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Primum non nocere:
allo-HSCT for AML in CR1
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In this issue of Blood, Fenwarth et al demonstrate the potential applicability of
a knowledge bank (KB) to inform decision making as to whether patients ages
18 to 59 years with acute myeloid leukemia (AML) should undergo allogeneic
hematopoietic stem cell transplantation (HSCT) in first complete remission
(CR1) or whether it should be deferred to a later stage.1

KB is a multistage model using clinical,
cytogenetic, molecular, and treatment
variables drawn from results of 3 German-
Austrian AML Study Group trials con-
ducted from 1993 to 2004 involving 1540
patients.2 By incorporating these data,
this algorithm holds the potential to
construct personalized survival simulations.
The authors apply their model to 545
HSCT-eligible patients entered onto the
more recent ALFA-0702 trial (2009-2013).3

The authors report that by integrating KB
with European LeukemiaNet (ELN) 2017
stratification and NPM1 minimal residual
disease assessment, they can identify pa-
tients who would benefit from trans-
plantation in CR1 but also those who would
be specifically harmed by it.

When physicians and patients commit to
HSCT, they do so presuming that it af-
fords the best opportunity for long-term
survival. Large prospective randomized
trials of HSCT in transplant-eligible AML

patients in CR1 have not been conducted
because of a lack of clinical equipoise.
Instead, we have relied upon donor vs no
donor analyses on which to determine
our HSCT recommendations.4 Although
it is devastating to witness a death from
transplant-related complications, onemight
rationalize this loss by believing that, on a
population-wide scale predicated on well-
annotated trial-based data, the choice
to transplant was indeed justified. The
model established by Fenwarth et al allows
refinement of the decision-making pro-
cess, potentially protecting those patients
for whom HSCT in CR1 would be detri-
mental and aiding physicians to abide by
their sacred pledge to “do no harm.”

Still, this algorithm requires additional
validation and is not ready to be deployed
for clinical use. The trials upon which KB
was generated were performed 16 to
27 years ago. Chemotherapy for AML,
HSCT strategies, and available antimicrobial

agents have evolved considerably since
then, leading to incrementally improved
outcomes. The more recent ALFA-0207
trial,3 on which this model was validated,
used in part a strategy of clofarabine and
intermediate-dose cytarabine as intensifi-
cation therapy that is not routinely used for
this purpose today. It is also important to
recognize that this model was generated
from data on clinical trial subjects who may
notbe representativeof“real-world”patients
seen in the community.

The KB was not designed to be static.
The authors have enhanced it by in-
corporating new data that were not
available when the model was first de-
veloped. However, current strategies for
detecting minimal residual disease today
are not limited to NPM1-mutated pa-
tients and involve multiparameter flow
cytometry and genomic tools targeting
other mutations. A very significant chal-
lenge to this computer-based predictive
model is that prognostic biomarkers are
being identified at a rapid clip, far out-
pacing the ability to construct validated
models that can be immediately applied
to clinical decision making.

The ELN 2017 scheme is considered the
current standard for risk classification in
AML and is used to guide the type of
consolidation therapy.5 Similar to other
risk stratification systems, the ELN is useful
in population-based studies. However, its
ability to predict the fate of individuals is
limited. The C-statistic of the ELN, a mea-
sure reflecting predictive accuracy is;60.1,2

A C-statistic of 100 indicates perfect con-
cordance between the prediction provided
by the model and actual outcome. In
contrast, a C-statistic of 50 indicates ran-
dom concordance. C-statistics values of
60 to 70, 70 to 80, and 80 to 90 are
commonly considered reflective of poor,
fair, and good concordance with predic-
tions.6 The KB, which includes detailed
clinical and genetic features, resulted in a
modest but meaningful improvement in
the C-statistic compared with ELN (68.9
vs 63.0). Although the KB only partially
accounts for variance in outcome, this still
represents progress. Objective tools
guiding clinical decision making can re-
duce the influence of personal biases,
often involved in medical care.7

