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KEY PO INT S

l Constitutively active
AKT is present in high-
risk CLL and RT, and
active Akt transforms
murine CLL toward
aggressive lymphoma.

l Akt orchestrates
development of RT via
induction of Notch1
signaling in B cells,
fueled by Dll1-
expressing T cells.

Richter’s transformation (RT) is an aggressive lymphoma that occurs upon progression
from chronic lymphocytic leukemia (CLL). Transformation has been associated with genetic
aberrations in the CLL phase involving TP53, CDKN2A, MYC, and NOTCH1; however, a
significant proportion of RT cases lack CLL phase–associated events. Here, we report that
high levels of AKT phosphorylation occur both in high-risk CLL patients harboring TP53 and
NOTCH1 mutations as well as in patients with RT. Genetic overactivation of Akt in the
murine Em-TCL1 CLL mouse model resulted in CLL transformation to RT with significantly
reduced survival and an aggressive lymphoma phenotype. In the absence of recurrent
mutations, we identified a profile of genomic aberrations intermediate between CLL and
diffuse large B-cell lymphoma. Multiomics assessment by phosphoproteomic/proteomic
and single-cell transcriptomic profiles of this Akt-induced murine RT revealed an
S100 protein-defined subcluster of highly aggressive lymphoma cells that developed from
CLL cells, through activation of Notch via Notch ligand expressed by T cells. Constitutively

active Notch1 similarly induced RT of murine CLL. We identify Akt activation as an initiator of CLL transformation
toward aggressive lymphoma by inducing Notch signaling between RT cells and microenvironmental T cells. (Blood.
2021;137(5):646-660)

Introduction
During the clinical course of chronic lymphocytic leukemia (CLL),
;2% to 10% of patients develop an aggressive lymphoma,
termed Richter’s Transformation (RT).1 RT typically displays
histomorphologic characteristics similar to those of diffuse large
B-cell lymphoma (DLBCL), with limited treatment options.2-4

Transformation to RT has been shown to associate with somatic
genetic events acquired in the CLL phase, including TP53,
CDKN2, MYC, EGR2, or NOTCH1, while observed to be ge-
netically distinct from de novo DLBCL, notably lacking recurrent
mutations in genes such as CD79B and BCL2.5,6 However, a
significant proportion of cases cannot be attributed to CLL

phase–associated somatic genetic events, indicating that they
are required but not sufficient for driving the histologic shift.7,8

Previous CLL phase–associated treatment, germline genetics,
and aspects of CLL phase biology have also been observed to be
RT risk factors, whereas the role of the tumor microenvironment
(TME) in the transformation fromCLL to RT has not been studied.
Moreover, it has yet to be elucidated whether a central mech-
anism connecting these risk factors exists.

A key determinant in the pathogenesis of CLL is B-cell receptor
(BCR) signaling, which mediates disease heterogeneity via either
proliferation or anergy.9,10 In the CLL phase, BCR-associated
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events correlated with transformation to RT include unmutated
IGHV (IGHV-U) status and BCR stereotypy,11 as well as the ex-
pression of CD49d, CD38, and ZAP70. The BCR induces tonic
phosphoinositol-3-kinase (PI3K)/AKT signaling believed to
contribute to malignant transformation.12,13 PI3K phosphorylates
the secondary messenger PIP2 to PIP3 that activates the mem-
branal kinase PDK-1 to phosphorylate PIP3-bound AKT at the
activating residue Thr308.14,15 Downstream effects of AKT in-
clude protein synthesis, cell survival, proliferation, and glucose
metabolism.15 We therefore hypothesized that AKT activation
might be the missing link in the transformation of CLL to RT.

The current study found that: (1) AKT is activated in high-risk CLL
and in .50% of patients with RT; (2) constitutively active Akt
promotes CLL transformation toward RT in Em-TCL1mice in vivo;
(3) Notch1 is activated via constitutive Pi3k/Akt in RT cells; and (4)
RT-intrinsic Notch signaling is induced by Dll1-expressing Cd41

T cells from the TME.

Materials and methods
Mouse strains and patient material
Experiments were performed according to human (medical
faculty of the University of Cologne [reference no. 13-091]) and
murine (LANUV 84-02.04.2014.A146 and 84-02.04.2019.A009)
ethical approvals. Em-TCL1 mice and Cd19-Cre mice were de-
scribed previously and were on the C57/BL6 background.16 To
generate the R26-fl-Akt-C strain, a SERCA targeting vector
containing a myristoylation TAG Akt-C was introduced into the
ROSA26 locus, as previously described.17 Finally, Em-TCL1mice
were intercrossed with Cd19-CreAkt-C mice. Furthermore, we
examined Cd19-CreFoxO1ADA mice,18 Cd19-CreNotch1-IC mice,19

and Gsk3b S9A/wt mice.20

Cell preparation, immunophenotyping, and
multiomics profiling
Murine samples were isolated from total splenocytes, with total
splenocytes used for immunophenotyping and single-cell RNA
sequencing (scRNA-Seq; 10X Genomics), Cd191 MACS sorting
conducted for whole-exome sequencing (WES), and phospho-
proteomic/proteomic analysis. Immunophenotyping was con-
ducted by using a standard panel by flow cytometry. WES and
scRNA-Seq experiments were conducted at the Cologne Center
for Genomics using standardized protocols. Phosphoproteomic/
proteomic analysis was conducted as previously described.21

Notch pathway member expression profiling was conducted via
flow cytometry (MACSQuant 10 and VYB).

