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KEY PO INT S

l T-PLL cells
predominantly
depend functionally on
BCL-2 for survival; this
dependence can be
enhanced by JAK/
STAT pathway
inhibition.

l Combination of
ruxolitinib and
venetoclax was highly
active preclinically and
had promising clinical
effects in 2 patients
with T-PLL.

Conventional therapies for patients with T-cell prolymphocytic leukemia (T-PLL), such as
cytotoxic chemotherapy and alemtuzumab, have limited efficacy and considerable toxicity.
Several novel agent classes have demonstrated preclinical activity in T-PLL, including in-
hibitors of the JAK/STAT and T-cell receptor pathways, as well as histone deacetylase
(HDAC) inhibitors. Recently, the BCL-2 inhibitor venetoclax also showed some clinical
activity in T-PLL. We sought to characterize functional apoptotic dependencies in T-PLL to
identify a novel combination therapy in this disease. Twenty-four samples from patients
with primary T-PLL were studied by using BH3 profiling, a functional assay to assess the
propensity of a cell to undergo apoptosis (priming) and the relative dependence of a cell on
different antiapoptotic proteins. Primary T-PLL cells had a relatively low level of priming for
apoptosis and predominantly depended on BCL-2 and MCL-1 proteins for survival. Se-
lective pharmacologic inhibition of BCL-2 orMCL-1 induced cell death in primary T-PLL cells.
Targeting the JAK/STAT pathway with the JAK1/2 inhibitor ruxolitinib or HDAC with
belinostat both independently increased dependence on BCL-2 but not MCL-1, thereby
sensitizing T-PLL cells to venetoclax. Based on these results, we treated 2 patients with

refractory T-PLL with a combination of venetoclax and ruxolitinib. We observed a deep response in JAK3-mutated
T-PLL and a stabilization of the nonmutated disease. Our functional, precision-medicine–based approach identified
inhibitors of HDAC and the JAK/STAT pathway as promising combination partners for venetoclax, warranting a clinical
exploration of such combinations in T-PLL.

Introduction
T-cell prolymphocytic leukemia (T-PLL) is a rare and usually
aggressive T-lymphoid malignancy with a cytogenetic hallmark of
inv(14)(q11q32) or t(14;14)(q11;q32), involving the T-cell receptor
(TCR) a/d gene locus at 14q11 and the TCL1A gene cluster at
14q32.1.1 Recently, gain-of-function mutations in JAK/STAT
pathway genes, including loss of negative regulators of STAT5B,
have been identified in;90% of T-PLL cases, suggesting that this
pathway is another hallmark of T-PLL pathophysiology.2

