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CLINICAL TRIALS AND OBSERVATIONS

Tumor-intrinsic and -extrinsic determinants of response to
blinatumomab in adults with B-ALL
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Blinatumomab, a bispecific antibody that directs CD3* T cells to CD19* tumor cells, shows
variable efficacy in B-progenitor acute lymphoblastic leukemia (B-ALL). To determine
tumor-intrinsic and -extrinsic determinants of response, we studied 44 adults with relapsed
or refractory B-ALL (including 2 minimal residual disease positive) treated with blinatu-
momab using bulk tumor and single-cell sequencing. The overall response rate in patients
with hematological disease was 55%, with a high response rate in those with CRLF2-
rearranged Philadelphia chromosome-like ALL (12 [75%)] of 16). Pretreatment samples of
responders exhibited a tumor-intrinsic transcriptomic signature of heightened immune
response. Multiple mechanisms resulted in loss of CD19 expression, including CD19 mu-
tations, CD19-mutant allele-specific expression, low CD19 RNA expression, and mutations
in CD19 signaling complex member CD81. Patients with low hypodiploid ALL were prone
to CD19 relapse resulting from aneuploidy-mediated loss of the nonmutated CD19 allele.
Increased expression of a CD19 isoform with intraexonic splicing of exon 2, CD19 ex2part, at
baseline or during therapy was associated with treatment failure. These analyses demonstrate
both tumor-intrinsic and -extrinsic factors influence blinatumomab response. We show that CD19 mutations are commonly
detected in CD19- relapse during blinatumomab treatment. Identification of the CD19 ex2part splice variant represents a
new biomarker predictive of blinatumomab therapy failure. (Blood. 2021;137(4):471-484)

® Multiple mechanisms
of acquired CD19
mutations contribute
to CD19 loss and
relapse with
blinatumomab.

® |dentification of CD19
ex2part alternative
splicing levels
represents a new
biomarker predictive
of blinatumomab
resistance or failure.

CD25/FOXP3 expression, are associated with decreased re-
sponse to blinatumomab because of interleukin-10 (IL-10)-
mediated suppression of T-cell proliferation.* Expression of
programmed death ligand-1, the binding ligand of inhibitory
checkpoint molecule programmed death-1, was increased in R/R
tumors exhibiting poor response to blinatumomab, highlighting
tumor cell-mediated inhibition of T-cell function as an immune
escape mechanism.>¢

Introduction

Blinatumomab, a CD19/CD3 bispecific T-cell engager, pro-
motes T cell-mediated cytotoxicity on B-cell lymphoblasts by
directing CD3" T cells toward CD19* B cells. It has shown
promise in the treatment of relapsed/refractory (R/R) B-cell
precursor acute lymphoblastic leukemia (B-ALL), with longer
median overall survival observed with single-agent blinatumo-
mab compared with salvage chemotherapy alone." Treatment
with blinatumomab is also associated with superior minimal
residual disease (MRD) response rates in patients with MRD*
ALL, and response rates are generally higher in patients with
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CD19~ relapse is associated with blinatumomab failure, with
various rates observed among different studies (8% to 35%),”-

lower disease burden.?3

However, many patients do not respond or subsequently re-
lapse, and the mechanisms underlying treatment response and
resistance are unclear. Several immune evasion mechanisms
have been demonstrated to contribute to blinatumomab re-
sistance. Higher levels of regulatory T cells, measured by CD4/
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although the molecular mechanism of blinatumomab-induced
CD19 loss is largely unknown. Studies from CD19-directed
chimeric antigen receptor (CAR) T-cell therapy (CTLO19, tisa-
genlecleucel) report CD19 truncating mutations and loss of
heterozygosity as the causes of CD19 loss.'® Several case studies
also report lineage switch of KMT2A- and ZNF384-rearranged
B-ALL to acute myeloid leukemia after blinatumomab or CAR19
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treatment, resulting in the loss of CD19 and other B-cell surface
markers."'* However, a comprehensive study identifying pre-
dictors of response to and relapse with blinatumomab is lacking.
The goals of this study were to investigate the genomic, immune
cell, and microenvironmental features associated with response
to blinatumomab using transcriptome and genome sequencing
and single-cell profiling.

Methods

Patients and clinical specimens

We retrospectively studied 44 adult patients with R/R B-ALL
treated with blinatumomab at City of Hope Medical Center
between May 2012 and June 2018.7 Patients received up to 5
cycles of blinatumomab. Pretreatment refers to the time point of
R/R disease during prior therapy and just before blinatumomab
therapy was started. Pretreatment samples (n = 38) were from
consecutive cases treated with blinatumomab who had =2 X 10¢
cryopreserved bone marrow or peripheral blood mononuclear
cells available (Figure 1A). When available, posttreatment
samples from the same patient were analyzed. To study the
mechanisms of CD19 loss, an additional 6 posttreatment sam-
ples were selected based on CD19 negativity. For bulk RNA
sequencing (RNA-seq) and DNA-seq, tumor cells were enriched
by fluorescence-activated cell sorting when samples contained
<60% blasts. For bulk sequencing of pretreatment samples,
7 (35%) of 20 responder and 6 (33.3%) of 18 nonresponder
samples were enriched. The study was approved by the in-
stitutional review boards of City of Hope Medical Center and St
Jude Children’s Research Hospital, with informed consent.