Immunofluorescence analysis
Murine spleens were fixed in 4% paraformaldehyde. Paraffin-
embedded samples were deparaffinized and stained after re-
trieval. Hematoxylin and eosin staining was performed (Mayer’s
Hematoxylin Solution #MHS32-1L and Eosin Y Solution Aqueous
#HT110232-1L; Sigma-Aldrich) according to standard protocol
and imaged with AxioVision 4.2 (Carl Zeiss MicroImaging).
Human sections were deparaffinized and stained with primary
antibody anti-pAKT Ser473 (#3787; Cell Signaling). The sections
were counterstained with 496-diamidino-2-phenylindole.

Immunoblot analysis
Immunoblots of murine and human samples were performed by
using standard techniques with the following antibodies: anti-

pAKT Ser473 (#4060 and #9271; Cell Signaling), anti-pAKT
Thr308 (#4056; Cell Signaling), anti-panAKT (#4685 and #2920;
Cell Signaling), pAKT (#4075; Cell Signaling), anti-pGSK3b
(#9315; Cell Signaling), anti-calnexin (#208880; EMD Millipore),
and anti-actin (#MAB1501; Millipore).

Further details on sample preparation, murine intercrossing, ex-
perimental conditions, and bioinformatics analysis are provided in
the supplemental Methods (available on the Blood Web site).

Results
Active AKT is increased in high-risk CLL and RT
AKT activation in CLL cells isolated from blood of patients is
heterogeneous (supplemental Figure 1A-B). To investigate
whether AKT activation was associated with high-risk CLL, we
screened 46 CLL patient samples with complementary targeted
re-sequencing on CLL driver genes for Ser473-phosphorylation
of AKT by immunoblot (Figure 1A-B). NOTCH1mut and
TP53mut CLL samples had significantly increased AKT activation
compared with wild type, whereas no such increase was ob-
served in SF3B1mut andATMmut cases. Because bothNOTCH1
and TP53 have been associated with transformation to RT, we
hypothesized that increased AKT activity could be a common
mechanism of transformation. To test this theory, we immuno-
histochemically investigated tumor biopsy specimens from CLL
(n 5 8), RT (n 5 19), and DLBCL (n 5 12) for Ser473-
phosphorylation of AKT (Figure 1C; supplemental Figure 1C).
Here, increased frequency and intensity of AKT activation in RT
samples were observed compared with CLL and DLBCL (CLL 5
12.5%, DLBCL 5 16.7%, RT 5 52.6%). Furthermore, we iden-
tified that almost 50% of positively stained RT cases with
complete genetic characterization carried mutations in TP53 and
NOTCH1. These data therefore show that active AKT is often
observed in RT, both with and without somatic genetic events
gained in the CLL phase.

