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KEY PO INT S

l GC resistance remains
a clinical challenge in
the treatment of
lymphoid
malignancies.

l We demonstrate that
PGE2 increases cAMP
and potentiates GC-
induced leukemic
cell death.

Glucocorticoid (GC) resistance remains a clinical challenge in pediatric acute lymphoblastic
leukemia where response to GC is a reliable prognostic indicator. To identify GC resistance
pathways, we conducted a genome-wide, survival-based, short hairpin RNA screen in
murine T-cell acute lymphoblastic leukemia (T-ALL) cells. Genes identified in the screen
interfere with cyclic adenosine monophosphate (cAMP) signaling and are underexpressed
in GC-resistant or relapsed ALL patients. Silencing of the cAMP-activating Gnas gene in-
terfered with GC-induced gene expression, resulting in dexamethasone resistance in vitro
and in vivo. We demonstrate that cAMP signaling synergizes with dexamethasone to
enhance cell death in GC-resistant human T-ALL cells. We find the E prostanoid receptor 4
expressed in T-ALL samples and demonstrate that prostaglandin E2 (PGE2) increases in-
tracellular cAMP, potentiates GC-induced gene expression, and sensitizes human T-ALL
samples to dexamethasone in vitro and in vivo. These findings identify PGE2 as a target for
GC resensitization in relapsed pediatric T-ALL. (Blood. 2021;137(4):500-512)

Introduction
Glucocorticoids (GCs) are a mainstay of treatment of lymphoid
malignancies, and resistance to GCs is the single most reliable
prognostic indicator for relapse among children with acute
lymphoblastic leukemia (ALL).1,2 Despite the importance of GCs
in ALL therapy, the biologic mechanisms that result in de novo or
acquired resistance are poorly understood.

GCs exert their effect through the GC receptor (GR, encoded by
the NR3C1 gene). The GR is a cytosolic ligand-activated zinc
finger transcription factor of the nuclear receptor family. In the
absence of ligand, GR resides in the cytoplasm, sequestered by
its interactions with heat shock proteins. On ligand binding, the
GR dissociates from this complex and translocates into the
nucleus, where it binds DNA as a homodimer at tandem GC-
responsive elements (GREs) or as a monomer at a GRE half site.
The GR is phosphorylated after ligand binding by several serine/
threonine kinases including p38 mitogen-activated protein ki-
nase (MAPK), cyclin-dependent kinase (CDK)1/5, and protein
kinase B (AKT)1, which regulate GR transcriptional activity and/or
localization.3-6 In lymphoid cells, GR induces expression of
BCL2L11, which encodes the proapoptotic BCL-2–like protein
11 (BIM), triggering apoptosis.7 Other proapoptotic proteins
such as PUMA also contribute as BIM-deficient murine lymphoid
cells remain sensitive to dexamethasone-mediated apoptosis.8,9

GC resistance can involve upregulation of antiapoptotic family
members including BCL2 and MCL1, which antagonize BIM
function,10,11 or can involve epigenetic deregulation of BCL2L11.12

GC resistance can also reflect MAPK, Janus kinase (JAK)/signal
transducer and activator of transcription (STAT), WNT, or phos-
phatidylinositol 3-kinase/AKT/mechanistic target of rapamycin
(mTOR) pathway activation,6,13-16 which promotes survival and may
also directly disable GR function(s).6 Several strategies have been
explored to enhance GC-mediated apoptosis of leukemic cells
in preclinical studies, including use of mTOR or glycolysis
inhibitors,10,16-18 and in T-cell ALL (T-ALL), where NOTCH1 is fre-
quently mutated, g secretase inhibitors.14 However, these agents
show limited efficacy, and toxicity precludes their incorporation
into reinduction therapy for relapsed patients. Herein we un-
dertook a functional approach to identify GC resistance genes.

Materials and methods
Primary mouse and patient T-ALL cells and cell lines
Mouse Tal1/Lmo2 T-ALL and human T-ALL cell lines were cul-
tured as described previously.19 Human T-ALL cell lines were
validated using STR10 authentication assay. Primary human
T-ALL samples were obtained from children with T-ALL enrolled
in clinical trials at the Dana-Farber Cancer Institute or University
of Massachusetts Memorial Hospital. Samples were collected
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with informed consent, with approval of the institutional review
board, and in accordance with the Declaration of Helsinki. Pri-
mary human T-ALL samples were expanded and cultured as
previously described.19

In vivo studies
For complete details see supplemental Methods, available on
the Blood Web site. Briefly Gnas-deficient mouse T-ALL cells
were transplanted into sublethally irradiated recipients. Mice were
then randomized and injected intraperitoneally with vehicle or
dexamethasone daily for 3 weeks (5 days on; 2 days off). T-ALL
patient-derived xenografts (PDXs) were established as described
previously.20,21 When human leukemic blasts reached 5% or 20%
(human CD451), PDXs were treated with vehicle, dexamethasone,
16,16-dimethyl-prostaglandin E2 (dmPGE2), or the combination.
Mice were treated for 2 weeks (5 days on; 2 days off), and leukemic
burden or survival was measured. All mouse procedures used in
this study were approved by the University of Massachusetts
Medical School Institutional Animal Care and Use Committee.

Short hairpin RNA library infection and
MiSeq analysis
Library infection and preparation of the bar-coded library (se-
quences in supplemental Table 7) and samples were sequenced
using the MiSeq system as previously described.22 Complete
methods can be found in the supplementalMaterials andmethods.