Then the question remains: How can we
improve our ability to foresee the results
of possible therapeutic paths in AML? As
elegantly discussed by Estey and Gale,6

Collaborative, large-scale data collection
Building international AML registries
Broad scope of collected variables and outcomes
Pooling of -omics data across institutions as targeted
gene mutation panels become common
Integration of standardized MRD results

Building decision aides in AML

Contemporary statistical approaches
“Knowledge bank” approaches tolerant of high-di-
mensional data
Bayesian analytic design

Real-world validation
Prospective analyses of implemented decision-aide
Dynamic model updating with incorporation of new
data streams and knowledge

Building decision aides in AML.
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latent covariates, not captured in registries
or clinical trials, contribute to imperfect
prediction. However, by the law of dimin-
ishing returns, adding more features to the
model will only marginally increase accu-
racy.8 Another consideration is the ratio
between the effect and sample size. Math-
ematical simulations show that 5000 to
10000 patients are needed to detect an
association between a gene that has a
moderate-size prognostic effect on outcome
and is present in 1% of the population.1

Therefore, in the era of next-generation se-
quencing, huge collaborative registries
should be formed to capitalize on thewealth
of data available. Furthermore, methods
such as shrinkage techniques and machine
learning algorithms capable of dealing with
high-dimensional data (ie, the number of
features is high relative to the number of
patients) are needed.9 Finally, with all hu-
mility, physicians must acknowledge that
there is inherent uncertainty to prediction. It
is unrealistic to expect that features at the
beginning of a patient’s journey or even at
the time of transplantation will unambigu-
ously determine his fate. Instead, prediction
should be dynamic, recalculating probabili-
ties throughout thecoursebasedonprevious
events. This sort of Bayesian approach was
recently applied in diffuse large B-cell lym-
phoma, yielding sequential individualized
estimationof disease-free survival following
diagnosis, interim, and end-of-treatment
response evaluation.10

These caveats notwithstanding, the work
presented in this manuscript gives us a
glimpse of what the future can hold. Some
physicians might be wary of black box
computer-generated algorithms, fearful
that they might threaten the contribution
of clinical judgment to decision making.
But indeed, thesemodels usemanymore
variables than any clinician could likely
juggle in his or her head. Tools such as
these complement our clinical experi-
ence and can only enhance our ability to
make what very well could be lifesaving
recommendations to our patients (see
figure). When the stakes are as high as
they are for HSCT, we must embrace
every opportunity to steer our patients
to safe harbor.
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Eliminating disparities
improves outcomes
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In this issue of Blood, Bona and colleagues report an analysis utilizing the
Center for International Blood and Marrow Transplant Research (CIBMTR) da-
tabase to evaluate neighborhood poverty exposure as a predictor of poor
outcome for pediatric patients undergoing allogeneic hematopoietic stem cell
transplant (HSCT).1 This report is a first of its kind describing the influence of
social determinants on children undergoing HSCT; however, similar analyses
have been conducted in children with asthma, cancer, acute appendicitis, sickle
cell disease, as well as those requiring solid organ transplant, peritoneal dialysis,
or utilization of intensive care.2,3 In any situation assessing success ofHSCT, there
are biologic variables, such as underlying disease, condition of the patient, donor
availability and degree of match, access issues such as proximity to an HSCT
center and facility capacity, and treatment outcome factors such as disease
response and remission status, and acute and chronic treatment-related com-
plications. The study presented in this issue evaluates many patients suffering
from both malignant (n 5 2053) and nonmalignant (n 5 1696) conditions, de-
scribing a variety of discrete variables that are validated by the CIBMTR. This
report identifies several issues that deserve attention. Specifically, the study
reports differences in outcome for patients with malignant and nonmalignant
indications for HSCT based on social determinants of health (SDOH).

This and many other reports from health
care, educational, environmental, and
other domains continue to demonstrate
worse outcomes for persons living in

poverty. The topic of SDOH is receiving
well-deserved and overdue attention.
The World Health Organization de-
fines SDOH as “the conditions in which
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