Constitutive activation of Akt via B-cell–specific
Akt-C expression in Em-TCL1mice reduces life span,
despite similar CLL progression
To investigate whether Akt activity is sufficient to transform CLL
to RT, we generated a Rosa26 mouse model in which a loxP-
flanked stop cassette precedes an N-terminal myristoylation
tagged Akt-C version (supplemental Figure 2A-B). Upon Cd19-
Cre–mediated recombination of the loxP-flanked stop cassette,
Akt-C expression leads to constitutive B-cell–specific Akt-C
activity due to its membranal localization in which Pdk1 acti-
vates Akt. We intercrossed Em-TCL1tg/wt (Em-TCL1) mice with
Cd19-Cretg/wt; R26-fl-Akt-C (Cd19-CreAkt-C) to obtain Em-
TCL1tg/wt; Cd19-Cretg/wt and R26-fl-Akt-C mice (Em-TCL1Akt-C)
(Figure 2A). Akt-C expression induced a significant increase in
pAKT activity in Em-TCL1Akt-C vs Em-TCL1 mice (supplemental
Figure 2C), regardless of the fact that TCL1 is a known interaction
partner and promoter of Akt in this mouse model. We followed
the disease progression of Em-TCL1Akt-C mice in the peripheral
blood, observing no significant differences in the number of
Cd191/Cd51 cells compared with Em-TCL1 mice (Figure 2B;
supplemental Figure 2D). However, at ;7 months of age, Em-
TCL1Akt-C mice quickly developed symptoms reaching euthani-
zation criteria, whereas.80%of Em-TCL1mice remained alive at
this time point (median overall survival Em-TCL1Akt-C vs Em-TCL1,
7.6 vs 11.6 months; P , .001) (Figure 2C). These data suggest
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Figure 1. Increased AKT activation in CLL subsets associatedwith RT and increased frequency in patients with RT. (A) Flow diagram of AKT activation screening setup. (B)
Histogram showing pAKT (Ser473)/panAKT expression (AKT activation) from freshly isolated peripheral B cells, in a cohort of patients with CLL stratified according tomutations in
NOTCH1, TP53, SF3B1, and ATM (n 5 46). Colored dots represent chromosomal aberrations identified via fluorescence in situ hybridization (blue 5 trisomy12; red 5 17p
deletion; green5 11q deletion; yellow5 13q deletion). (C) Immunofluorescence imaging of CLL (n5 8), RT (n5 19), and DLBCL (n5 12) for pAKT (Ser473). Proportion of cases
defined as negative (black), positive (pink), or double positive (red) shown as pie charts for each entity (upper panel). Representative images from positive and negative cases
from each entity (lower panel). All images shown at340 magnification. Nuclear staining (496-diamidino-2-phenylindole) and pAKT (Ser473) staining shown in orange. Significant
differences in AKT activation between wild-type and TP53/NOTCH1/SF3B1/ATM mutated CLL peripheral blood mononuclear cells (PBMCs) by immunoblotting assessed by
using one-way analysis of variance, with Tukey multiple comparison correction.
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Figure 2. B-cell–specific constitutive activation of Akt in the Em-TCL1 mouse model induces aggressive lymphoma with a diffuse large B-cell phenotype in vivo. (A)
Breeding scheme required to generate requisite genotypes. (B) Relative quantification of Cd51 B cells from serial blood samples fromCd19-Cre (black),Cd19-CreAkt-C (gray), Em-
TCL1 (blue), and Em-TCL1Akt-C (red) mice. Blood samples were measured between 2 months and 10 months of age with 1-month intervals. (C) Pairwise Kaplan-Meier overall
survival analysis. Significance between groups was tested by using the pairwise log-rank P values. (D) Mean cell size (FSC value) of Cd51 B cells from peripheral blood measured
between 2 and 10 months of age with 1-month intervals. (E) Representative hematoxylin and eosin staining of blood samples. (F) Representative images of spleens from Cd19-
Cre (black; top left),Cd19-CreAkt-C (gray; bottom left), Em-TCL1 (blue; top right), and Em-TCL1Akt-C (red; bottom right) mice aged 3 to 4 months and 7 to 8 months, respectively. (G)
Box plot of spleen weight for mice aged 3 to 4 months and 7 to 8months. (H) Box plot showing themean cell size (FSC value) within the spleen for mice aged 3 to 4months and 7
to 8 months. (I) Representative hematoxylin and eosin staining of spleen preparations. (J) Bar graph displaying relative levels of B cells showing low, medium, and high amounts
of Ki-67 in mice aged 3 to 4 months and 7 to 8 months. (K) Box plot showing the lactate dehydrogenase (LDH) levels for mice aged 3 to 4 months and 7 to 8 months. *P, .05,
**P # .01, ***P # .001 (unpaired, 2-sided Student t test).
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that Akt-C leads to a dramatic reduction in overall survival,
mimicking the clinical picture observed in patients with RT.

Akt-C in Em-TCL1 mice drives RT
To evaluate whether Em-TCL1Akt-C mice had undergone trans-
formation from CLL to RT, we examined the morphology of the
malignant B cells in the peripheral blood in monthly intervals, as
well as in tumor sections of spleens from mice at an age at which
100% of mice were still at risk in the Kaplan-Meier survival
analysis (3-4 months) or at the median survival time of the Em-
TCL1Akt-C mouse model (7-8 months). Although the relative cell
size (FSC; forward scatter) of Cd51 blood-derived B cells was
enlarged in Em-TCL1Akt-C mice compared with Em-TCL1 mice at
all time points, an additional increase in relative cell size was
observed at months 7 and 8 (Figure 2D). Cytomorphologic
evaluation of blood smears of Em-TCL1Akt-C mice revealed
pleomorphic blastoid cells with large degranulated nuclei and
increased cytoplasm, whereas blood-derived cells in Em-TCL1
mice showed round and condensed nucleoplasm (Figure 2E).
Strikingly, Em-TCL1Akt-C mice exhibited splenomegaly at 7 to
8 months of age, accompanied by the appearance of large
Cd191/Cd51 blastoid cells as well as higher lactate de-
hydrogenase levels and reduced thrombocyte counts (Figure
2F-H,K; supplemental Figure 2E). In Em-TCL1Akt-C mice, he-
matoxylin and eosin staining revealed large blastoid cells with
pleomorphic nuclei and prominent nucleoli predominating
while containing frequent mitotic figures and high Ki-67 posi-
tivity (Figure 2I-J; supplemental Table 1). Importantly, these
results were replicated when using Cg1-Cretg/wt mice as an al-
ternative B-cell–specific Cre-allele to express Akt-C in Em-TCL1
cells, recapitulating the RT phenotype with all features observed
in Em-TCL1Akt-C mice (supplemental Figure 3A-F). Taken to-
gether, our data unequivocally show that constitutively active
Akt in Em-TCL1Akt-C mice transforms CLL toward an aggressive
DLBCL-type lymphoma defined as RT with clinical features
concordant with observations in human patients.