DNA and RNA analyses
RNA was extracted and cDNA synthesized and quantitative
real-time polymerase chain reaction (qPCR) was performed as
previously described,19 using primers specified in supple-
mental Table 8. Gene expression was determined using the
DDCT method normalized to b-actin, and the vehicle control
was set to 1.

Cell viability and death assays
Leukemic cell lines or patient samples were treated with
dexamethasone or cyclic adenosine monophosphate (cAMP)-
activating agents for 48 to 72 hours, and metabolic activity was
assayed using the CellTiter-Glo chemiluminescence reagent
(Promega) or MTS reagent (Promega), and nonlinear dose-
response curves were fitted as described previously19 using
Prism 7 software (GraphPad). To quantify apoptotic cells, T-ALL
cells lines were stained with Annexin V and 7-aminoactinomycin
D (7AAD) following the manufacturer’s protocol (BD Bioscience)
and analyzed by flow cytometry.

Statistical measures
Data are presented as means 6 standard error of the mean
(SEM). Statistical analysis was performed using the unpaired,
2-tailed Student t test or 1- or 2-way analysis of variance with post
hoc Tukey’s test. Kaplan-Meier survival curves were performed
using GraphPad Prism software, version 7.0, as described
previously.19

Results
Whole-genome survival-based short hairpin RNA
screen identifies glucocorticoid resistance genes
To identify genes that regulate GC resistance in T-ALL, we
transduced murine T-ALL cells with a mouse whole-genome

lentiviral TRC (The RNAi Consortium) library, containing
;75 000 short hairpin RNA (shRNA) constructs directed against
16 000 genes in 15 pools in the form of high-titer lentiviral su-
pernatant (TRC library; 3-5 shRNAs per transcript). Leukemic cells
were infected at a multiplicity of infection of 0.2 to achieve a
single shRNA copy per cell, selected with puromycin, and
treated with dexamethasone to kill .99% of the leukemic cells
(Figure 1A). We conducted the screen in mouse T-ALL cells
because most human T-ALL cell lines fail to undergo sufficient
levels of apoptosis for a survival-based approach6,14 (supple-
mental Figure 1A-B). Mouse T-ALL cell lines are sensitive to
dexamethasone-induced apoptosis (supplemental Figure
1C-D; averageGI505 14 nM), thereby providing us with a unique
opportunity to identify genes that prevent dexamethasone-
induced apoptosis. We retested our shRNA pools for dexa-
methasone sensitivity and detected significantly fewer apoptotic
cells in the shRNA pools compared with nonsilencing (NS)
cells, indicating that the dexamethasone-resistant phenotype
was stable and reproducible (supplemental Figure 1E). To
ensure technical reproducibility, 2 replicate libraries (A and B)
were created using 2 individual barcodes. Scatter plots show
the correlation of log10 of shRNA abundance between pools
(Figure 1B; R 5 .99). Relative representation of each shRNA in
viable cells after dexamethasone treatment was determined by
counts per million reads (Figure 1C; supplemental Table 1).
The top hit in the screen was Nr3c1, which encodes the GR.
Multiple Nr3c1-specific shRNAs (TRC shRNAs numbers 223,
186, and 182) were enriched in the screen (Figure 1D). Im-
portantly, Nr3c1 shRNA rank correlated with both dexa-
methasone effects on leukemic cell viability and decreases in
Nr3c1 mRNA and protein levels (Figure 1E-G). Several other
genes known to interact with the GR or to mediate GC re-
sistance were identified (Figure 1H).23-26 Notably, tumor sup-
pressor genes important in ALL and GC resistance scored as
hits in our mouse screen.26-29 Additional genes identified in the
screen were found mutated in relapsed ALL samples30,31

(Figure 1H). Validation of candidate genes identified in the
shRNA screen was 74.5%; knockdown of 35 of 47 genes
resulted in GC resistance in mouse leukemia cells (Figure 1I;
supplemental Figure 1F).

We identified human orthologs to the top shRNAs (supplemental
Table 2) and cross-referenced with microarray data from 2
published studies of GC-sensitive and -resistant pediatric ALL
patients and from paired ALL samples isolated at diagnosis and
on relapse.32,33 We found that 272 genes identified in our screen
were downregulated in leukemia patients at relapse (Figure
1J-K). Analysis of microarray data from GC-resistant ALL patients
found 369 genes identified in the screen significantly decreased
in GC-resistant patient samples (supplemental Figure 1H-I).33

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis identified JAK-STAT and WNT pathways in dexa-
methasone resistance and relapse, consistent with previous
reports (Figure 1L; supplemental Tables 4-6).15,16 Notably, the
cAMP pathway was significantly enriched in each data set with
several genes identified in the mouse screen downregulated in
GC-resistant or -relapsed ALL patients (Figures 1L-N; supple-
mental Figure 1G,J,K; supplemental Tables 4-6). The canonical
cAMP cascade initiated by heterotrimeric guanine nucleotide–
binding protein (G protein)–coupled receptors, stimulates
adenyl cyclases (ACs), and activates protein kinase A (PKA) or the
guanine exchange factor EPAC1 (Figure 2A).