Cytotoxic chemotherapy rarely provides durable remission for
patients with T-PLL.3 The monoclonal anti-CD52 antibody alem-
tuzumab is the frontline standard of care, with responses observed
in;90%of patients.4,5 However, severe leukopenia and infectious
complications are common with alemtuzumab, and responses are
usually short lived. For patients with T-PLL who achieve response,
allogeneic stem cell transplantation is the only reasonable
hope for long-term survival.6,7 With these therapeutic options,
the median overall survival is only ;20 months.8
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Given the chemoresistance of T-PLL, as well as the safety profile
and broad target range of alemtuzumab, recent work focused
on more targeted agents. An ex vivo high-throughput drug
sensitivity and resistance testing platform on primary T-PLL
samples9,10 identified the BCL-2 inhibitor venetoclax and histone
deacetylase inhibitors (HDACis) as promising targeted agents.
Integrated large-scale genetic profiling assays also identified
various recurrent lesions in DNA repair molecules and histone
modifiers in T-PLL.11 Early clinical data suggest that HDACi have
ex vivo activity in T-PLL and may partially overcome chemo-
resistance in T-PLL.12 High-throughput drug testing studies also
demonstrated in vitro sensitivity of T-PLL cells to JAK inhibitors.
In addition, a modest activity was reported with the combination
of tofacitinib (a pan-JAK inhibitor) and ruxolitinib (a JAK 1/2
inhibitor).13 Despite the promising data of novel agents for
treatment of T-PLL, the early clinical data also suggest that a
sustained response to these drugs is unlikely when they are given
asmonotherapy.10,14 Combining different classes of drugs, such as
HDACis, MDM2 inhibitors, chemotherapeutics, and BCL-2 an-
tagonists, is proposed to act synergistically.15,16 We recently
identified that theBruton tyrosine kinase inhibitor ibrutinibmay be
a promising combination partner for venetoclax in T-PLL.17 An off-
target effect of ibrutinib is inhibition of IL-2–inducible kinase (ITK),
a T-cell–dominant member of the TEC kinase family that drives
proximal T-cell receptor (TCR) signaling.18 Consistent with this,
ex vivo assays also demonstrated inhibitory activity of PRN694,
a specific ITK inhibitor (ITKi), against T-PLL.19 Taking into account
these data, as well as current accessibility of the different drugs,
we decided to select 4 drug candidates to target 3main pathways:
(1) belinostat, one of themost effective HDACi described in T-PLL,
which is approved for peripheral T-cell lymphoma; (2) ruxolitinib,
the most effective JAKi described in T-PLL, which is approved for
the treatment of myeloproliferative disorders; and (3) ibrutinib, the
first potential ITKi described to be effective in T-PLL, and PRN694,
a highly selective ITKi (50% inhibitory concentration [IC50]: 0.3 nM
vs 2.2 nM for ibrutinib). To evaluate the combination of BH3
mimetics with these 3 drugs, we used a previously developed
functional assay, BH3 profiling, which interrogates mitochondria
to assess both their proximity to the threshold of apoptosis
(“mitochondrial priming”), and their relative dependence on the
antiapoptotic BCL-2 family of proteins, such as BCL-2,MCL-1, and
BCL-xL. We have chosen BH3 profiling because this novel
functional precision-medicine technique provides orthogonal in-
formation that is not providedbygenomics and traditional viability
assays alone. We also used dynamic BH3 profiling (DBP), which
measures early drug-induced changes in net proapoptotic
signaling,20 to identify optimal combination partners. We further
report on the impact of drugs from the 3 chosen classes on T-PLL
mitochondrial priming and drug sensitivity.

Material and methods
Study design and patient samples
The study was undertaken in compliance with the principles of
the Declaration of Helsinki, and all patients provided written in-
formed consent. Twenty-four clinically annotated samples from
patients with primary T-PLL were obtained from the French In-
novative Leukemia Organization network, Medical University of
Vienna, and the Dana-Farber Cancer Institute. Figure 1A outlines
themethodologywe used in this work. Primary cells fromperipheral
blood were viably frozen in fetal bovine serum supplemented with

10% DMSO until the time of thawing. To enrich our analysis for
T-PLL cells, we used flow cytometry to gate CD51 CD192 T cells,
which generally accounted for.90% of the total cells. Patients had
to fulfill the current criteria for a diagnosis of T-PLL.1 Twenty-four
primary samples from patients with treatment-naive chronic
lymphocytic leukemia (CLL) were used as a comparator for
baseline BH3 profiling. Ex vivo drug treatments and immunoblot
analysis by western blot were performed as previously described21

and are detailed in the supplemental Methods (available on the
Blood Web site). Primary T-PLL and CLL cells were treated with
venetoclax, AZD5991, S63845, A-1331852, belinostat, ruxolitinib,
PRN694, ibrutinib, or the vehicle (DMSO; as the control).

DNA sequencing
DNAwas extracted from isolated cells using aQIAmp kit (Sigma-
Aldrich, Saint-Quentin Fallavier, France). Mutational landscape
was assessed by using Sanger sequencing and/or targeted next
generation sequencing (NGS) to examine a panel of candidate
genes, as detailed in the supplemental Methods.