Em-TCL1Akt-C mutational landscape represents an
intermediary state between CLL and DLBCL
To ascertain whether Akt-C drives changes at the genomic level,
we analyzed IgH gene rearrangements by Southern blot, re-
vealing similar oligo-clonal characteristics in Em-TCL1Akt-C com-
paredwith Em-TCL1mice (Figure 3A). To investigate the impact of
Akt-C, we analyzed B cells from spleens of 23 mice (Em-TCL1Akt-C,
n5 9 [aged 8-9 months]); Em-TCL1, n5 10 [aged 10-12 months],
Cd19-CreAkt-C, n 5 4) by WES (Figure 3B). Em-TCL1Akt-C were
composed of mutations with significantly reduced variant allele
frequency comparedwith Em-TCL1mice (P, .0001) while sharing
a similar mutation burden (Figure 3C). In concordance with pre-
viousWES studies on the Em-TCL1mousemodel,22 we observed a
distinct lack of recurrentlymutated genes, which was also the case
for Em-TCL1Akt-C mice (Figure 3D; supplemental Table 3.1). To
elucidate the potential functional relevance of these individual

gene mutations, we assessed the tendency of these genes to be
mutated in humanCLL andDLBCL using the cancer browser of the
Catalogue Of Somatic Mutations In Cancer.23 As an internal
control, mutation data were included from a recently described
murine ABC-DLBCLmodel (Cd19-Cre –driven combinedMyd88
and Bcl2 aberrations [Cd19-Cretg/wt;Rosa26LSL.BCL2.IRES.GFP/wt;
Myd88c-p.L252P/wt], hereafter M-B-Cd19).24 Em-TCL1–mutated
genes were significantly enriched for genes mutated in CLL
(P 5 .003), whereas the M-B-Cd19 model was significantly
enriched for genesmutated in DLBCL (P, .001). Strikingly, gene
mutations in Em-TCL1Akt-C mice exhibited an intermediary profile
between CLL and DLBCL (Figure 3E). Collectively, despite the
absence of recurrent mutations, we observed an altered mu-
tational profile in Em-TCL1Akt-C mice intermediary between CLL
and DLBCL.

Phosphoproteomic/proteomic profiling identifies
overexpression of S100a4, increased
phosphorylation of Hes1, and increased activation
of kinases associated with Notch signaling in
Em-TCL1Akt-C mice
To assess the impact of active Akt on protein amount and
phosphorylation, splenic B-cell–derived proteins of Em-TCL1Akt-C

and Em-TCL1 mice were investigated by using proteomics and
phosphoproteomics (Figure 4A). The total amount of captured
proteins remained unchanged between both genotypes,
whereas Em-TCL1Akt-C mice showed a significant increase in the
abundance of phosphorylated peptides (Figure 4B; supple-
mental Tables 4.1 and 4.2). The calcium-binding protein S100a4,
which has previously been observed to be associated with
metastatic cancer progression, was the most significantly
upregulated protein in the proteomics dataset.25 Interestingly,
we observed downregulation of Nfatc1, a negative transcrip-
tional regulator of S100a4 expression, with significantly in-
creased phosphorylation in Em-TCL1Akt-C mice.26-28 In line with
this evidence, Nfatc1 deficiency in Em-TCL1 mice culminated in
an aggressive lymphoma comparable to RT. In the current study,
a specific role for downstream Lyn/Syk/Akt/Erk was observed to
prevent nuclear Nfatc1 leading to RT.29,30 Consistently, we
observed that Lyn was significantly phosphorylated (Figure 4C)
and had a marginally increased upstream kinase score in Em-
TCL1Akt-C mice (Figure 4D; supplemental Table 4.3), suggesting
that constitutively active Akt signaling may affect Nfatc1 tran-
scriptional activity. In addition, we observed increased phos-
phorylation of Hes1, a prominent Notch1 target gene.31 To
reduce the dataset to the kinome level, an upstream kinase
analysis was conducted by using the PhosphoSitePlus database
and a simplified equation inspired by Beekhof et al (supple-
mental Methods).32 This analysis identified increased activation
of Wee1, Cdk4, and Csnk2b, kinases that have previously been
shown to be associated with Notch signaling (Figure 4D-E).33,34

Figure 3 (continued)blot analysis of Cd191MACS-purified B cells derived from indicatedmice using the aforementioned strategy. (B) Flow diagramofWES experimental setup.
(C) Distribution of variant allele frequencies (left panel) and mutations per case (right panel) between Cd19-CreAkt-C (n5 4), Em-TCL1 (n5 10), and Em-TCL1Akt-C (n5 9) mice. (D)
Waterfall plot of COSMIC-annotatedmutations fromCd19-CreAkt-C (n5 4), Em-TCL1 (n5 10), and Em-TCL1Akt-C (n5 9) mice. Mutations clustered according to normalized disease
tendency scores of COSMIC CLL and DLBCL mutation data (pink 5 CLL-associated; yellow 5 DLBCL-associated; black 5 equal distribution). Mutations were annotated for
occurrence in COSMIC Cancer Gene Census Tiers (blue 5 animal 1; red 5 animal 2), COSMIC Cancer Gene Census Hallmark classification (blue 5 across all cancers; red 5

leukemia/lymphoma-specific), observed to be mutated in RT. (E) Bar graph representing the mean normalized disease tendency scores per genotype (blue 5 Em-TCL1; red 5

