F and G are shown as mean 6 standard deviation (SD), n 5 3 or 4 technical replicates. Result shown in all figure panels is
representative of 3 biological replicates.
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(Figure 7E-F). Two samples, 1 partial responder and 1 responder,
showed an increase in LSC numbers following treatment (Figure
7E-F). Overall, these data indicate that CC-90009 can target LSCs
in theAML xenograftmodel, albeit with heterogeneous responses
among AML cases.

Discussion
Here, we present the identification and characterization of CC-
90009, a new CELMoD agent that deploys CRL4CRBN to induce
the selective degradation of GSPT1, ultimately evoking an
antiproliferative and proapoptotic response. We show that CC-
90009 displayed marked activity in AML xenograft assays across
a wide spectrum of AML samples, including refractory/relapsed
cases and those with adverse risk features who are at high risk of
relapse. Importantly, disease-driving LSC can be eradicated in a
subset of cases. Beyond CC-90009, selective degradation of just
the intended target optimizes the therapeutic index and over-
comes toxicities associated with earlier, more promiscuous,
cereblon modulators and provides a roadmap for the design of
the next-generation CELMoD agents.

Our CRISPR screening approach provides new insights into
novel molecular machineries that modulate cereblon-mediated
ubiquitination and degradation of GSPT1 that might be relevant
for the design of future combination therapies if resistance
appears with single-agent treatment. For example, the alter-
native splicing ofCRBNmRNA transcripts controlled by the ILF2/
ILF3 complex was detected in all tested cell lines regardless of
cell type or tissue of origin (data not shown), suggesting that ILF2
or ILF3 loss should attenuate the response to all cereblon
modulating agents. Indeed, ILF3 knockout was previously re-
ported to reduce the lenalidomide sensitivity in primary effusion
lymphoma through an unknown mechanism, which is likely as-
sociated with cereblon downregulation similar to what we ob-
served in this work.33 Additionally, upregulation of mTORC1
signaling is a common pro-survival mechanism that promotes
carcinogenesis and resistance to cancer therapies.47 We showed
that mTORC1 hyperactivation owing to loss of TSC1 or TSC2
significantly blocked the CC-90009-induced GSPT1 recruitment

to cereblon, and hence diminished GSPT1 degradation and CC-
90009 sensitivity in AML. The mTORC1 signaling pathway was
not previously reported to modulate the activity of other cere-
blon modulators. Consistently, we did not observe any effect of
TSC1 or TSC2 loss on degradation of IKZF1/3 by lenalidomide or
pomalidomide in AML and multiple myeloma cell lines, re-
spectively (supplemental Figure 5D; data not shown). Because
GSPT1 and IKZF1 share the same binding mode of engaging
cereblon, we reasoned that the effect of mTORC1 activation on
GSPT1 degradation is likely linked to the direct modulation of
GSPT1 instead of cereblon, resulting in decrease of GSPT1
accessibility by cereblon.

GSPT1 degradation activates the GCN1/GCN2/eIF2a/ATF4 axis
of the ISR, with concomitant induction of acute apoptosis in
AML. The GCN2-mediated ISR is an adaptive signaling pathway
that shuts down protein synthesis and turns on the ATF4 tran-
scriptional program to cope with a range of physiological and
pathological stresses. The nature, severity, and duration of
stimuli determine whether GCN2 activation drives a pro-survival
or pro-death signaling.48,49 In the context of dysregulated pro-
tein translation termination, the GCN2-mediated ISR upon
GSPT1 degradation promotes acute apoptotic cell death in AML
cell lines and patient blasts with minimal effect on normal PBMC,
THLEs, or T-lymphocytes indicative of an exclusive vulnerability
to GSPT1 loss in AML. Ablation of DDIT4(REDD1) significantly
reduced the response to CC-90009 and largely mimicked the
gene knockout effect of GCN1, GCN2, and ATF4, strongly
suggesting that the GCN2-mediated anti-AML activity of CC-
90009 is mainly exerted by REDD1 among all the target genes
transactivated by ATF4. It has been demonstrated that REDD1 is
a rapidly upregulated gene that inhibits mTORC1 signaling via
the TSC1 complex under multiple cellular stresses.50 Although
REDD1 upregulation is evident following CC-90009-induced
GSPT1 degradation, we did not observe significant mTORC1
inhibition, based on the phosphorylation status of S6K1 (data not
shown). Moreover, elimination of REDD1 or its upstream regu-
lators GCN1,GCN2, and ATF4 did not affect the degradation of
GSPT1 by CC-90009 (Figure 5E-G, and data not shown), a
consequence of mTOR hyperactivation established in this work.

Table 2. Clinical characteristics of CC-90009 responders and partial/nonresponders

Responders (n 5 24) Partial/nonresponders (n 5 11)

De novo vs secondary/relapsed AML (n) n 5 21 n 5 10
De novo 14 8
Secondary/relapsed 7 2

MRC cytogenetic risk at diagnosis (n) n 5 23 n 5 11
Intermediated 15 9
Adverse 8 2

Normal vs abnormal cytogenetic AML (n) n 5 24 n 5 11
Normal 13 7
Abnormal 11 4

LSC17 score (n) n 5 24 n 5 11
High score 17 10
Low score 7 1

Secondary includes therapy-related AML and after myelodysplastic/myeloproliferative neoplasm AML.

MRC, Medical Research Council classification.
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The mTOR-independent function of REDD1 in mediating CC-
90009-induced apoptosis remains to be elucidated.

Therapy resistance and disease relapse in AML are tied to LSC
properties including self-renewal and quiescence.51-54 Our re-
cent studies have shown that LSCs possess a distinct pro-survival
ISR50 that mirrors that of normal hematopoietic stem cells.55,56 In
both hematopoietic stem cell and LSC, specific translation

dynamics lead to activation of the ISR.55 Our findings that per-
sistent ISR activation by CC-90009 induces apoptosis substantiate
the concept that the ISR wired into LSC can be modulated be-
tween prosurvival and prodeath, thereby providing a novel
therapeutic approach to eradicate disease-driving LSC. We ob-
served variability among samples in the degree of apoptosis and
induction of differentiation and retention of primitive CD341

cells following treatment. Additionally, although the majority of
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samples showed a reduction in LSC frequency, a few samples
showed an increase in LSC frequency with CC-90009 treatment.
These differences in response among patient samples may be
related to distinct GSPT1 levels that exist between patients
or even between LSC subclones within individual patients.
Whether CC-90009 effectively targets genetically diverse LSC
subclones will require clonal tracking studies in future clinical
trials of patients treated with CC-90009.57,58 However, that we
observed activity across a spectrum of high-risk samples gives
some confidence that it will target intrasample genetic diversity.
Such effective targeting of leukemic blasts and LSCs in AML
samples with poorer prognosis supports further development of
CC-90009 in clinical trials as a novel agent for patients with
refractory/relapsed AML.
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