PGE2 SENSITIZES T-ALL CELLS TO GC CELL DEATH blood® 28 JANUARY 2021 | VOLUME 137, NUMBER 4 501

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/4/500/1798350/bloodbld2020005712.pdf by guest on 08 June 2024



1

2

3

4

5

6

shNr3c1 182

shNr3c1 186

shNr3c1 223

shRNA rank

Co
un

ts 
pe

r m
ill

io
n 

(lo
g 2)

NS
18

2
18

6
22

3 NS
18

2
18

6
22

3

0

1

2

3

4

Nr
3c
1

re
la

tiv
e 

ex
pr

es
sio

n 
(A

U)

*** ***

*

shNr3c1 shNr3c1 

0

NS
18

2
18

6
22

3 NS
18

2
18

6
22

3

20

40

60

80

100

Pe
rc

en
t v

ia
bl

e 
(%

)
***

***

***

**

shNr3c1 shNr3c1 

H

UTX
FHIT

RCAN1
SMARCA1
SMARCD2

BANP
GATA3
SOX6

NR3C1

MED12
PTCH1

CREBBP IKZF1
BTG1

Tumor Suppressors

GC Resistance
Genes

Mutated in ALL

GR Interacting
Proteins

NCOR2
STAT3

CREB1
NCOA4
PTGES3

SMARCD1

EP300

M

ATP1A3
ATP1B3
CALM3
CALML3
GRIA4

.

ADCY9
ATP1A2
CREB1

CREBBP
RHOA

GNAS
PTCH1
Ppde3b
GRIN2B
EP300

Resistance genes Relapse genes N

0

500

1000

1500

2000

PD
E3
B

Diagnosis Relapse

P value 0.0041

40

80

120

160

PT
CH

1

Diagnosis Relapse

P value 0.0300

Diagnosis Relapse

0

100

200

300

400

RH
OA

P value 0.0286

2000

4000

6000

8000

10000

GN
AS

Diagnosis Relapse

P value 0.0349

30

40

50

60

70

80

AT
P1
A2

Diagnosis Relapse

P value 0.0452

20

40

60

80

100

CR
EB
1

Diagnosis Relapse

P value 0.0003

0

5000

10000

15000

CR
EB
BP

Diagnosis Relapse

P value 0.0252

0

500

1000

1500

2000

2500

AD
CY
9

Diagnosis Relapse

P value 0.0495

0

100

200

300

400

GR
IN
2A

Diagnosis Relapse

P value 0.0196

0

2000

4000

6000

EP
30
0

Diagnosis Relapse

P value 0.0209

5 10 15 20 25

5

10

15

20

25

Reads pool A (log10)

Re
ad

s p
oo

l B
 (l

og
10

) R=.99

B

> 1
00

0

10
0-

10
00

70
-1

00
10

-7
0

0-
10

0

500

1000
2000
3000
4000

20000
40000
60000

Counts per million reads

Nu
m

be
r o

f s
hR

NA
s Pool A

Pool B

C

Recover surviving 
cells

Puromycin
selection

Dex
treatment 

50nM

48hrs 48hrs 96hrs

Mouse T-ALL cells

Infect with mouse
shRNA Library 

Isolate genomic DNA
Create barcoded library

Sequence

A

DMSO DEX D FE DMSO DEX G

N
S

15
7

15
9

18
2

18
6

22
3

N
S

15
7

15
9

18
2 

18
6

22
3

DMSO DEX 

NR3C1

ERK1/2

shNr3c1 shNr3c1 

I

100010 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

DEX (nM)

Re
la

tiv
e 

via
bi

lit
y

0

NS

shOlfr1294
shKlk1b1

shEsrrb

shRfx3
shStat3
shIcam4

shSox2
shPpp5re2

shIkzf1
shEp300

shNr3c1
shWnt5a
shGnas
shAdsl
shAdssl1
shItgal
shSele
shItgb1
shCreb1
shRcan1
shNcor2

Genes
identified in

shRNA
screen

Genes
significantly
decreased
at relapse

272

KJ

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

2

4

6

Log fold change of probe

-lo
g(

P 
va

lu
e)

 o
f p

ro
be

272 genes L
Category Term Count % PValue

Diagnostic vs Relapse hsa04024:cAMP signaling pathway 10 3.68 0.0013
GC Sensitive vs Resistance #2 hsa04630:Jak-STAT signaling pathway 8 4.30 0.0024
Diagnostic vs Relapse hsa00230:Purine metabolism 9 3.31 0.0025
GC Sensitive vs Resistance #2 hsa04151:PI3K-Akt signaling pathway 12 6.45 0.0043
GC Sensitive vs Resistance #1 hsa04020:Calcium signaling pathway 8 3.45 0.0068
GC Sensitive vs Resistance #1 hsa04024:cAMP signaling pathway 8 3.45 0.0116
GC Sensitive vs Resistance #2 hsa04024:cAMP signaling pathway 8 4.30 0.0131
Diagnostic vs Relapse hsa04630:Jak-STAT signaling pathway 7 2.57 0.0134
GC Sensitive vs Resistance #2 hsa04060:Cytokine-cytokine receptor interaction 8 4.30 0.0354
Diagnostic vs Relapse hsa04310:Wnt signaling pathway 6 2.21 0.0385
Diagnostic vs Relapse hsa04922:Glucagon signaling pathway 5 1.84 0.0446
GC Sensitive vs Resistance #2 hsa04623:Cytosolic DNA-sensing pathway 4 2.15 0.0482

Gene/shRNA IC50 nM Gene/shRNA IC50 nM

Ns 9.037 Nr3c1 NA
Esrrb 537.6 Wnt5a 10.65

Olfr1294 390.7 Gnas 51.47
Klk1b1 22.17 Adsl 27.59
Rfx3 31.03 Adssl1 10.6
Stat3 735.1 Itgal 5.26
Icam4 534.8 Sele 31.56