Genomic analysis

Total stranded transcriptome sequencing (RNA-seq; 100-bp
paired-end reads) was performed using the TruSeq Stranded
Total RNA library preparation kit, and sequencing was performed
using HiSeq 4000 and NovaSeq 6000 platforms (lllumina). A low-
input RNA library preparation kit (NuGen Ovation V2) was used
for samples with limited material (2-100 ng). Genetic subtypes
were determined by integrating gene expression, rearrangement,
copy-number, and single-nucleotide variant (SNV)/insertion/
deletion (indel) data as previously described.’ Details of map-
ping, gene expression analysis, and fusion detection are provided
in the supplemental Methods (available on the Blood Web site).

Whole exome sequencing (WES) of genomic DNA was per-
formed using the TruSeq DNA Exome library preparation kit
(Hlumina). Sequencing (100-bp paired-end reads) was performed
using the NovaSeq 6000 platform (lllumina) to an average
haploid coverage of 100X. Whole-genome sequencing libraries
were prepared using the HyperPrep library preparation kit
(Roche) and sequenced using the NovaSeq 6000 System
(Hllumina) to a target depth of 800 million 150-bp paired-end
reads per sample for an average haploid coverage of 30X. Details
of mapping and structural and copy-number variant detection are
provided in the supplemental Methods. Genomic data are publicly
available and have been deposited in the European Genome
Phenome Archive (accession EGAS00001004027).

Details regarding additional experimental and molecular
methods used in this study are provided in the supplemental
Methods.
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Results

Patient characteristics

We identified 44 patients with R/R B-ALL treated with blinatu-
momab. Eligibility criteria were treatment failure or progression
of ALL after at least 1 prior therapy (supplemental Table 2).
Detectable disease (=5% blasts) was found in the bone marrow
or peripheral blood of 42 patients (95%). Demographic and
clinical features are summarized in Table 1. The median number
of prior therapies was 2 (range, 1-5). Prior allogeneic hemato-
poietic stem cell transplantation (HCT) had failed in nine patients
(20%). One patient had received the CD22 antibody-drug
conjugate inotuzumab ozogamicin. The median patient age
was 35 years (range, 18-75), and 29 patients (65.9%) had His-
panic ancestry. The median white blood cell count was 2.95 X
10%/L (range, 0.1 X 10%/L to 21 X 10%/L), and the median per-
centage of bone marrow blasts before treatment was 80%. The
cohort was divided into responders (those who achieved com-
plete remission by morphology using standard International
Working Group criteria’é; n = 25) and nonresponders (n = 19).
Nine responders (36%) subsequently underwent allogeneic HCT
after attaining remission with blinatumomab. Samples obtained
before blinatumomab treatment (pretreatment) were available
for 38 patients. We also studied 16 samples obtained after
blinatumomab treatment (posttreatment): 11 patients who
achieved complete remission but subsequently relapsed, and 5
of the 19 patients who were refractory to blinatumomab
(Figure 1A; supplemental Figure 1; supplemental Table 2). Of
the 11 patients with postblinatumomab relapse samples, 8 re-
lapsed during blinatumomab therapy (CD19-, n = 6; CD19*,
n = 2), 1 after completion of blinatumomab who did not undergo
allogeneic HCT (SJBALL042232, CD19") and 2 after comple-
tion of blinatumomab and after subsequent allogeneic HCT
(SJALLO55655, CD19+; SJALLO55662, CD19 weak). Ten of the
11 samples were collected shortly after the first relapse post-
blinatumomab, whereas SIBALL042245_R2 was collected at a
later time point (after relapse with blinatumomab and sub-
sequent relapse with additional therapies).

Response to blinatumomab

Patients with full hematological disease (42 of 44 patients) were
included for response analysis. Two patients with MRD* disease
relapsed during blinatumomab treatment with CD19~ disease,
and their posttreatment samples were collected for analysis of
mechanisms of CD19~ relapse analysis. Overall, 23 (55%) of 42
patients achieved complete remission with blinatumomab
treatment, whereas 19 patients did not respond. A lower disease
burden (defined as bone marrow blasts =50%) was associated
with increased response to blinatumomab, as reported pre-
viously’” (P = .039). We next investigated whether genomic
subtype was associated with response to blinatumomab. Fo-
cusing on the pretreatment samples, we performed total
stranded conventional input (n = 29) or low-input transcriptome
sequencing (RNA-seq; n = 6) and whole-genome sequencing
(n = 31) or WES (n = 31; collectively termed DNA-seq).
An overview of the cohort is provided in supplemental Table
2. Genetic subtypes were determined by integrating gene
rearrangement, DNA copy-number, SNV/indel, and gene ex-
pression data (supplemental Tables 3 and 4)."® The prevalence of
Ph-like ALL was 54.8% (23 of 42 patients); 21 (91%) of these
patients had Hispanic ancestry. The high prevalence of Hispanic
ancestry and Ph-like ALL was reflective of the adult ALL
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Figure 1. Cohort characteristics and blinatumomab response. (A) CONSORT diagram of B-ALL patients included in the study. (B) Ribbon plot showing response to
blinatumomab in each genomic subtype. Patients with full hematological disease (=5% blasts; 42 of 44 patients) were included for response analysis. (C) Genomic alterations
identified by whole-genome sequencing and whole-exome sequencing (WES) in blinatumomab responders compared with nonresponders (NRs). del, deletion; dim, diminished;

ins, insertion; neg, negative; Ph, Philadelphia chromosome; pos, positive.