Em-TCL1Akt-C; green 5 M-B-Cd19). P values were generated via binomial testing, presuming equal chances of each gene being mutated in either CLL or DLBCL (0.5).
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Notably, a reciprocal regulation between Notch and Nfatc1 has
been reported in numerous cancer types.35,36

scRNA-Seq identifies an aggressive B-cell
subpopulation in Em-TCL1Akt-C defined by cell–cell
interactions and overactivation of Notch
To analyze the transcriptomic profiles of the aggressive sub-
clones arising from indolent CLL in the Em-TCL1Akt-C mice, we
characterized splenocytes via scRNA-Seq (Figure 5A). After
implementing per-sample preprocessing and clustering using
standard settings, we integrated all samples, leading to a dataset
of 33 224 cells composed of 21 clusters (Figure 5B; supplemental
Figure 5.1; supplemental Table 5.1). Genotype-specific cell
number increases were observed within clusters, notably in the
malignant B cells, in which 5 clusters were observed to be
enriched or shared between Em-TCL1Akt-C and Em-TCL1 (clusters
encircled in red), whereas 2 clusters were observed to be
enriched in Em-TCL1mice (clusters encircled in blue). To unravel
the transcriptional differences between Em-TCL1Akt-C and Em-
TCL1 cells within the enriched/shared clusters (RT-C1 to RT-C5),
we conducted differential expression (DE) analysis across all
cells, identifying 570 significantly DE genes supplemental Ta-
ble 5.2). We then tested for gene ontology (GO) enrichment
using all 570 significant genes, from which we calculated the
disease tendency of each GO term to be composed of genes
significantly upregulated in either Em-TCL1Akt-C or Em-TCL1mice
(supplemental Table 5.3). This analysis identified an enrichment
of cell–cell interaction-associated GO terms composed of Em-
TCL1Akt-C significant genes, with TCR/BCR signaling also being
increased in Em-TCL1Akt-C mice. We delved deeper into the
cell–cell interaction GO terms via network visualization (Figure 5C),
identifying a profile of Em-TCL1Akt-C upregulated genes associated
with S100 signaling (S100a4, S100a9), Notch signaling (Hes1, Cd44,
Itga4 [Cd49d], Cd86, Flna, Zmiz1), and Pi3k/Akt signaling (Pik3r1),
as well as the immune checkpoint gene Cd274 (Pd-l1) (Figure 5D).
Significantly upregulated genes exhibited variable transcription
factor binding sites for FoxO1, Nfatc1, and Rbpjk (Notch1) in
their 2 kb upstream promoter region, suggesting a direct
transcriptional link between these transcription factors in Akt-
C–expressing cells. Importantly, increased S100a4 expression
was validated in B cells from Em-TCL1Akt-C mice that were de-
pendent on Nfatc1 and Rbjk/Notch regulation but not on FoxO1
in B cells derived from Gsk3bS9A/1(Nfatc1 nuclear-excluded),
Cd19-Cretg/wt; R26-fl-Notch1-IC (Cd19-CreNotch-IC nuclear-active
Notch1), and Cd19-Cretg/wt; R26-fl-FoxO1ADA (Cd19-CreFoxO1ADA

nuclear FoxO1) (supplemental Figure 5.2A-B). Furthermore, we
validated increased expression for Hes1 at the RNA level and for
Pd-l1 at the protein level in B cells from Em-TCL1Akt-C mice. In
conclusion, we identified a specific aggressively transformed
cluster in the Em-TCL1Akt-C mice appearing among the indolent
leukemic B cells defined by Akt-mediated cell–cell interaction
associated transcriptional regulation as well as a Notch/S100-
protein signature corresponding to the aggressive nature of RT.

scRNA-Seq identifies that prosurvival signaling
drives enrichment of Cd41 T cells in the TME of
Em-TCL1Akt-C mice
To further explore the potential biological importance of up-
regulation of the cell–cell interaction signature in the malignant
B cells, we analyzed the TME in the integrated single-cell dataset,
identifying an enrichment of Cd41 T cells in Em-TCL1Akt-C mice
comparedwith Em-TCL1 andCd19-Cremice (Figure 5E). DE gene
analysis between Em-TCL1Akt-C and Em-TCL1 cells was conducted,
identifying 483 significantly DE genes; upon GO analysis, we
observed a lack of GO terms with a disease tendency score in-
dicative of Em-TCL1Akt-C enrichment (B cells 5 24% .0.1, Cd41

T cells 5 0.42% .0.1) (supplemental Tables 5.4 to 5.5; supple-
mental Figure 5.2C). Therefore, we assessed the GO terms
enriched for genes significantly upregulated in Em-TCL1 cells,
identifying programmed cell death–associated GO terms to be a
predominant feature in Em-TCL1 mice (Figure 5F). However, we
observed that the distribution of proapoptotic to antiapoptotic
genes differed between the two genotypes, with Em-TCL1Akt-C

cells proportionally composed of more antiapoptotic genes
(supplemental Figure 5.2D). Importantly, these genes included
central players in prosurvival signaling, such as Bcl2, as well as
other genes involved in T-cell biology (Ccr7 and Il4) (Figure 5G).
Finally, these antiapoptotic Em-TCL1Akt-C upregulated genes were
often found in the GO terms that were indicative of Em-TCL1Akt-C

enrichment, further supporting their importance in the milieu of
upregulated genes in theCd41 T cells of the Em-TCL1Akt-C TME. In
summary, we identified a TME population that may have been
elicited to proliferate with increased prosurvival capacity via the
RT malignant clone.