Survival assay
For coculture experiments, the stromal NKTert cell line (Riken
Cell Bank, Tsukuba, Japan) maintained in R10 (defined in the
supplemental Methods) was used. Ninety-six–well plates were
seeded with NKTert 24 hours before addition of primary T-PLL
cells, as previously described in CLL22 and as detailed in the
supplemental Methods. After annexin V/Hoechst staining, the
cells were fixed with 4% paraformaldehyde, neutralized with N2
buffer (1.7 M Tris and 1.25 M glycine [pH 9.1]), and analyzed with
the BD Fortessa flow cytometer, with the 96-well high-throughput
screening plate reader. NKTert cells were excluded by using
forward and side scatter, and the analysis was performed on the
cells in the CD51CD192 gate. Individual analyses were performed
in triplicate for all drug treatment conditions.

BH3 profiling
BH3 profiling was performed as previously described and as
detailed in the supplemental Methods.20 DBP was performed
using the same protocol, with the addition of treating primary
cells ex vivo with ruxolitinib, belinostat, PRN694, ibrutinib, or the
vehicle (DMSO) for 24 hours before analysis. Individual analyses
were performed in duplicate for all drug treatment conditions.

Statistical analysis
We used GraphPad Prism 8 to compare 2 paired groups (same
samples but different conditions) by paired Student t test, whereas
unpaired groups were compared by using an unpaired Student
t test. Multiple groups were compared using an analysis of vari-
ance for repeated measures. In all figures, paired samples are
linked by a line. The correlation between 2 variables was analyzed
with a simple linear regression. Two-tailed nominal P # .05 was
considered significant.

Results
T-PLL cells are relatively unprimed for apoptosis
and have heterogeneous dependence on BCL-2
and MCL-1
BH3 profiling has previously helped to characterize the BCL-2
family interactions of a variety of hematologic malignancies (for
example, in CLL), where relatively uniform BCL-2 dependence
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provided a strong rationale for exploring BCL-2 inhibition with
venetoclax.23,24 To help identify potential pharmacologic vul-
nerabilities in T-PLL, we performed the first study of BH3 pro-
filing in T-PLL on primary samples collected from 24 patients.
The patients’ characteristics are described in Table 1 (detailed
cytogenetic and molecular data in supplemental Table 1). This
baseline BH3 profiling was performed immediately after the
tumor cells were thawed. A Trypan blue viability control was
systematically performed, and all samples with a viability .50%
were excluded (supplemental Table 2). Significant heterogeneity
was observed in the level of overall priming for apoptosis, as
well as in dependencies on individual antiapoptotic proteins
(Figure 1B). Some samples showed T-PLL that was mainly de-
pendent on MCL-1 (eg, T-PLL samples 3, 7, and 22), others were
primarily dependent on BCL-2 (eg, T-PLL samples 13, 15, and
21), and some were dependent on both MCL-1 and BCL-2 (eg,
T-PLL samples 4 and 20). No significant differences were ob-
served between samples from treatment-naive and relapsed
cases, or between samples from JAK/STAT mutated and non-
mutated cases (data not shown).

Because the relative interactions of BH3mimetics with the BCL-2
family arewell characterized in CLL,24,25 (most notably, venetoclax26)
we compared results from the T-PLL samples with those of an
independent cohort of CLL samples, processed in the same
conditions. Comparedwith primary CLL cells, T-PLL cells were less

primed for apoptosis. The mean cytochrome c (cyt c) release with
BIM BH3 peptide (which enables measurement of overall apo-
ptotic priming) was 55.2% for T-PLL vs 78.7% for CLL (Figure 1C).
Compared with CLL cells, T-PLL cells were less dependent on
BCL-2 (Figure 1D; average cyt c release with venetoclax 58.6% vs
75.4%; P 5 .0019), and more dependent on BCL-xL (Figure 1E;
average cyt c release with HRK 17.9% vs 7.5%). Dependence on
MCL-1 or BFL-1 did not differ significantly between T-PLL andCLL
(average cyt c release with; MS1 36.3% vs 37.5%, not significant
[NS]; FS1 28.4% vs 28.1%,NS). These data indicate that T-PLL cells
are generally less primed for apoptosis than CLL cells and depend
on both BCL-2 and MCL-1.