GENOMIC PREDICTORS OF RESPONSE TO BLINATUMOMAB
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Table 1. Patient demographics and clinical characteristics
(N = 44)

Age, y
Median 34.5
Range 18-75
Sex
Male 29 (66)
Female 15 (34)
Race
African American 2 (4.5)
Hispanic 29 (66)
White 8 (18)
Other 5(11)

Sample collection

Pretreatment only 28
Pretreatment/posttreatment 10
Posttreatment only 6

WBC count, x10°/L

Median 3
Range 0.1-21
Salvage treatment phase

First 14 (32)
Second 11 (25)
Third 12 (27)
Fourth 6(14)
Fifth 1(2)

BM blast percentage, %

Median 80
Range 0.2-100
<5 1(2.3)
=5 to =50 13 (30)
>50 25 (57)
Unknown 5(11)
Cytogenetics
Standard risk 36 (82)
High risk (Ph*, hypodiploid) 8 (18)
CD19 expression on leukemic blasts
Weak/diminished 5 (14)
Strong 32 (86)

BM, bone marrow; WBC, white blood cell.

population treated at City of Hope. Sixteen (70%) of 23 Ph-like
ALL patients had CRLF2 rearrangement (either P2RY8-CRLF2
[n = 4] or IGH-CRLF2 [n = 12]). Four of the remaining patients with
Ph-like ALL harbored IGH-EPOR, 2 harbored NUP214-ABL1, and
1 harbored a TERF-JAKZ2 rearrangment. Four patients had low-
hypodiploid ALL (modal chromosome number 31-39; 9.5%). The
prevalence of other B-ALL subtypes was low: KMT2A-like, 7.1%;
low hyperdiploid (47-49 chromosomes), 4.8%; PAX5alt, 4.8%;
Ph, 4.8%; hyperdiploid (=50 chromosomes), 2.4%; DUX4 rear-
ranged, 2.4%; and TCF3-PBX1, 2.4%; 7.1% could not be clas-
sified (Table 2). We observed a high response rate of 75% (12 of
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16) for CRLF2-R Ph-like ALL, 57% (4 of 7) for non—-CRLF2-
rearranged Ph-like ALL, 50% (2 of 4) for low-hypodiploid ALL,
and 33% (5 of 15) for other subtypes (Table 2).

Leukemogenic genetic mutations do not predict
response to blinatumomab

There were no significant differences observed between re-
sponders and nonresponders in the somatic genetic alterations
of 5 major leukemia pathways: transcriptional regulation of B-cell
development (88% vs 79%; P = .64), cell-cycle regulation (75%
vs 64%; P = .69), transcriptional regulation (excluding B-lineage
transcription factors; 81% vs 86%; P = .99), chromatin regulation
and histone modification (69% vs 86%; P = .40), and signaling
(56% vs 29%,; P = .16; Figure 1C). Notably, alteration of IKZF1, a
known determinant of poor response in chemotherapy-treated
cohorts,'”'® was higher in responders than nonresponders (75%
vs 50%), indicating alteration of this gene is not a prognostic
factor for blinatumomab treatment.

Heightened immune response signature in
responders

To explore additional determinants of response to blinatumo-
mab, gene expression signatures of pretreatment samples were
studied using total stranded RNA-seq (n = 29; responders,
n = 14; nonresponders, n = 15). Differential gene expression
analysis identified 227 upregulated genes in responders and 118
upregulated genes in nonresponders (P < .05; fold-change >2 and
counts per million >1; Figure 2A-B; supplemental Table 5).
STRING" protein-protein interaction network analysis was then
performed using the upregulated genes from responders. This
included 3 independent types of interaction: coexpression, bio-
chemical/genetic data (experimentally determined), and previously
curated pathway and protein-complex knowledge (from curated
databases). Upregulated genes in responders corresponded
to a well-connected interaction network centered around the
immune response, whereas upregulated genes in nonre-
sponders lacked a connectivity network (Figure 2C). In addition,
the upregulated genes in responders harbored enrichment
of GO pathways involving immune system processes (GO:
0002376; P = 1.46 X 10~"), cell activation (GO:0001775;
P = 4.07 X 107%), and immune response (GO:0006955;
P = 1.48 X 107%; Figure 2D; supplemental Table 6). In con-
trast, GO enrichment for biological processes was not observed
in the network of upregulated genes in nonresponders.