Ppp5re2 28.56 Itgb1 7.287
Sox2 371.3 Creb1 5.83

Ep300 11.19 Rcan1 18.92
Ikzf1 841.6 Ncor2 26.77

Figure 1. A genome-wide shRNA screen for dexamethasone resistance identify genes enriched in cAMP signaling. (A) Schematic of whole-genome survival-based shRNA
screen performed in the mouse T-ALL cell line 1390. (B) Biological reproducibility of the relative changes in shRNA abundance between 2 independent preparations of shRNA
MiSeq libraries. (C) Number of shRNAs identified by counts per million reads in MiSeq analysis. (D) shRNA rank by average counts per million determined by MiSeq. shRNAs to
the glucocorticoid receptor (Nr3c1) are highlighted in red. (E) Annexin V/7AAD staining of mouse T-ALL 1390 cells stably expressing nonsilencing (NS) orNr3c1 shRNAs treated
with vehicle or dexamethasone (50 nM) for 48 hours. (F) Quantitative PCR (qPCR) analysis of Nr3c1mRNA in mouse T-ALL cells transduced withNr3c1-specific shRNAs or an NS
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Silencing of cAMP pathway components results in
glucocorticoid resistance in T-ALL
shRNAs targeting several components of the cAMP pathway
were enriched in our screen including several G protein–coupled
receptors (GPCRs) (Olfr294, Tas2r126), AC 3 and 9 (Adcy3,9),
activating guanine nucleotide binding protein, a-stimulating
Ga subunit Gnas and guanine nucleotide binding protein,
a-transducing 2 Gnat2, and the cAMP responsive element
binding proteins Creb1,3,5 (Figure 2A; supplemental Table 1).
Knockdown of these genes in the mouse T-ALL cell line 1390
reduced dexamethasone-induced cell death (Figure 2B; sup-
plemental Figure 1F).

Two shRNAs targeting Gnas that encodes the Ga stimulatory
subunit (Gas) of the heterotrimeric G proteins that mediate GPCR
signaling were among the top 200 genes enriched in our shRNA
screen (supplemental Table 1). Both shRNAs resulted in greater
than 50% reduction in Gnas expression in mouse T-ALL 1390
cells (Figure 2C) and resistance to dexamethasone-induced
cell death, increasing the GI50 by 12-fold (Figure 2D). Similar
effects were observed in the mouse T-ALL cell line 5059
(Figure 2G-H). Dexamethasone induced apoptosis on average in
69 6 2.1% of mouse T-ALL cells, whereas Gnas silencing re-
duced dexamethasone-induced apoptosis to 32.75 6 3.3%
(Figure 2E,G). We hypothesized that Gnas knockdown may me-
diate GC resistance by interfering with GR transcription and
quantified dexamethasone-induced gene expression in mouse
T-ALL (1390) cells stably expressing NS, Gnas-specific shRNAs
(TRC056060), or an Nr3c1-specific shRNA (TRC223). We de-
tected significant decreases in the mRNA levels of known
GR target genes in Gnas-deficient but not control leukemic
cells (Figure 2F). As expected, Nr3c1 knockdown prevented
dexamethasone-induced gene expression (Figure 2F). To test
whether a Gnas deficiency alters the dexamethasone response
in vivo, we transplanted mice with isogenic mouse 1390 leukemia
cells stably expressing NS orGnas- orNr3c1-specific shRNAs and
treated mice with vehicle or dexamethasone (Figure 2I). Although
mice engrafted with NS control leukemic cells and treated with
vehicle died from leukemia with a mean latency of 36.5 days,
dexamethasone treatment prevented leukemic progression in 10
of 11 mice (Figure 2J). No significant difference in disease latency
or penetrance was observed between vehicle or dexamethasone-
treated mice transplanted with shGnas- or shNr3c1- transduced
leukemic cells (Figure 2J), revealing that Gnas, like Nr3c1
knockdown, confers dexamethasone resistance in vivo.

GNAS deficiency reduces intracellular cAMP and
NR3C1 expression in mouse and human T-ALL cells
We found that Gnas suppression in mouse 1390 T-ALL cells
reduced basal Nr3c1mRNA and protein levels (Figure 3A-B). To

determine whether cAMP signaling stimulates Nr3c1 transcrip-
tion and induces cell death, we used the adenylate cyclase
activating agent forskolin. Forskolin increases intracellular cAMP,
Nr3c1 mRNA, and protein levels and induces apoptosis in
mouse T-ALL cells (Figure 3C-F). GC induced Nr3c1 mRNA
levels (Figure 3D); however, NR3C1 protein levels were reduced
in mouse T-ALL cells treated with dexamethasone for 6 hours
(Figure 3E) because of GR ubiquitination and degradation.34 By
contrast, forskolin significantly increased both NR3C1 mRNA
and protein levels (Figure 3D-E). GNAS also regulates adenylate
cyclase activity,35,36 and we found that Gnas silencing interfered
with forskolin-induced increases in intracellular cAMP, Nr3c1
expression, and leukemic cell death (Figure 3C-F).