Pharmacological inhibition of BCL-2 and MCL-1
induces cell death
We next evaluated whether there is an association between
antiapoptotic dependencies in T-PLL cells and the efficacy of
BH3 mimetic drugs selectively targeting BCL-2 and MCL-1. In
the 13 primary T-PLL samples with sufficient cell count, 24-hour
treatment with venetoclax or the MCL-1 inhibitors AZD5991 or
S63845 was performed. Each inhibitor induced high levels of
apoptotic cell death when used individually (Figure 2A). Consis-
tent with our BH3 profiling data, increased BCL-2 dependence
was associated with increased apoptotic cell death induced by
venetoclax (Figure 2B; R2520.58; P5 .0025). Similarly, increased
MCL-1 dependence was associated with increased apoptotic cell
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death induced by the MCL-1 inhibitor AZD5991 (Figure 2C;
R2520.68; P5 .0005) or S63845 (Figure 2D; R2520.68; P5 .002).

Given the predominant dependence on BCL-2 and MCL-1, we
hypothesized that combining BH3 mimetic drugs targeting these
2 proteins could enhance cell death in T-PLL cells. Therefore, we
treated cells for 24 hours with either DMSO (vehicle), AZD5991
100 nM, S63845 100 nM, or the BCL-xL selective inhibitor A-
1331852 1 mM (as a control), and 4 hours before fixation,
venetoclax was added at a range of doses from 1 nM to 10 mM.
The addition of either AZD5991 or S63845 in combination
with venetoclax led to markedly increased T-PLL cell death,
whereas T-PLL cells were less sensitive to combination with A-
1331852 (Figure 2E). At an intermediate venetoclax dose of 100
nM, combination with AZD5991 100 nM reduced cell viability by a
mean of 71.94% (Figure 2F). Likewise, pretreatment with S63845
(100 nM) reduced viability by 67.28%, whereas A-1331852 1 mM
only modestly reduced cell viability by 6.91%. The weak effect of
A-1331852 drug treatment is consistent with the low mean cyt c
release we observed with the HRK peptide at 5 mM (17.9%; 95%
CI 14.45-21.39) with BH3 profiling (Figure 1E). Overall, these data
indicate a good correlation of results of cell viability assays with
baseline BH3 profiling and confirm that BCL2 and MCL1 are
molecular vulnerabilities in T-PLL.

Belinostat and ruxolitinib selectively increase
BCL-2 dependence
We next studied 4 inhibitors of candidate targets in T-PLL
pathogenesis, ruxolitinib (JAK1/2i), ibrutinib (ITKi or other “off
target”), PRN694 (ITKi), and belinostat (HDACi), as combination
partners for BCL-2 or MCL-1 inhibitors. Even though the IC50 of
ibrutinib is higher than that of PRN694 on ITK, we included
ibrutinib in our assays because its activity in T-PLL could correlate
with off-target effects related to inhibition of other kinases. First, we
showed that ruxolitinib, PRN694, and belinostat were modulating
their proposed targets in primary T-PLL samples (supplemental
Figures 2 and 3). However, unlike prior studies where drugs (such
as belinostat or ibrutinib) were used at higher doses of 10 mM,9 at
the dose of 1 mM in our coculture model, none was cytotoxic to
T-PLL cells as single agents (supplemental Figure 1B). Never-
theless, given the importance of these pathways in T-PLL path-
ogenesis, we hypothesized that even if they did not induce frank
cell death on their own, these drugs could augmentmitochondrial
priming through modulating antiapoptotic protein dependence.