To further define novel pathways associated with response,
GSEA?° was performed with all expressed genes. In responders,
12 of 50 hallmark gene sets were significantly enriched at a false
discovery rate <25% (supplemental Table 7), with no gene sets
significantly enriched in nonresponders. Using ImmuneSigDB
(immunological signatures collection), 1010 (of 4872) gene sets
were enriched in responders at a false discovery rate <25% and
733 gene sets at nominal P < .05. One of the most significantly
enriched hallmark pathways in responders compared with
nonresponders was IL-6-JAK-STAT3 signaling (P = .0044;
Figure 2E). Considering CRLF2-rearranged tumor cells exhibit
constitutive JAK-STAT activation,?’ and 57% (8 of 14) of re-
sponders in our cohort had CRLF2 rearrangement, we confirmed
enrichment of IL-6-JAK-STAT3 in CRLF2-rearranged and
non-CRLF2-rearranged responders independently compared
with nonresponders (supplemental Figure 2). This indicates
that IL-6-JAK-STAT3 enrichment is a hallmark of response

ZHAO et al
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Table 2. Response to blinatumomab by genomic subtype

n (%)
Age BM blast Prior allogeneic Salvage treatment phase
Subtype Patients Responders >50y >50% HCT 2third
Ph-like, CRLF2 16 (38.1) 12 (75) 2 (12.5) 11 (68.8) 3(18.8) 7 (43.8)
rearranged

Ph-like, non-CRLF2 7 (16.7) 4 (57.1) 1(14.3) 2 (28.6) 2 (28.6) 2 (28.6)
Low hypodiploid 4 (9.5) 2 (50) 1(25) 2 (50) 0 (0) 2 (50)
KMT2A-like* 3(7.1) 3 (100) 2 (66.7) 2 (66.7) 0 (0) 2 (66.7)
B-ALL unclassified 3(7.1) 1(33.3) 2 (66.7) 2 (66.7) 1(33.3) 1(33.3)
Low hyperdiploid 2(4.8) 1 (50) 0 (0) 2 (100) 1 (50) 2 (100)
PAX5alt 2(4.8) 0 (0) 1 (50) 0 (0) 0 (0) 1 (50)
BCR-ABL1 2 (4.8) 0 (0) 1(50) 2 (100) 2 (100) 2 (100)
DUX4 1(2.4) 0 (0) 0 (0) 0 (0) 0(0) 0(0)
High hyperdiploid 1(2.4) 0 (0) 1 (100) 1 (100) 0 (0) 0(0)
TCF3-PBX1 1(2.4) 0 (0) 0 (0) 1 (100) 0 (0) 0 (0)

Patients with full hematological disease (=5% blasts; 42 of 44 patients) were included in this table. The 2 patients with only MRD* disease before receiving blinatumomab (SJALL061895 and

SJALLO61897) were excluded.

BM, bone marrow.

*One KMT2A-like case had USP42-AFF3 fusion; no known driver fusion was identified for the other 2 cases.

irrespective of somatic tumor cell genetics. Additional hallmark
pathways with significant enrichment in responders included
tumor necrosis factor a signaling via NF-kB and the inflammatory
response characterized by IL genes (Figure 2E). There was no
overlap in leading-edge genes between these sets.

Single-cell analysis identifies immune signature in
tumor cells and differences in T-cell subsets
between responders and nonresponders

To determine the cell type responsible for the gene expression
signature observed in responders, single-cell RNA-seq (sc-seq)
incorporating T-cell clonality analysis using the 10X Genomics
platform was performed on 4 pretreatment samples, including 2
responders and 2 nonresponders (Figure 3A-B). Cell types were
assigned based on expression of key genes (CD19* tumor,
CD16* monocytes, CD14* monocytes, natural killer cells, and
T cells; supplemental Figure 3), and GSEA was performed on the
sc-seq data using a custom responder signature gene set
identified from the bulk RNA-seq (supplemental Table 5). We
observed enrichment of this custom gene set in the CD19*
tumor cells from the 2 responders (normalized enrichment score,
1.77; P<.0001), but no enrichment in other cell types, indicating
the tumor cells were the source of the responder signature
observed in bulk RNA-seq (Figure 3C).

Eight different clusters were identified within the T-cell sc-seq
data using multiple cell markers (Figure 4A; supplemental Fig-
ure 4). We observed differences in cluster cell proportion be-
tween responders and nonresponders (Figure 4B). Cluster
CD4_stem was characterized by expression of LEF1 and TCF7,
suggestive of stem cell-like features,?? with a significantly higher
frequency of these cells present in responders compared with

GENOMIC PREDICTORS OF RESPONSE TO BLINATUMOMAB

nonresponders (32.1% vs 8.2%; P = 1.31 X 1072%). This cluster
also exhibited moderate clonal complexity (438 unique clones
for 1708 T cells). Cluster CD8_memory, which exhibited the
lowest TCR clonal diversity of all clusters, was composed of
central memory CD8* T cells (IL7R, SELL), and responders
similarly demonstrated a higher frequency of these cells com-
pared with nonresponders (8.9% vs 2.8%; P = 3.45 X 107¢7).
Cluster CD8_exhausted showed high expression of LAG3, TIM3,
and CD8, suggestive of an exhausted phenotype, with more
cells of this subtype present in nonresponders than responders
(4.2% vs 0.7%; P = 4.12 X 107%3). The frequency of CD4 reg-
ulatory T cells was similar between responders and nonre-
sponders (5% vs 3.7%; P = 1.34 X 10~%). Almost no evidence of
clonal expansion was observed in these 2 clusters. Together,
these data suggest that a superior response to blinatumomab is
associated with an increase in naive and central memory T cells
that are more capable of mounting an effective immune re-
sponse, whereas an inferior response is characterized by an
increase in exhausted T cells.