Overactivation of Notch signaling in Em-TCL1Akt-C

RT cells is supported by concomitant Dll1
overexpression on Cd41 T cells
Our experimental data from CLL and RT patient biopsy speci-
mens, in combination with the multiomics assessment of the Em-
TCL1Akt-C mouse model, provide various lines of evidence that
active Akt signaling drives Notch activation in CLL to RT
transformation (Figure 6A). To consolidate these findings, we
assessed the RNA expression of Notch receptors (Notch1-4) in
the malignant B cells, observing significant increases in ex-
pression ofNotch1 andNotch3 in Em-TCL1Akt-C vs Em-TCL1mice
as well as Notch target gene regulation (Figure 6B; supplemental
Figure 6A). Moreover, significantly higher protein levels of
Notch1 were observed in Em-TCL1Akt-C mice displaying a fully
transformed RT phenotype at 7 to 8 months of age but not in
mice at 3 to 4 months (Figure 6C). Importantly, only the Cd51

RT cells revealed Notch1 expression, whereas Cd5– B cells from
the same mouse exhibited levels similar to CLL cells (Figure 6D).
Notch1 is activated after ligand-binding presented on adjacent
cells, namely Jagged (Jag) and delta-like (Dll) proteins.37-39 To
specify the ligand-presenting cells, we analyzed protein levels of

Figure 4. Overexpression of S100a4, increased phosphorylation of Hes1, and increased activation of Cdk4 and Wee1 infer Notch1 activation. (A) Flow diagram of
phosphoproteomic/proteomic experimental setup. (B) Log2 label-free quantification (LFQ) intensity values of all proteins captured (left panel) or phosphopeptides (right panel)
across all mice per genotype. (C) Volcano plots representing the difference in log2 LFQ intensity of proteins (left panel) and phosphopeptides (right panel) between Em-TCL1
(n 5 4) and Em-TCL1Akt-C (n 5 4) mice. Significant DE proteins/phosphopeptides defined as difference .1 and P , .05 (upregulated in Em-TCL1Akt-C 5 yellow;
downregulated5 pink). (D) Normalized upstream kinase scores for all 45 kinases with available PhosphoSitePlus kinome data. Bars represent the difference in upstream kinase
scores between Em-TCL1 (n 5 4) and Em-TCL1Akt-C (n 5 4) (upregulated in Em-TCL1Akt-C 5 yellow; downregulated5 pink). (E) Upstream kinase scores from the top significantly
upregulated kinases in Em-TCL1Akt-C mice. Significant differences between groups assessed by using Student t test, significant proteins/peptides defined as P , .05 as well as
difference .1 /,1 for phosphoproteomics/proteomics, whereas for upstream kinase analysis. P , .05 kinases were considered significant. NS, not significant.
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Figure 5. Cell–cell interactions and overexpression of S100a4/Hes1/Cd274(Pd-l1) defines RT gene signature in Em-TCL1Akt-C–enriched B-cell clusters. (A) Flow diagram
of scRNA-Seq experimental setup (upper panel). Integrated UMAP from Cd19-Cre (n5 2), Em-TCL1 (n5 4), and Em-TCL1Akt-C (n5 4) mice (n5 33 224 cells). Demarked clusters
represent B-cell tumor clusters enriched within either Em-TCL1 (blue) or Em-TCL1Akt-C (red) and the TME (black). (B) Dot plot representing the number of cells appearing in each
cluster per genotype (upper panel). Graphical representation of differential gene expression analysis and heatmap showing the normalized percent cell expression changes of
significantly differentially expressed genes (middle panel). Dot plot representing the median disease tendency score of GO term groups with the dot size representing the
number of genes associated with all GO terms (lower panel, left graph). Bar chart representing the percentage of GO term groups of the top 25 Em-TCL1Akt-C–associated GO
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Dll1 in splenic cells. Interestingly, we observed significantly in-
creased levels of Dll1 ligand on T cells, but not on other TME
cells nor on the RT cells of Em-TCL1Akt-C mice displaying a fully
transformed RT phenotype with specific expression on Cd41

T cells (Figure 6E-H; supplemental Figure 6B-C). Because Os
et al showed that Cd41 T cells support the survival and pro-
liferation of CLL cells, we decided to assess the proportion of
Cd41/Cd81 T cells in both genotypes.40 Importantly, we ob-
served a significantly enriched proportion of Cd41 Foxp31

T cells in Em-TCL1Akt-C mice, whereas the Cd81 T-cell population
remained unchanged (Figure 6I-K). In summary, these data show
that RT cells are supported by Dll1-expressing Cd41 T cells to
induce Notch1 overactivation.

B-cell–intrinsic Notch1-IC expression in Em-TCL1
mice recapitulates the Em-TCL1Akt-C RT phenotype
To elucidate whether CLL to RT transformation via Notch1 could
be driven intrinsically in the Em-TCL1 mouse model, we used a
conditional model of constitutively activated Notch1-IC19

intercrossed with Em-TCL1 and Cd19-Cremice (Em-TCL1Notch1-IC)
(supplemental Figure 7A). The initial disease development
of Cd191/Cd51 B cells in the blood of Em-TCL1Notch1-IC mice
was significantly slower than in Em-TCL1 mice (supplemental
Figure 7B). Mice did not show reduced survival compared with
Em-TCL1 mice, which could be explained due to altered B-cell
differentiation affected by theNotch1-IC allele.41 However, once
Cd51 B cells appeared in the blood, these mice rapidly suc-
cumbed to the disease, with a survival trajectory comparable to
that of Em-TCL1Akt-C mice (Figure 7A). At that age, Em-TCL1Notch1-IC