To evaluate this hypothesis, we performed DBP after ex vivo
treatment with each drug, to assess the difference between the
percentage of cyt c release with the control (DMSO) and each of the
3 drug candidates (“delta-priming”). Evaluating the overall priming
with the PUMA peptide at 0.5 mM (Figure 3A), the mean delta
primingwas 22.7%with belinostat (P5 .0035), 8.48%with ruxolitinib
(P 5 .019), and 2.72% with PRN694 (NS). Alteration of BCL-2 de-
pendence was evaluated in the profile with venetoclax at 0.1 mM
(Figure 3B), showing an increase in delta priming of 39.16% on
averagewith belinostat, 14.78%with ruxolitinib (P5 .017), and 2.7%
with PRN694 (NS). MCL-1 dependence was assessed with MS1
peptide at 0.5 mM (Figure 3C), showing an increase in delta priming
by 11.04% with belinostat (P 5 .04) and 1.74% with ruxolitinib (NS)
and a decrease by 0.82% with PRN694 (NS). We observed no
significant effect of ibrutinib 1mMonoverall primingor dependence
on BCL-2 or MCL-1. Together, these data show that treatment with
ruxolitinib or belinostat increases overall mitochondrial priming andTa
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BCL-2 dependence in T-PLL cells, but not MCL-1 dependence.
No significant alteration of mitochondrial priming occurred with
PRN694 or ibrutinib at the concentration of 1 mM.

Next, we examined whether these findings with DBP could be
corroborated with cell viability assays. Because DBP studies
revealed stronger effects on BCL-2 dependence than on MCL-1
dependence, we focused viability testing on venetoclax combi-
nations. Primary samples were treated for 24 hours with DMSO
(vehicle), ruxolitinib 1mM, PRN694 1mM, or belinostat 1mMbefore
fixation. Both ruxolitinib and belinostat were highly active in
combination with venetoclax (Figure 3D). Similar results were
observedwith an alternativeHDACi (panobinostat; n56; data not
shown), whereas a minimal effect was observed with PRN694.
Pretreatment with ruxolitinib 1 mM in the presence of venetoclax
100 nM reduced viability by a mean of 25.8% (Figure 3E). Pre-
treatment with belinostat 1 mM reduced viability by 37.06%,
whereas pretreatment with PRN694 1 mM reduced viability by
6.67% (P 5 .01). Consistent with our DBP data, pretreatment
with ibrutinib 1 mM in the presence of venetoclax 100 nM did not
significantly reduce cell viability (P 5 .35). Collectively, the results
of the viability studies are consistent with the DBP data, thus
supporting that ruxolitinib and belinostat increase overall mito-
chondrial priming and BCL-2 dependence in T-PLL cells.

Primary cells from JAK/STAT pathway–mutated
T-PLL are more sensitive to inhibition of JAK1 than
of ITK
Although no difference in the ex vivo activity of ruxolitinib, PRN694,
ibrutinib, or belinostat was observed according to ATM or TP53
molecular status (data not shown), the activity of ruxolitinib in
combination with venetoclax was significantly higher in the samples
harboring an activating mutation in the JAK/STAT pathway. The
average ratio between viability with ruxolitinib plus venetoclax
combination vs venetoclaxmonotherapywas 0.988 for the 5patient
samples without an activating mutation in the JAK/STAT pathway,
and 0.483 for the 19 patient samples with a mutation (Figure 4A).
Activity of ruxolitinib in combination with venetoclax was signifi-
cantly lower in samples with a downstream activating mutation of
STAT5B. Pretreatment with ruxolitinib with venetoclax 100 nM for
4 hours reduced viability by a mean of 23.82% in patient samples
with a STAT5Bmutation vs 42.90% in the samples with an isolated
mutation of JAK3 or JAK1 (Figure 4B; P 5 .03).