We also examined the effects of GNAS knockdown in human
ALL cells by stably transducing DND41 or NALM-6 cells with a
NS shRNA or with 2 GNAS-specific shRNAs. Both shRNAs re-
duced GNAS mRNA levels compared with NS control (Figure
3G,P). GNAS silencing in DND-41 blunted forskolin-induced
increases in intracellular cAMP and prevented forskolin effects
on leukemic cell viability in a dose-dependent manner (Figure
3H-I).GNAS deficiency also reduced basalNR3C1 protein levels
and dexamethasone-induced leukemic cell death and signifi-
cantly altered the dexamethasone GI50 by approximately 200-
fold (Figure 3J-L; from 0.1 to 26 nMwith TRC413 or 19.2 nMwith
TRC417). A GNAS deficiency in DND41 also interfered with
dexamethasone- and cAMP-induced increases in NR3C1mRNA
levels and significantly reduced GR target gene expression
(Figure 3M-N). Similarly, a GNAS deficiency in the human B-ALL
cell lineNALM-6 shifted the dexamethasone dose response 176-
to 445-fold (from 0.06 to 10.6 mM with TRC413 or 26.7 mM with
TRC417) and blunted dexamethasone-induced gene expression
(Figure 3O-P). Together these data demonstrate that a GNAS
deficiency inmouse and human T-ALL cells reduces cellular cAMP
and NR3C1 expression levels and alters dexamethasone sensi-
tivity in mouse T-ALL cells and human T- and B-ALL cell lines.

cAMP synergizes with dexamethasone to reverse
GC resistance in human T-ALL cells.
Intracellular cAMP homeostasis is maintained by phosphodies-
terases (PDEs) that degrade intracellular cyclic nucleotides
converting cAMP into AMP. PDEs are expressed in ALL cells37;
therefore, we treated human T-ALL cells with the broad spec-
trum PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX) to main-
tain intracellular cAMP levels38 in the presence of increasing
concentrations of forskolin. We demonstrate that forskolin/IBMX
(designated F/I) treatment significantly alters the dexametha-
sone GI50 from 0.0183 to 0.0041 mM in KOPTK1 cells, resulting
in 54-fold decrease in the concentration of dexamethasone
required to induce equivalent leukemic cell death (Figure 4A).

Figure 1 (continued) shRNA after dexamethasone (100 nM) treatment of 6 hours. (G) NR3C1 protein levels in mouse T-ALL 1390 cells expressing NS or Nr3c1 shRNAs treated
with vehicle or dexamethasone (100 nM) for 6 hours. (H) Venn diagram showing genes identified in shRNA screen that interact with NR3C1, have tumor suppressor function, been
previously implicated in glucocorticoid resistance, and are mutated in ALL patients. (I) Validation of selected shRNAs identified in the shRNA screen using MTS assay in mouse
T-ALL cell line 1390 after dexamethasone (0-1 mM) treatment of 48 hours. All data were normalized to vehicle-treated cells. (J) Volcano plot showing genes identified in shRNA
screen cross referenced with genes differentially expressed in microarray of paired ALL patient samples at the time of diagnosis or at relapse. (K) Venn diagram of genes
identified in shRNA screen and decreased in microarray tables of relapse ALL patients (P , .05; N 5 49 paired patient samples). (L) KEGG pathway analysis performed in the
Database for Annotation, Visualization and Integrated Discovery (DAVID) on genes identified in shRNA screen and genes significantly downregulated at the time of relapse
(GSE28460, or in GC-resistant patient samples (GSE66702, GSE66705). (M) Venn diagram of cAMP genes identified in shRNA screen and decreased in relapsed patient (relapsed
genes, right circle) or GC resistant patient samples (resistance genes, left circle). (N) Expression levels of cAMP genes in 49 paired samples at diagnosis and on relapse as
determined by microarray identified in shRNA screen (GSE28460). Paired t test values are shown, and connecting lines represent paired samples. All results are averages of at
least 3 independent experiments, and error bars represent SEM. *P , .05, **P , .01, ***P , .001.
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Figure 2. Gnas deficiency inmouse T-ALL cells results in dexamethasone resistance in vitro and in vivo. (A) Schematic of cAMP pathway highlighting genes identified in the
shRNA screen using red. (B) Quantification of apoptotic 1390 T-ALL cells stably infected with shRNAs to cAMP pathway member and treated with vehicle or dexamethasone
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and error bars represent SEM. *P , .05, **P , .01, ***P , .001.
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Figure 3. GNAS deficiency reduces NR3C1 levels and results in dexamethasone resistance in mouse and human T-ALL cells. (A) qPCR analysis of Nr3c1mRNA in mouse
T-ALLs expressing NS or Gnas shRNAs. (B) NR3C1 protein levels in mouse T-ALL cells stably transduced with NS or Gnas-specific shRNAs (TRC056060). Protein levels of 3
separateWestern blots quantifed by densitometric analysis. (C) Intracellular cAMP levels of 13 106 mouse T-ALL cells stably transduced with NS orGnas shRNAs after vehicle or
forskolin (100 nM) treatment for 30minutes. (D-E) qPCR analysis ofNr3c1mRNA (D) andNR3C1 protein levels (E) in mouse 1390 T-ALL cells treated with dexamethasone (100 nM)
or forskolin (100 nM) for 6 hours. (F) Quantification of apoptotic cells after 48 hours of vehicle or forskolin treatment (10 or 100 nM) of mouse T-ALL 1390 cells expressing NS or a
Gnas shRNA. (G) qPCR analysis ofGNASmRNA in the human T-ALL cell line DND41 stably transduced with NS orGNAS-specific shRNAs. (H) Intracellular cAMP levels in 23 106