mice presented with massive splenomegaly, which was con-
firmed as RT showing a disrupted splenic architecture with
blastoid cells (Figure 7B-D). Furthermore, we observed that the
malignant B cells of Em-TCL1Notch1-IC mice were significantly in-
creased in size compared with Em-TCL1 counterparts (Figure 7E),
while also having significantly higher active Akt levels (Figure 7F;
supplemental Figure 7C). Finally, Em-TCL1Notch1-IC mice did not
show concomitant Dll1 overexpression on T cells in the TME,
confirming that constitutive activation of Notch1 is sufficient to
drive CLL to RT transformation without TME support (Figure
7G-H; supplemental Figure 7D-E). In conclusion, constitutive
activation of Notch1 in Em-TCL1 mice recapitulates the trans-
formed phenotype of aggressive lymphoma and functionally
identifies the Akt and Notch1 signaling axis as key determinants
of murine RT. Our model therefore clarifies that what occurs in
CLL toward RT in mice must be further validated in human
patients.

Discussion
Our analysis showed increased frequency of active AKT in pri-
mary RT samples to CLL samples, as well as in CLL samples with
high-risk mutations for RT, such as those carrying TP53 and
NOTCH1 mutations. This indicates that active AKT signaling
represents a key feature in disease progression beyond the
immediate contribution of respective oncogenic drivers.

To elucidate the functional impact of active Akt on CLL disease
pathogenesis, we crossed the Em-TCL1 mouse model with a
construct driving constitutive Akt activation specifically in B cells.
This method induced an aggressive lymphoma phenotype with
very high disease penetrance, mimicking the clinical features of
RT, namely slow disease development followed by sudden
progression with DLBCL-like morphology. This phenotype was
only observed in combination with Em-TCL1, which compared
with a lack of cancer-associated mutations in Cd19-CreAkt-C mice
supports the notion that constitutively active Akt alone is not
sufficient to drive leukemia/lymphomagenesis. Although it has
been proposed that TCL1 prolongs Akt activation,42 the con-
stitutive activation of Akt provided by the Rosa26 construct used
in this study was significantly higher than what can be achieved
by TCL1 overexpression alone.

Although genomic analyses of Em-TCL1 and Em-TCL1Akt-C mice
failed to identify recurrent mutated genes, a profile defined by
our “disease tendency score” categorized Em-TCL1Akt-C mice as
having an intermediary mutational signature between CLL and
DLBCL. Notwithstanding the preferential occurrence of genes
associated with RT in the Em-TCL1Akt-C model, including Notch1
does suggest a shared mechanism between murine and
human RT.

To trace these respective mechanisms, our multiomics analysis
revealed increased Notch signaling and the upregulation of
S100-proteins in Em-TCL1Akt-C cells by various means. In patients
with RT, the most frequently acquired mutation is activating
NOTCH1 (30% of all mutations).5,6,43 The evolutionary conserved
Notch1 signaling affects proliferation, maturation, and survival of
B cells44-46 and is induced by cell–cell interaction in which Dll
ligands on one cell type bind to Notch receptors on another to
proteolytically process the Notch intracellular domain (NICD)
that represents the active moiety to regulate gene expression.37

The S100-protein family has been implicated in various malig-
nancies as mediators of proliferation.25 In particular, S100A4 has

Figure 5 (continued) terms (lower panel, right graph). (C) Network visualization of all cell–cell associated GO terms from the analysis conducted in B. GO terms denoted as large
gray circles, Em-TCL1Akt-C and Em-TCL1 significant genes denoted as small red and blue circles, respectively, and gray lines represent the association between genes and GO
terms. (D) Dot plot of selected cell–cell associatedGO termgenes with biological links toNotch signaling, Pi3k/Akt signaling, or RT. Size of the dots represents the percentage of
cells with a normalized expression value.1, with the color of the dots representing the mean expression of each gene across all cells within the cluster. Additional annotation
beside the dot plot represents the number of transcription factor–binding sites for all 25 genes for FoxO1, Nfatc1, and Rbpjk/Notch1, respectively (left panel). Messenger RNA
expression validation in Cd191 splenocytes for S100a4 and Hes1 genes in Em-TCL1 and Em-TCL1Akt-C mice, as well as S100a4 in Gsk3bS9A/1 (Nfatc1 nuclear excluded), Cd19-
Cretg/wt; R26-fl-Notch1-IC (Cd19-CreNotch1-IC nuclearNotch1), and Cd19-Cretg/wt; R26-fl-FoxO1ADA (Cd19-CreFoxO1ADA nuclear FoxO1) via quantitative polymerase chain reaction.
Protein expression validation in CD191 splenocytes for Cd274 (Pd-l1) in Cd19-Cre, Em-TCL1, and Em-TCL1Akt-C mice (right panel). (E) Percentage of Cd41 T cells per mouse per
genotype as a function of all T cells (left panel). Graphical representation of differential gene expression analysis of Cd41 T cells (right panel) and heatmap showing the
normalized percent cell expression changes of significantly differentially expressed genes (lower panel panel). (F) Network visualization of all cell death–associated GO terms
from the analysis conducted in E. GO terms denoted as large gray circles, Em-TCL1Akt-C and Em-TCL1 significant genes denoted as small red and blue circles, and gray lines
represent the association between genes andGO terms. (G) Dot plot of selected cell death–associatedGO term genes. Size of the dots represents the percentage of cells with a
normalized expression value.1, with the color of the dots representing the mean expression of each gene across all cells within the cluster (left panel). Bar chart representing in
percent terms how often the genes presented occur in the top 25 Em-TCL1Akt-C–associated GO terms, with red bars for Em-TCL1Akt-C significant genes and blue bars for Em-TCL1
significant genes. *P , .05, **P # .01, ***P # .001 (unpaired, 2-sided Student t test). CLP, common lymphoid progenitor; CMP, common myeloid progenitor; MFI, mean
fluorescent intensity; NK, natural killer; NKT, natural killer T.
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Figure 6. Notch1 activation supported via Dll1 from Cd41 T cells. (A) Graphic representing the identification of Notch1 signaling as a central component of all data presented in
Figures 1 to 5. (B)Messenger RNAquantification ofNotch receptors and (C) representative blot and relative protein quantification of activatedNotch1 in Em-TCL1 and Em-TCL1Akt-Cmice at
3 to 4months and 7 to 8months via flow cytometry, respectively. (D) Representative blot of activatedNotch1 in Cd5– andCd51B cells via flow cytometry in Em-TCL1 and Em-TCL1Akt-Cmice
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quantification of Cd41 Foxp3– T cells (J) and of Cd41 Foxp31 regulatory T cells (K). *P , .05, **P # 0.01, ***P # .001 (unpaired, 2-sided Student t test).
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been implicated in relapsed/refractory DLBCL47 as well as a
potential target in AML,48 with a functional role in metastasis and
cytokine release.25