To better understand the mechanistic underpinnings of these
differences, we measured the baseline activity of the JAK/STAT
pathway by the level of phosphorylation of STAT5B. T-PLL cells
harboring at least 1 JAK/STAT pathway mutation had a higher
level of STAT5B phosphorylation compared with samples with
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no mutation (n 5 7 vs n 5 2 respectively; P 5 .013; protein
quantification in Figure 4C, representative examples in Figure 4D
and all 9 blots shown in supplemental Figure 4). No difference
was observed according to STAT5B mutational status (data not
shown). Conversely, the activity of PRN694 in combination with
venetoclax was significantly higher in the samples without acti-
vating mutations in the JAK/STAT pathway, with a mean of 0.736
for the 5 patient samples without an activating mutation in the
JAK/STAT pathway, and 0.956 for the 19 samples with a mutation
(P 5 .002; Figure 4E). No significant difference was seen in these
subgroups with belinostat treatment (data not shown).

Venetoclax plus ruxolitinib was effective for 2
patients with refractory T-PLL
Based on our preclinical data, we treated 2 patients with refractory
T-PLL, for whom no standard treatment option was suitable, with

venetoclax1ruxolitinib. The patients’ baseline characteristics and
medical history are shown in supplemental Table 2. They provided
informed consent to the therapeutic approach. The treatment
schedules as well as white blood cell counts are presented in
Figure 5A-B. No patient developed tumor lysis syndrome on this
combination. Repeat CT scans after 30 days of combination
therapy for patient A showed resolution of splenomegaly
(Figure 5C). At latest follow-up, all consensus criteria1 for complete
response were met except the circulating lymphocyte count of
23.6 3 109/L (which was above the threshold of 4 3 109/L),
classifying patient A as partial response, now maintained for
10 months. Patient B had previously initiated venetoclax mono-
therapy but began to have a slowly increasing lymphocyte count.
The addition of ruxolitinib at day 61 led to stabilization of the
disease. The combination was stopped because of the COVID-19
pandemic, as continuation of this off-label therapy was no longer
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possible in the patient’s nursing facility during lockdown, and
disease progression occurred off therapy at day 127 after ven-
etoclax initiation. Patient B never resumed combination therapy
and was lost to follow-up. Observed adverse events, their timing
andmanagement are described in supplemental Table 3.Of note,
the T-PLL cells of patient A were JAK3 mutated, and we did not
find any mutation in the JAK/STAT pathway for patient B. Given
the more robust clinical response of patient A, these clinical data
are consistent with our previous preclinical finding that en-
hancement of BCL-2 dependence by JAK1 inhibition may be
stronger in mutated T-PLL. Of note, a third patient (“patient C”
described in supplemental Table 3 and supplemental Figure 5)
was treated with the combination of venetoclax and the HDACi
romidepsin (used instead of belinostat because of availability).

This option was chosen because her disease was not mutated in
the JAK/STAT pathway. She achieved a partial response, currently
ongoing after 9months.Withmaximal venetoclax dosing (800mg/d)
the lymphocyte count has stabilized at ;40 3 109/L, with occa-
sional need for platelet transfusion support.