DND41 cells transduced with NS orGNAS-specific shRNAs treated with vehicle or forskolin (10mM) for 30 minutes. (I) Relative viability measured by cell titer glo of DND41 cells
transduced with NS orGNAS-specific shRNAs after treatment with increasing concentrations of forskolin (0-100 mM) for 72 hours. (J) NR3C1 and ERK1/2 protein levels in DND41
cells transduced with NS or GNAS-specific shRNAs. (K) Quantification of apoptotic DND41 cells transduced with NS or GNAS-specific shRNAs after vehicle or dexamethasone
treatment (100 nM) for 72 hours. (L) Relative viability measured by cell titer glo of DND41 cells transduced with NS or GNAS-specific shRNAs after treatment with increasing
concentrations of dexamethasone (0-10 mM) for 72 hours. Data are normalized to vehicle-treated cells. (M) qPCR analysis ofNR3C1mRNA levels in DND41 cells transduced with
NS orGNAS shRNAs treated with vehicle, dexamethasone (1mM), or forskolin (10mM) for 6 hours. (N) qPCR analysis of NR3C1 target genes in DND41 cells transduced with NS or
GNAS shRNAs and treated with vehicle or dexamethasone (1 mM) for 6 hours. (O) Relative viability measured by cell titer glo of NALM-6 cells transduced with NS or GNAS-
specific shRNAs after treatment with increasing concentrations of dexamethasone (0-10mM) for 72 hours. Data are normalized to vehicle-treated cells. (P) qPCR analysis ofGNAS,
NR3C1, BCL2L11, and TSC22D3 in NALM-6 cells transduced with NS orGNAS shRNAs treated with vehicle or dexamethasone (1 mM) for 6 hours. ALL results are averages of at
least 3 independent experiments, and error bars represent SEM. *P , .05, **P , .01, ***P , .001.
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The human T-ALL cell line CUTLL139 was resistant to dexametha-
sone at the concentrations tested; however, when combined with
the cAMP-elevating agents (F/I), dexamethasone significantly
arrested leukemic cell growth (Figure 4C). Isobologram analysis
revealed that cAMP and dexamethasone acted synergistically to
impair human T-ALL growth (Figure 4B,D). Dexamethasone treat-
ment of GC responsive human T-ALL cell lines DND41 andKOPTK1
induced apoptosis on average in 31.5% and 28.2% of the cells,
respectively, but hadno significant effects on cell death inCUTLL1or
MOLT4 cell lines (Figure 4E; supplemental Figure 1B). The cAMP-
inducing regimen was as effective as dexamethasone in inducing
apoptosis in KOPTK1 (average, 30.76 12%) but had little effect on
the cell death observed in other human T-ALL cell lines (Figure 4E).
When used in combination with dexamethasone, cAMP activation
significantly increased the leukemic cell death observed in CUTLL1
andMOLT4 (Figure 4E; average, 11-8562%and10-63619%).We
then examined the effects of cAMP signaling on dexamethasone
sensitivity of primary T-ALL patient samples.19,21 We found the IBMX
and forsoklin concentrations used for the human T-ALL cell
lines were toxic to some primary patient samples (supplemental
Figure 2B); therefore, we treated with forsoklin only to assess cAMP-
dexamethasone cooperativity in T-ALL patient samples. Forskolin
increased intracellular cAMP and cooperated with dexamethasone
to significantly reduce the viability of diagnostic (DX) and relapsed
(REL) T-ALL patient samples (Figure 4F-G, supplemental Table 9).
Collectively, these in vitro data suggest that cAMP signaling sen-
sitizes mouse and human T-ALL cells and patient samples to
dexamethasone-mediated cell death.

cAMP-PKA pathway resensitizes to
dexamethasone via effects on NR3C1 expression
and activity
To determine how cAMP sensitizes human T-ALL cells to
dexamethasone, we examined cAMP effects on NR3C1 expres-
sion, phosphorylation, and activation. We observed significant
increases in NR3C1 mRNA and protein levels in the human T-ALL
cell lines treated with F/I or with dexamethasone 1 F/I (Figure
5A-D). GCs trigger GR autoinduction,24 and modest increases in
NR3C1 transcription were detected in dexamethasone-treated
mouse and human T-ALL cells (Figures 3D and 5E-F). However,
GR activity is also regulated by receptor ubiquitination and deg-
radation,34 and consequently, reduced NR3C1 protein levels were
observed inmouse andhumanT-ALL cell lines at various times after
dexamethasone treatment (Figures 3E and 5B). By contrast, cAMP
signaling resulted in sustained increases in GR protein levels
(Figures 3E and 5B,D).

Phosphorylation of the NR3C1 at Ser211 stimulates glucocorti-
coid receptor nuclear localization and stability and enhances its
transcriptional activity.3,4,40-42 Although cAMPpathway activation
increased NR3C1 mRNA and protein levels, it did not trigger
detectable NR3C1 phosphorylation on Ser211 during the time
periods examined (Figure 5B,D). However, when cAMP activating
agents (F/I) were given with dexamethasone, significant increases
inNR3C1mRNA and protein levels were sustained over time in the
human T-ALL cell lines CUTLL1 and KOPTK1 (Figure 5). Impor-
tantly, cAMP activation and dexamethasone enhanced NR3C1
Ser211 phosphorylation compared with leukemic cells treated with
dexamethasone or F/I only (Figure 5B,D). Consistent with this
finding, the combination treatment (F/I 1 dexamethasone) sig-
nificantly enhanced the expression of GR regulated genes com-
paredwith treatment with dexamethasone or F/I only (Figure 5E-F).