We next examined the TCR repertoire among the 4 pre-
treatment samples and found a striking enrichment of clonal
expansions among the nonresponder T-cell populations. Con-
versely, the responder populations had a higher diversity of
clonotypes, with fewer cells per clone (Figure 4C). Furthermore,
nonresponders exhibited a significant enrichment of TRAV1-2/
TRAJ33 junctions (1.24% to 1.74% vs 0% to 0.71%), which are
generally indicative of mucosal-associated invariant T (MAIT)
cells.?® Overall, these data indicate that response to blinatu-
momab is associated with a restricted TCR clonal expansion and
increased diversity. Thus, the presence of clonally expanded
T cells may abrogate an effective immune response.
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Figure 2. Heightened immune response signature in blinatumomab responders. (A) Supervised hierarchical clustering of differential gene expressions showing upregulated
genes in responders (n = 227 genes) and nonresponders (n = 118 genes). (B) Differential gene expression in responders. Protein coding genes with log counts per million (CPMs)
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removed. (D) Enrichment of Gene Ontology (GO) pathways in responders. (E) Significantly enriched gene set enrichment analysis (GSEA) gene sets in responders. FDR, false

discovery rate; NOM, nominal; TNFa, tumor necrosis factor a.

Multiple mechanisms of CD19 loss contribute to
blinatumomab relapse

Of the 11 postblinatumomab relapse samples in this cohort, 7
were CD19~ and 4 remained CD19™ by flow cytometric analysis.
Of the 7 CD19~ samples, we identified 8 CD19 mutations in 5

476 & blood® 28 JANUARY 2021 | VOLUME 137, NUMBER 4

patients, including frame-shift indels (n = 4), a nonsense mu-
tation (n = 1), splice-site SNVs (n = 2), and an in-frame deletion
(n = 1; Table 3). All mutations were located within the extra-
cellular domain of CD19 (Figure 5A) and were unique to CD19~
relapse patients, because none were identified in pretreatment
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or CD19" relapse cases by either bulk RNA- or DNA-seq
(Figure 5B). The frame-shift indels and nonsense mutations
were predicted to result in truncated CD19 proteins lacking the
transmembrane and cytoplasmic domain and thus not expressed
on the cell surface. One of the splice-site SNVs was expressed at
the RNA level and resulted in intron retention, whereas expression
of the other SNV was not observed by low-input RNA-seq. No-
tably, the mutant allele fractions (MAFs; or sum of MAFs for tumors
with >1 mutation) were proportional to the percentage of CD19~
blast cells observed in each patient, suggesting all or nearly all
tumor cells contained a CD19 mutation (Table 2; Figure 5C).
Expression of 2 different CD19 p.Tyr25%9fs mutations (mutant 1,
c.775 T>TGT; mutant 2, ¢.776 A>ATTGGAGATCCC) in NIH-3T3
cells confirmed the loss of CD19 cell surface expression by flow
cytometry and immunofluorescence staining compared with
wild-type CD19 (Figure 5D).

To further confirm that CD19 mutations were acquired during
blinatumomab treatment, we performed targeted deep

GENOMIC PREDICTORS OF RESPONSE TO BLINATUMOMAB

sequencing (20000 coverage) of CD19 exons 2 to 4, which
encode the epitope recognized by blinatumomab, on all
available pretreatment, posttreatment, and remission samples.
This deep sequencing enabled us to detect CD19 mutations
with a mutant AF (MAF) as low as 0.1%. No CD 19 mutations were
identified in pretreatment or remission cases. Of the 4 CD19~
relapse cases with available DNA, targeted sequencing con-
firmed the CD19 mutations detected by WES. Interestingly, 2 of
these cases harbored low MAF CD19 mutations not identified
by WES, whereas 2 cases harbored no additional CD19 muta-
tions (Figure 5E; supplemental Table 8). SJALLO61895_R1 har-
bored 19 additional CD19 mutations (MAF, 0.1% to 5.9%), 15 of
which presented at <1% frequency. SJALL061897_R1 harbored
6 additional CD19 mutations (MAF, 0.2% to 3.4%). These results
demonstrate the selective pressure of CD19-directed blinatu-
momab therapy in driving CD19 mutations.