Discussion
Recent international collaborations1 have begun to promote
translational science that may bring the benefits of novel agent-
based therapies to T-PLL. Much of this initial preclinical work has
focused on the genetics of T-PLL and how that might influence
susceptibility to various targeted treatments.27 We report for the
first time a functional precision-medicine approach, using BH3
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Figure 5. Two patients treated with the venetoclax1ruxolitinib combination. (A) Patient A (top): the curve shows the evolution of white blood cell (WBC) count during
treatment with the venetoclax1ruxolitinib combination. The 2 histogram graphs show the daily doses of venetoclax and ruxolitinib received. The combination was started with
ruxolitinib 15 mg twice daily and venetoclax 2 days later with a daily ramp-up from 20 to 800 mg over 6 days. Adverse events (AEs): (1) grade 3 urinary infection; (2) grade 3
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profiling to dissect T-PLL biology and to identify novel combi-
nation approaches to therapy. We found that, relative to CLL
cells, T-PLL cells are less primed to undergo apoptosis. Unlike
CLL cells, which depend primarily on BCL-2 for survival, T-PLL
cells are heterogeneous and may commonly also depend on
MCL-1. Dual inhibition of BCL-2 and MCL-1 potently induced
cell death in our model. Moreover, JAK/STAT pathway inhibition
with ruxolitinib and HDAC inhibition with belinostat selectively
increased BCL-2 dependence, thereby sensitizing T-PLL cells to
venetoclax. A model of these interactions is summarized in
Figure 5D. We began to explore the combination of venetoclax
and ruxolitinib in vivo by treating 2 patients with refractory T-PLL,
and we observed a deep response, which is ongoing after
10 months in the JAK3-mutated T-PLL, as well as a stabilization
of the disease in a patient for whom nomutation was found in the
JAK/STAT pathway of tumor cells.

Several recent studies have evaluated targeted therapies in
T-PLL cells through analysis of isolated primary T-PLL cells derived
from the peripheral blood10,14,17; however, the microenvironment
most likely modulates intracellular survival signaling in T-PLL. One
group used stromal support (NKT) and found that SNS-032, a
cyclin-dependent kinase inhibitor, overcame the stroma-mediated
protective effect.9 In another study, IL-2, IL-4, and CD40L stimu-
lation was used to mimic the effects of the lymph node micro-
environment, which led to resistance to inhibition of both BCL-2
and MCL-1.14 We used the NKT stromal coculture system, which is
known to generate media enriched with IL-6 and CXCL1028 and
also promotes malignant cell survival through direct cell-cell in-
teractions. The use of this coculture model may at least in part
explain the lower activity of the drugs used in monotherapy in our
study in comparison with other published data.9 An advantage of
this model is that it enabled us to confirm, under different con-
ditions, the synergy between inhibition of BCL-2 and MCL-1 in
T-PLL, which was also suggested by a recent study.14 Although this
promising approach is now under evaluation in other hematologic
malignancies, theoretical concerns about the potential for he-
matologic and cardiac toxicities suggest that we should also in-
vestigate other venetoclax combination strategies given the
possibility that a BCL-2 plus MCL-1 inhibitor combination is not
feasible from a safety perspective.

To explore other potential combination partners for venetoclax,
we focused on targeting other pathways crucial to the patho-
physiology of T-PLL: JAK/STAT, histone acetylation, and the TCR
pathway. In ameta-analysis that included sequence information on
JAK or STAT gene loci in 275 patients with T-PLL, a cumulative rate
of 62.1% of cases with mutated JAK or STAT genes were found.
Functionally, it has been shown that IL2RG-JAK1-JAK3-STAT5B
mutations led to STAT5 hyperactivation that transformed Ba/F3
cells, resulting in cytokine-independent growth, and/or enhanced
colony formation in Jurkat T cells.29 Prior work has also suggested
that pharmacologic inhibition of the JAK/STAT pathway with the
phospho-STAT5 inhibitor tool compound pimozide led to de-
creased T-PLL cell viability and diminished phospho-STAT5

levels.29 Basal STAT5B phosphorylation level in T-PLL cells
was evaluated in 2 studies,2,11 and a common finding was no-
ticeable basal phosphorylation of STAT5B in several T-PLL samples,
which could be explained by IL2RG-JAK1-JAK3-STAT5Bmutations
or by genomic losses of hypothetical negative regulators of
STAT5B.2 In both studies, the amount of STAT5B phosphorylation
was heterogeneous and was higher in cases with mutated JAK1,
JAK3, or STAT5B, consistent with our findings.