To determine whether cAMP effects onNR3C1mRNA and protein
levels were mediated by PKA or EPAC1/2 (Figure 2A), we treated
KOPTK1 cells with the cAMP analog and PKA agonist 8-Br-cAMP
or the EPAC1/2 agonist 8CPT-2Me-cAMP. 8-Br-cAMP but not
8CPT-2Me-cAMP increased dexamethasone-induced leukemic
cell death (supplemental Figure 3A-B) and potentiated the ex-
pression of canonical GC-regulated genes in all 3 human T-ALL cell
lines examined (supplemental Figure 3C-E). Collectively, these
data suggest that cAMP-PKA signaling not only stimulates NR3C1
transcription but, in the presence of dexamethasone, enhances
NR3C1 Ser211 phosphorylation and transcriptional activity.

PGE2 increases cAMP and sensitizes GC resistant
T-ALL samples to dexamethasone-mediated
cell death
We analyzed RNA-seq data on T-ALL patients for GPCR that
interact with Ga subunits that stimulate cAMP production. We
found the prostaglandin E2 family of receptors specifically
PTGER4 abundantly expressed on pediatric T-ALL samples,
whereas PTGER1-3 are expressed at lower levels (Figure 6A;
supplemental Figure 4A-B). We validated these data by exam-
ining PTGER1-4 mRNA levels in human thymus and pediatric
T-ALL samples (Figure 6B). PGE2 binds E-type prostanoid EP1-4
receptors and depending on the Ga proteins (stimulatory [GaS]
or inhibitory [Gai]) coupled to these receptors can modulate the
cAMP, Ca21, and inositol phosphate levels.43 A long acting
derivative of PGE2, dmPGE2, binds EP4 and is in its fourth clinical
trial to improve hematopoietic stem cell engraftment and reduce
graft-versus-host disease.44 Consistent with its ability to stimu-
late the cAMP pathway, dmPGE2 induces a cAMP response
element binding protein (CREB) transcriptional signature in
human CD341 cells.45 We demonstrate that treatment of primary
T-ALL samples with PGE2 increases intracellular cAMP and
NR3C1 protein levels (Figure 6C-D).

To determine whether PGE2 potentiates GC responses, we
treated relapsed (REL-15, REL-10) and diagnostic (DX-19, DX-96,
DX-18) samples with increasing concentrations of dexametha-
sone with and without PGE2 and measured effects on cell via-
bility. PGE2 cooperated with dexamethasone to significantly
reduce the viability of T-ALL patient samples including those
from relapsed patients (Figure 6E). Notably PGE2 treatment
resulted in 31% to 76% decrease in cell viability compared with
1 mM dexamethasone alone, consistent with dexamethasone-
sensitizing effects observed with other cAMP-PKA activating
agents (Figure 4F; supplemental Figure 3A). PGE2 (like F/I and
the PKA agonist 8-Br-cAMP) cooperated with dexamethasone to
significantly increase NR3C1 expression and GR target gene
expression (Figure 6F-H; supplemental Figures 3 and 4C). PGE2
administration has been shown to increase PTGER2 and PTGER4
mRNA expression in T cells, whereas having no effect on the
expression of cAMP inhibitory receptors PTGER1 and PTGER3.46

Consistent with these data, PGE2 treatment induced PTGER4
expression in the pediatric T-ALL samples examined (Figure 6G,
H) revealing an auto-regulatory feedback loop that may po-
tentiate cAMP and GR signaling in leukemic cells.

PGE2 enhances the anti-leukemic activity of
dexamethasone in vivo
Our in vitro data using T-ALL patient samples suggest that
stabilized PGE2 may sensitize human leukemic cells to dexa-
methasone treatment in vivo. To test this, we engrafted NSG
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Figure 4. cAMP pathway activation synergizes with dexamethasone to reverse GC resistance in human T-ALL cells. Relative cell viability by cell titer glo of KOPTK1 (A) or
CUTLL1 (C) cells after treatment with dexamethasone (0-10mM), forskolin (0-100mM), and IBMX (100mM) or the combination (dexamethasone/forsoklin/IBMX) for 72 hours. Data
are normalized to vehicle-treated cells. Isobologram plot showing synergism between forskolin/IBMX and dexamethasone treatment in human T-ALL cell lines KOPTK1 (B) and
CUTLL1 (D). (E) Human T-ALL cell lines were treated with vehicle, forskolin (10 mM), and IBMX (100 mM), dexamethasone (1 mM), or with the combination (dexamethasone,
forskolin/IBMX) for 72 hours, and Annexin V/7AAD-positive cells were determined by flow cytometry. (F) Relative viability by cell titer glo of 4 T-ALL patient samples (GC sensitive:
TALL-x-7 and 18; GC resistant: TALL-x-14 and 10) treated in vitro with vehicle or dexamethasone (1 mM) in the presence or absence of forskolin (10 mM) for 72 hours. Data are
normalized to vehicle-treated cells. (G) Intracellular cAMP levels in 23 106 primary TALL-x-18 cells treated with vehicle or forsoklin for 30 minutes. The results are averages of at
least 3 independent experiments, and error bars represent SEM. *P , .05, **P , .01, ***P , .001.
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mice with pediatric T-ALL cells obtained at diagnosis, and when
human leukemic blasts reached 5% of mouse peripheral blood
(Figure 7B), mice were randomized to 1 of 4 groups and treated
with vehicle, dexamethasone, dmPGE2, or the combination ther-
apy (dexamethasone anddmPGE2; Figure 7A) for 2weeks and then