We also examined the CD19 extracellular domain structure in
complex with blinatumomab antibody Fab B43 (Protein Data

€ blood® 28 JANUARY 2021 | VOLUME 137, NUMBER 4 477

20z AeN L uo 1sanb Aq ypd'282900020ZPIGPOOIA/EEERE.LL/L Ly /v LE L /IPd-01o11e/pOO|q/jousUoledligndyse//:d)y woly papeojumoq



«CD4 1
«Non-responder 50 {T cells i
eResponder Cps T

« CD8_memory

+ CD4_Treg
k.« CD8_exhausted
»CD8_2

25 4

ISNE_2
o
=

T cells «SJALLO61890_R1 T cells
50 »SJALLO61888_R1 50 S
«SJALL061885_R1
- =SJALL061884_R1
25 - 25 -
) )
Rt g
2} % ﬁ’ﬁ (2}
-25 - % -25 - e -25
1 o« - o
ss’%_
T T T T T T T T T T T
50 25 0 25 50 -25 25 50 -25 0 25
tSNE_1 tSNE_1 tSNE_1
P value
Others - ° ® | 079
cD824 e o | 061 2 2
i
CD8_exhausted - . e | 412x10% %
]
CD4 Treg4{ ®© e | 1.34x10" S
= 14
(=)
CD8_memory 1 @ e | 3.45x10° =S
o
cos.1{ @ @ ss5x0™ o b -
0 -
: CD4_3 1.81x10% T T T T
Cell proportion o ® n=2175 n=332 n=5493 n=4833
o
@ 10% coastem{ @ ®| 131x10%
@ 20%
. 30% co41{ @ @ | 226x10°
Responder Non-
responder

A, g
@ W -

SJALLO61885_R1  SJALL061884 R1 SJALLO61890_R1 SJALLO61888_R1

Responder Non-responder

Figure 4. Single-cell analysis of T cells. (A) t-distributed stochastic neighbor embedding (tSNE) plots of CD3" T cells showing 2 responders and 2 nonresponders visualized by
sample, responder/nonresponder, and T-cell type. SJALL061890_R1 (n = 7814 cells), SUALL061888_R1 (n = 10807 cells), SUALL061885_R1 (n = 3557 cells), and SUALL061884_R1
(n = 1979 cells). (B) Proportion of different T-cell subsets present in responders compared with nonresponders. P value determined using Fisher's exact test. (C) T-cell receptor
(TCR) clonal expansion in responders and nonresponders. Clone size is shown on the y-axis. The number of different clones identified in each case is indicated above the pie
chart. Pie charts demonstrate clonal diversity. Responders had restricted clonal expansion and increased diversity. Treg, regulatory T cell.

Bank: 6AL5)** to evaluate the impact of the mutations found in
this study. The crystal structure of CD19 is an elongated B-sandwich
composed of a é-stranded B-sheet and a 10-stranded B-sheet
based on the swapped arrangement of 2 immunoglobulin do-
main folds. Three disulfide bonds, Cys134-Cys173, Cys38-Cys261,
and Cys97-Cys200, help maintain the integrity of the tertiary
structure. The conformational epitope for Fab B43 is composed of 3
loops spanning residues 97 to 107, 155 to 166, and 216 to 224.%
We mapped the mutational sites onto the complex structure and
found all of them to be important for stabilizing protein structure
(supplemental Figure 5). For example, the geometric mean of the
Pro60 side chain is within 10 A of side chains of Glu229 (8.7 A),
Lys231 (7.3 A), and Asp233 (9.4 A). Therefore, loss of protein
stability may contribute to loss of CD19 expression.

In contrast to CAR19 relapse,? we did not identify copy-neutral
loss of heterozygosity at the CD19 locus. Three cases
(SJBALL042232_R2, SJALLO61897_R1, and SJALLO61895_R1)
with low-hypodiploid ALL lacked the second allele of CD19 be-
cause of loss of chromosome 16, suggesting that the remaining
allele may be vulnerable to mutation in patients with this subtype.

478 € blood® 28 JANUARY 2021 | VOLUME 137, NUMBER 4

Two cases (SJALLO61893_R1 and SJALLO61894_R1) harbored
CD19 mutations in 1 allele, with no evidence of alteration of the
other allele. Interestingly, RNA-seq data from both cases showed
only the mutant allele was expressed. SJBALLO42246_R2 har-
bored no CD19 mutations by bulk or targeted sequencing but
had very low CD19 RNA expression (supplemental Figure 6).
SJALLO61896_R1 had normal levels of CD19 RNA expression but
harbored a frame-shift mutation in CD81 (p.Met73fs). CD81 is a
chaperone protein that forms a signal transduction complex with
CD19 to stabilize its expression.?® Thus, loss-of-function mutations
in CD81 likely contribute to loss of CD19 cell surface expression.

Increased use of alternative CD19 splicing junction
associated with blinatumomab refractoriness and
relapse

Because skipping of CD19 exon 2 (ex2skip) has been reported as
a mechanism of resistance to CD19 CAR T-cell therapy, we
performed a detailed analysis of CD19 splicing in this cohort.
Analysis of RNA-seq data demonstrated that the dominant
isoform of CD19 messenger RNA in this cohort was transcript
variant 2 (NM_001770). We also observed usage of a
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Table 3. Mechanisms of CD19 loss during blinatumomab treatment