Previous work has shown that JAK3, even when constitutively
active, does not mediate STAT5 phosphorylation without JAK1
and that JAK1 phosphorylates JAK3 and STAT5, whereas JAK3
phosphorylates and fully activates JAK1, but not STAT5.30 Our
results are consistent with these data, given that we found that
JAK1 inhibition with ruxolitinib (IC50, 3.3 nM) enhances BCL-2
dependence and venetoclax activity, whereas JAK3 inhibition
with PRN694 (IC50, 30 nM) does not. Moreover, the growth-
promoting activity of mutated STAT5B can be partially abro-
gated by a JAK1 inhibitor.31 To some extent, even mutated
STAT5B needs some phosphorylated JAK1 to transduce signal,
consistent with our data showing that ruxolitinib has a preserved,
but less pronounced, effect on STAT5B-mutated T-PLL cells.
Finally, an influence of phosphorylated STAT5B on BCL-2 family
proteins in T cells is described,32-34 but further work is needed to
explore this finding in T-PLL.

In addition to JAK/STAT dysregulation, T-PLL is characterized by
dysregulation of histone acetylation, which can be targeted by
HDACi.11 We showed a significant increase in overall priming
after treatment with belinostat, which may help explain the re-
ported synergy of HDACi with chemotherapy and alemtuzu-
mab.12 Likewise, it has been proposed that p53 activation, by
reacetylation through HDAC inhibition, can influence BCL-2
family proteins, particularly BCL-2 and BCL-xL.15 Our finding that
belinostat increases BCL-2 dependence is consistent with that
hypothesis. Finally, our results also shed light on how targeting
the TCR pathway could be effective in T-PLL. Although not as
pronounced as the effects we saw with JAK/STAT or HDAC
inhibitors, we do see a modest effect on viability with TCR
pathway inhibition through the selective ITK inhibitor PRN694
when combined with venetoclax. This effect was not significant
with ibrutinib at the dose of 1 mM. This is consistent with our
previous data, where ibrutinib was used at a higher dose of
10 mM, which inhibited ITK more potently.17 Interestingly, the
effect of PRN694 was primarily seen in T-PLL cells without ac-
tivatingmutations in the JAK/STAT pathway, suggesting that the
pathophysiology in this subset of patients with T-PLL may rely
more on the proximal TCR signalosome.

Our preclinical data on venetoclax with ruxolitinib led to the
initial exploration of this combination in 2 patients with refractory
T-PLL. One of the patients carried the JAK3 mutation and ex-
perienced a deep partial response, which, at this writing, is
sustained for 10 months with an intermittent treatment strategy.
The second patient (without a JAK-STAT pathway mutation

Figure 5 (continued) started first with a daily ramp-up from 20 mg to 800 mg over 6 days. After 2 months of slow progression, ruxolitinib was added at 10 mg/d and then
increased to 10 mg twice daily. AE 1: grade 2 thrombocytopenia. (C) A computed tomographic scan of patient A showing the spleen at baseline (largest dimension measured,
168.3 mm) and 1 month after the beginning of treatment with ruxolitinib1venetoclax (largest dimension measured, 110 mm). (D) The proposed mechanism underlying our main
findings. At baseline, BCL-2 and MCL-1 are molecular vulnerabilities in T-PLL. JAK/STAT pathway inhibition through JAK1 inhibition selectively increases BCL-2–dependent
apoptotic priming and the activity of venetoclax.
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detected in tumor cells) experienced stabilized disease. These
results, along with our preclinical data, strongly support the de-
velopment of a prospective clinical trial to evaluate the safety and
efficacy of this combination in T-PLL. Finally, the partial response
of patient C (without a JAK-STAT pathway mutation detected in
tumor cells and treated with venetoclax and romidepsin), which,
at this writing, was sustained for 9 months, supports further
evaluation of venetoclax1HDACi in T-PLL, especially in patients
without a JAK/STAT pathway mutation in their T-PLL cells.
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