monitored for 4 additional weeks. To assess target engagement,
treatments were readministered, and 3 hours later, NR3C1 mRNA
levels were quantified in the spleens of mice from each treat-
ment group. We detected significant increases in NR3C1mRNA
levels in the spleens of mice treated with dexamethasone or
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dexamethasone and dmPGE2 compared with vehicle or
dmPGE2-only treated mice (Figure 7C). However, NR3C1
mRNA levels were not significantly increased in the spleens of
mice treated with the combination therapy compared with
those treated with dexamethasone only (Figure 7C). This
could indicate that, in vivo, a single acute dose of dmPGE2 is
not sufficient or that longer treatment periods (.3 hours) are
required to detect significant increases inNR3C1mRNA levels
over that observed in dexamethasone-treated leukemic cells.
Dexamethasone reduced splenomegaly in the leukemic mice;
however, only the combination therapy resulted in statisti-
cally significant reductions in spleen weight (Figure 7D-E).
Dexamethasone and dmPGE2 also significantly reduced the
leukemic burden in the bone marrow compared with vehicle-
treated mice (Figure 7F). Importantly, the combination ther-
apy was more effective than single treatments at reducing the
number of human leukemic cells in the bone marrow
(Figure 7F).

We then examined the effects of each treatment on the survival
of mice engrafted with a relapsed pediatric T-ALL sample that
exhibited GC resistance in vitro (Figure 4F). Using an experi-
mental design to reflect greater disease burden, mice were
engrafted with a relapsed pediatric T-ALL sample (REL-14), and
when human leukemic blasts reached 20% (Figure 7G), mice
were randomized to 1 of 4 treatment groups and treated for
2 weeks. Treatment with dexamethasone and dmPGE2 signifi-
cantly reduced the number of relapsed T-ALL cells in blood
compared with treatment with vehicle or either monotherapy
(Figure 7H). Mice treated with vehicle or dmPGE2 succumbed
rapidly to disease with an average latency of 47 days, whereas
mice treated with dexamethasone or dexamethasone and
dmPGE2 survived significantly longer, with average latencies of
67 vs 75.5 days, respectively (Figure 7I; P 5 .0363). These data
suggest that dmPGE2 enhances the anti-leukemic activity of
dexamethasone in vivo and suggest that dmPGE2 or other se-
lective EP4 agonists cooperate with dexamethasone to limit the
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expansion of diagnostic and relapsed pediatric T-ALL cells
in vivo.

Discussion
Weperformed a survival-based shRNA screen inmouse T-ALL cells
to identify GC resistance genes/pathways implicated in relapse
and/or GC resistance in human ALL. The top pathway identified in
the screen was the cAMP pathway. We demonstrate that multiple
shRNAs to cAMP signaling components at every level (GPCRs,
Gas, ACs, CREB) alter the dexamethasone response in mouse
T-ALL cells (Figure 2B). We show that a GNAS deficiency in mouse
and human T-ALL cells reduces intracellular cAMP and NR3C1
expression levels and significantly alters the dexamethasone dose
response (Figures 2 and 3). Consistent with these data, we find
genes involved in cAMP signaling underexpressed in GC-resistant
and -relapsed ALL patients (Figure 1; supplemental Figure 1).32,33

We show that cAMP-PKA signaling increases NR3C1 mRNA
and protein levels in mouse and human T-ALL cells (Figures 3

and 5; supplemental Figure 3), consistent with correlative
studies in a mouse lymphoma cell line and human CEM
subclones.3,38,47 cAMP-PKA signaling increases GR protein
levels but does not trigger GR Ser211 phosphorylation
(Figure 5; supplemental Figure 3), indicating that in contrast
to previous studies,48,49 PKA does not directly phosphory-
late the GR in human T-ALL cells. cAMP activation does not
significantly stimulate the expression of the GC-regulated
genes examined (Figure 5E-F); however, when combined
with dexamethasone, increases in phosphorylated Ser211 GR
levels correlate with significant increases in the expression of
GR target genes (Figure 5B,D-F). These data raise the pos-
sibility that CREBBP (c-AMP response element-binding pro-
tein CREB binding protein) mutations enriched in relapsed
ALL and associated with GC resistance28 may reflect, in part,
reduced GR expression/activity caused by impaired cAMP
signaling. Consistent with this idea, CREBBP mutations have
been shown by others to result in reduced expression of
glucocorticoid receptor–and cAMP-responsive CREB target
genes.28
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Although several studies have identified GC resistance pathways,
few have demonstrated that GC sensitization is achievable in vivo.
We provide evidence that PGE2 increases intracellular cAMP and
significantly shifts the dexamethasone dose response and en-
hances GC-induced gene expression in T-ALL patient samples
(Figure 6C-F; supplemental Figure 4C), suggesting that, like cAMP-
activating agents, PGE2 potentiates GR transcriptional activity. An
independent shRNA screen to identify GC resistance genes was
recently performed in the human B-ALL cell line NALM-6. This
study identified PTGES3 as the second most important gene for
GC-induced cell death behind the GR. In addition to serving as a
GR chaperone protein, PTGES3 converts prostaglandin endo-
peroxide H2 to PGE2.50 These data are consistent with our findings
and suggest that impaired PGE2-cAMP signaling contributes toGC
resistance and relapse in pediatric ALL.Moreover, dmPGE2 and the
EP4 agonist (ONO-4819CD) are well tolerated in patients,51,52 in-
dicating that either agent could be used as a GC sensitizer. Al-
though we demonstrate that PGE2 generates cAMP and sensitizes
human leukemic cells to dexamethasone in vitro and in vivo, other
cAMP-elevating receptors and/or phosphodiesterase inhibitors
could also be used to increase cAMP levels and enhance the anti-
leukemic activity of GCs.
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