Sum AF CD19 RNA
CD19 LOH or of CD19 expression Summary of
Sample ID CNA CD19 mutations mutations (log CPM) CD19 loss
SJBALL042232_R2 | Loss of p.Y259fs (c.775 T>TGT) 0.79 Normal (5.3) CD19 mutation
chromosome 16 p.Y259fs (c.776 Loss of chromosome 16
A>ATTGGAGATCCC)
SJALLO61897_R1 | Loss of p.K258fs (c.773 0.79 Normal (5.2) CD19 mutation
chromosome 16 AGTATTAT>AAAAAAA) Loss of chromosome 16
SJALLO61895_R1 | Loss of p.109fs (c.326 C>CA) 0.65 Normal (5.4) CD19 mutation
chromosome 16 p.Q186sp Loss of chromosome 16
p.P278sp
SJALLO61893_R1 No p.P60del (c.179 CCTT>C) 0.73 Normal (6.1) CD19 mutation
Allele-specific expression
SJALLO61894_R1 No p.5269* (c.806 C>A) 0.15 Low (0.4) CD19 mutation
Allele-specific expression
(low)
SJBALL042246_R2 No None 0 Low (0.8) Low level of CD19
expression
SJALLO61896_R1 No None 0 Normal (6.2) CD19 wild type
CD81 mutation

CNA, copy-number abnormality; CPM, count per million; LOH, loss of heterozygosity.

noncanonical isoform with partial intraexonic deletion of exon 2
(ex2part)?>?” with abundant supporting reads (AceView D
D19.cAug10; Figure 6A; supplemental Table 9). The splice
junction for ex2part was the same in all cases, and we did not
observe any evidence for a mutational basis. Analysis of our
previously published cohort of ALL transcriptomic data showed
that ex2part is a preexisting minor splicing isoform present at
varying levels in B-ALL patients at diagnosis' (supplemental
Figure 7A). The presence of 3 CD19 isoforms (wild type,
ex2part, and ex2skip) was confirmed in the KOPN75 PAX5-
ETV6 B-ALL cell line by reverse transcription polymerase chain
reaction, fragment size analysis, and Sanger sequencing
(Figure 6B; supplemental Figure 7B).

The full-length transcript of CD19 ex2part was confirmed in
patient samples by long-read RNA-seq using the Oxford
Nanopore platform and by cloning and Sanger sequencing of
CD19 from KOPN75 cells (Figure 6B-C). Usage of ex2part
junction resulted in an alternate start codon Met152 and loss of
residues Met1-Leu151, which is part of the conformational
epitope recognized by the blinatumomab CD19 antibody
(Figure 6D).2* The relative usage of ex2part was estimated as
the percentage of ex2part junction compared with exon
junction EJ,_3 and was observed in both CD19* and CD19~
tumors. In pretreatment samples, the levels of ex2part were
significantly higher in nonresponders compared with re-
sponders (median, 18.8% vs 11.2% [ex2part/EJ,.3]; P = .025).
Blinatumomab therapy was likely to fail in cases with levels
exceeding 25%. In responders, ex2part was higher in posttreat-
ment relapse samples compared with pretreatment samples,
suggesting that this isoform was selected for during blinatumomab

GENOMIC PREDICTORS OF RESPONSE TO BLINATUMOMAB

therapy (median, 40.9% vs 11.2% [ex2part/EJ,.3]; P = .0002;
Figure 6E). In contrast to previous reports of CAR19 therapy,®
we did not observe a role for CD19 ex2skip by read count or
transcript usage between responders and nonresponders or be-
tween pretreatment and relapse samples (Figure 6F).

Integrative genomic analysis of mechanisms of
treatment resistance

Of the 7 cases of CD19™ relapse, 1 had material available for DNA-
seq of both pre- and posttreatment samples (SJBALL042246).
This case harbored a preexisting mutation of TRRAP (p.R2906C)
and an acquired mutation of FLT3 (p.N676T) in relapse, which
was a mutation previously reported in acute myeloid leukemia
(COSV54047682). Of the 4 CD19" relapse patients, 1 had material
available for DNA-seq of both pre- and posttreatment samples
(SJBALLO42238). This case harbored 3 mutations that were present
in both samples at similar MAFs: NRAS p.GIné1His, NR3C1
p.Arg478His, and NT5C2 p.Leu321Pro (supplemental Figure 8A).
No additional mutations were identified in the relapse sample
for this case. Using single-cell RNA-seq, we observed an acquired
TP53 mutation (p.Ser260sp) in the postblinatumomab relapse
sample for case SIBALLO42245 that was not identified in the
preblinatumomab tumor or matched normal sample (supplemental
Figure 8B). We also observed moderately high usage of ex2part
junction and mutation of the splicing factor SRSF2 (p.Pro193Leu) in
both pre- and postblinatumomab tumors. Because this relapse
sample was collected at a later time point after subsequent relapse,
we could not comment on the timing of TP53 mutation acquisition.
Instead, this case is illustrative of how integrated genomic and
single-cell approaches can identify multiple mechanisms leading to
treatment resistance, including genetic alterations that drive re-
sistance to conventional chemotherapy as well as aberrant CD19
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splicing that results in blinatumomab resistance despite CD19
expression.