Here, we observed in relation to Notch signaling increased
Hes1 expression and phosphorylation and increased activity of

Wee1 and Cdk4 in RT cells via phosphoproteomics/proteomics.
Hes1 is a bona fide target gene of Notch signaling,31 whereas
Wee1 and Cdk4 have been previously observed to be asso-
ciated with Notch signaling activation.33,34 Furthermore, in the
scRNA-Seq analysis, we identified a cell–cell interaction GO
term profile in Em-TCL1Akt-C enriched/shared clusters, with
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significantly increased expression of genes involved in S100-
protein and Notch signaling, including; S100a4, S100a9,
Cd44, Itga4 (Cd49d), Hes1, Flna, and Zmiz1. S100A4 has been
shown to be regulated by both Notch and PI3K/AKT signaling
in head and neck cancers (10.1158/0008-5472.CAN-10-2350),
and S100A9 has been implicated in interleukin-17–induced
NOTCH1 activation of oligodendrocyte progenitor cells in
demyelinating disease.49 Cd44 and Cd49d have both been
implicated as high-risk markers in CLL,50,51 with Cd44 also
shown to synergize with Notch1 to drive T-cell acute lym-
phoblastic leukemia in vivo,52 whereas Cd49d has been as-
sociated with trisomy 12 status and NOTCH1mut status, both
of which are associated with CLL to RT transformation.53,54

Finally, such Akt-Notch1 interactions have also been pre-
viously reported in a drosophila screen and in T-cell acute
lymphoblastic leukemia.55,56 Furthermore, an Akt/Notch2-IC
synergism promotes B-cell differentiation toward the marginal
zone compartment.41 Taken together, all these findings
suggest the overactivation of Notch signaling driven by
constitutive Akt activation and vice versa.

Clearly, Akt-mediated transcriptional control regulates Notch
expression also in nontransformed cells; however, because we
were only able to validate Notch1 activation and target gene
upregulation in RT cells, we expanded our perspective toward
the TME as a potential source of stimulating ligands. Here, we
identified a specific increase of Cd41 Foxp31 T cells in the Em-
TCL1Akt-C mice with increased prosurvival capacity, which we
later characterized as having increased Dll1 ligand expression.
We hypothesize that the constitutive activation of Akt drives a
cell–cell interaction program that elicits the expansion of Cd41

T cells and overexpression of Dll1, which in turn provides
Notch1 activation facilitating CLL to RT transformation. This
hypothesis is supported by our data that Em-TCL1Akt-C mice
have sudden disease onset between 6 and 8 months, while
already showing increased Notch1 expression but lacking
active Notch1-IC pretransformation. Beyond this hypothesis,
we show the transformative potential of active Notch1 sig-
naling in Em-TCL1Notch1-IC mice displaying complete histo-
morphologic features of aggressive RT.

Ultimately, our data suggest that aggressive transformation of
indolent lymphomas does not only depend on the acquisition of
genomic aberrations but may also be initiated by a changed
functional status of a potentially oncogenic signaling pathway
fueled from the TME. This model will allow further elucidation
of targeted RT therapies, including PI3K/AKT and immune
checkpoint inhibition approaches. Particularly, we are able to
model immune checkpoint inhibition and target TME interac-
tions such as NOTCH1 to combine these approaches to over-
come refractory RT.57,58 Finally, pAKTmight be considered a new
biomarker for high-risk CLL, and combined inhibition of PI3K/
AKT and NOTCH1 might represent a potential treatment option
for high-risk CLL and RT patients with active AKT.
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