Discussion

Through comprehensive genomic analysis of both tumor and
immune cells, we have demonstrated that both tumor-intrinsic
and -extrinsic factors influence response to blinatumomab. Im-
portantly, we report that patients harboring CRLF2 rearrange-
ment have a favorable response to blinatumomab treatment,
suggesting this is a treatment option for these high-risk pa-
tients. We observed a heightened immune signature in pre-
blinatumomab samples of responders, suggesting responders
harbored upregulated immune response genes before treat-
ment, which might condition a favorable tumor microenviron-
ment for receiving blinatumomab therapy. In this study, we
assessed whether the enriched JAK-STAT pathway was driven by
CRLF2 rearrangement, because CRLF2-rearranged ALL is known
to be characterized by JAK-STAT activation. GSEA supported
the role of JAK-STAT signaling in responders. The observed
correlation between CRLF2 rearrangement, heighted immune
signatures, and favorable response suggests a paracrine effect
by which activated signaling pathways downstream of CRLF2 in
the leukemic cell may directly modulate the nontumor milieu,
thus influencing T-cell responsiveness. This is consistent with
emerging evidence suggesting that cancer cell-intrinsic mech-
anisms dictate the immune cell composition within the tumor
microenvironment.?®

The enrichment of presumptive MAIT cells among nonre-
sponders included in the sc-seq experiment is particularly in-
teresting, given the recently explored role of MAIT cells in lung
tumor growth and metastasis.?’ Further exploration of this
pattern in the context of blinatumomab treatment, with larger
sample sizes in experiments specifically assaying TCRs, will be
necessary to test the generality of this finding. Likewise, addi-
tional characterizations of general TCR repertoire variation will
help us further dissect the role that distinct T-cell subsets play in
response to blinatumomab treatment. For instance, we identi-
fied a cluster of T cells enriched in responders that exhibits stem-
like properties; in this case, repertoire comparisons from the
same patient before and after treatment may help us to better
understand the development of this niche in the blinatumomab
treatment environment and furthermore identify specific T-cell
characteristics that predict treatment outcome.

We show that CD 19 mutations are commonly detected in CD19~
relapse during blinatumomab treatment. In addition to trun-
cating mutations similar to those previously reported in CAR19
relapse,’® we observed other mechanisms that contribute to
CD19 loss, including mutant allele-specific expression, low level
of CD19 RNA expression, and mutation of the CD19 chaperone
protein CD81. CD19 mutations were enriched in patients with
low-hypodiploid ALL, and 3 such cases lacked the second allele
of CD19 because of loss of chromosome 16, suggesting that the
remaining allele may be vulnerable to mutation in hypodiploid
patients. In addition, all 8 mutations detected by bulk se-
quencing and a vast majority (24 of 25) of low MAF mutations
detected by targeted sequencing were located on exons 2 and 4
of CD19, suggesting a potential hotspot for the CD19-directed
selective pressure. Despite the presence of TP53 mutations,
particularly in hypodiploid ALL samples, we did not observe

482 € blood® 28 JANUARY 2021 | VOLUME 137, NUMBER 4

evidence of genomic instability or hypermutability, with the
exception of 1 case with an MSH6 mutation (SJBALL042249),
that was a hypermutator but nonresponder. Therefore, CD19
mutations did not reflect genome-wide hypermutability. In
contrast to a previous study of CAR19 relapse,’® we did not
observe copy-number neutral loss of heterozygosity of CD19 in
this blinatumomab-treated cohort.

There are conflicting reports on the role of CD19 ex2skip as a
mechanism for CD19 loss during CAR19 treatment.'®25 We in-
vestigated alternative splicing of CD19 messenger RNA in this
blinatumomab cohort and did not observe differences in usage of
ex2skip isoform in CD19~ relapse, nor an association with bli-
natumomab resistance. We did, however, identify increased us-
age of an alternate splicing junction minor isoform, ex2part, in
both nonresponders and relapsed patients. Although we did
not identify conventional splice sites associated with ex2part,
we did observe a flanking repeat sequence, CAGCCTGG, asso-
ciated with IRE1-mediated unconventional splicing that occurred
within the cytoplasm and did not require the spliceosome
(Figure 6C).3°*" Future studies are required to determine whether
IRE1-mediated splicing is responsible for generating the ex2part
isoform. Functionally, partial deletion of exon 2 removes a region
encoding part of the conformational epitope of the CD19
blinatumomab antibody and therefore might disrupt binding
rather than reduce CD19 expression. In support of this hypothesis,
both CD19* and CD19~ relapse tumors exhibited relatively high
usage of this isoform. Clinically, CD19 expression is measured by
flow cytometry using 1 anti-CD19 antibody, clone SJ25C1, the
epitope of which is not characterized. It is possible that the loss of
binding to anti-CD19 antibody, instead of loss of CD19 expression
per se, is occurring in patients with blinatumomab failure. In 1
CD19" postblinatumomab relapse sample (SJALLO61893_R1), we
observed increased usage of ex2part junction in addition to a
CD19 in-frame deletion (P60del, AF 0.73). It will be of interest to
investigate the combinational effect of mutations and selection
for the alternatively spliced RNA isoform. Future studies are re-
quired to assess the usage of ex2part as a biomarker of response
to CD19-directed immunotherapies, including blinatumomab
and CAR19.
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