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KEY PO INT S

l Hypoxia pathway
proteins control
neutrophil motility
exclusively in highly
restricted
environments.

l PHD2-HIF2a-RhoA
is a novel axis
promoting movement
in a chemotaxis-
independent manner.

Orchestrated recruitment of neutrophils to inflamed tissue is essential during the initiation
of inflammation. Inflamed areas are usually hypoxic, and adaptation to reduced oxygen
pressure is typically mediated by hypoxia pathway proteins. However, it remains unclear
how these factors influence the migration of neutrophils to and at the site of inflammation
during their transmigration through the blood-endothelial cell barrier, as well as their
motility in the interstitial space. Here, we reveal that activation of hypoxia-inducible factor
2 (HIF2a) as a result of a deficiency in HIF prolyl hydroxylase domain protein 2 (PHD2)
boosts neutrophil migration specifically through highly confined microenvironments. In
vivo, the increased migratory capacity of PHD2-deficient neutrophils resulted in massive
tissue accumulation in models of acute local inflammation. Using systematic RNA se-
quencing analyses and mechanistic approaches, we identified RhoA, a cytoskeleton or-
ganizer, as the central downstream factor that mediates HIF2a-dependent neutrophil

motility. Thus, we propose that the novel PHD2-HIF2a-RhoA axis is vital to the initial stages of inflammation because it
promotes neutrophil movement through highly confined tissue landscapes.

Introduction
In the innate immune response, neutrophils represent the first
line of protection against infections, extravasating quickly from
the circulation to inflamed tissues for fast pathogen elimination.
This process necessitates transit from the oxygen-deprived bone
marrow via the circulatory system to the inflammation site, which
is typically hypoxic as a result of vasculature damage and/or high
metabolic demand of pathogens and host cells.1

Under hypoxic conditions, the transcription factor hypoxia-
inducible factor 1 (HIF1a) and its isoform, HIF2a, are key elements
that control immune cell metabolism and function.2-7 Importantly,
HIF activity is controlled by a class of oxygen sensors known as
the HIF prolyl hydroxylase domain enzymes (PHD1-3) (for reviews,
see Sormendi and Wielockx8 and Watts and Walmsley9). When
oxygen levels decrease, PHDs get inactivated, which results in
HIFa stabilization and transcription of relevant target genes. In-
terestingly, HIF1a deficiency results in subdued inflammation,2,3

whereas, inversely, PHD inactivation and/or HIFa stabilization
leads to enhanced neutrophil survival,4,10 chemotaxis, and de-
granulation (for a review, see Lodge et al11). Although both HIFa
subunits have overlapping activities, unique roles for HIF2a, in-
cluding in neutrophil function, have been reported.4-6

Over the past decade, several mechanisms have been shown to
participate in the multistep recruitment of neutrophils from the
circulation to sites of infection or inflammation.12-14 The re-
cruitment process requires cell plasticity, because cells deform
as they move through the blood-endothelial cell barrier and the
confined areas of interstitial tissues. Leukocyte migration through
these microenvironments is orchestrated by actin polymerization
regulators, such as the Rho GTPases RhoA, Cdc42, and Rac1.15-18

In this context, HIF1a expression has been suggested to
modulate functional changes in the cytoskeleton and metabolic
reprogramming.19-22 Importantly, disruption of mechanisms that
control neutrophil infiltration in tissues is associated with sepsis,
a life-threatening condition with multiorgan failure and 1 of the
leading causes of death in the intensive care unit.23 Conversely,
no effective therapeutic strategy is available for mitigating an
uncontrolled neutrophilic inflammatory response.

In this study, we specifically addressed the effects of permanent
PHD2 deficiency on the motility of neutrophils, including their
recruitment during sterile and localized inflammation. Using
ex vivo and in vivo imaging in a variety of highly confined mi-
croenvironments, we demonstrate for the first time that HIF2a
overactivation enhances the migratory capacity of neutrophils in
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a chemotaxis-independent manner. Through whole-transcriptome
analysis and combined migratory regulation, we describe a role for
the PHD2-HIF2a-RhoA axis in the prompt initiation of the innate
immune response.

Materials and methods
Mice
All mouse strains were housed under specific pathogen–free
conditions. Experiments were performed with male and female
mice at the age of 8 to 12 weeks. Vav:cre-PHD2f/f (conditional
knockout [cKO] P2) and Vav:cre-PHD2/HIF2ff/ff (cKO P2H2)
mouse lines were created, using PHD2f/f,24 Vav:cre25 (generous
gift from Thomas Graf), and/or HIF2af/f mice.26 All offspring were
born in normal Mendelian ratios, and individual floxed lines have
been previously backcrossed to C57BL/6J mice $9 times. Wild-
type (WT) controls in all experiments were Cre2 littermates
without any chimerism (partial deletion of floxed genes in early
blastomeres).25 Mice were genotyped using the primers de-
scribed in supplemental Table 1 (available on the Blood Web
site), and knockdown efficiency was confirmed via quantitative
reverse transcription polymerase chain reaction on isolated
neutrophils (supplemental Figure 1A,C) and/or genomic poly-
merase chain reaction on ear biopsies.27 KRN T-cell receptor
transgenic mice were intercrossed with NOD Shilt/J mice
(Charles River Laboratories, Calco, Italy) to generate K/BxN
mice, as described previously.28 A detailed description of the
inflammation models can be found in the supplemental Data.
Breeding of all mouse lines and animal experiments were in
accordance with the local guidelines on animal welfare and were
approved by the Landesdirektion Sachsen (Dresden, Germany).

Results
PHD2-deficient neutrophils display enhanced
migration in highly confined environments in an
HIF2a-dependent manner
Although changes in the hypoxia pathway are involved in
multiple stages of the inflammatory response, details on how the
PHD/HIF axis governs neutrophil migration remain elusive. Given
that PHD2 is a central regulator of the hypoxia response, we
studied the motility of PHD2-deficient bone marrow–derived
neutrophils (BMDNs) isolated from cKO P2 mice (supplemental
Figure 1A). Initially, 1-dimensional (1D) migration assays in
polydimethylsiloxane microchannel devices with different levels
of constriction (channel widths of 3, 4, or 5 mm) were used to
characterize the migratory capacity of individual neutrophils
(Figure 1A).17,18,29-32 Interestingly, cKO P2 neutrophils moved
significantly faster than did their WT counterparts, but only in the
most confined channels (Figure 1B; supplemental Figure 1B). To
identify downstream effectors of this phenotype, we evaluated
the contributions of HIF2a in cKO P2H2 neutrophils compared
with their littermate controls (supplemental Figure 1C). HIF2a
has been shown to be a central regulator of neutrophil function
and inflammation,4,5 and we identified it as an excellent target of
PHD2 in different cell lineages in vivo.33,34 Interestingly, cKO
P2H2 neutrophils did not show any differences in speed at any
of the degrees of confinement tested (Figure 1C). These data
strongly suggest that enhanced HIF2a activation regulates
neutrophil motion in very confined microenvironments.

We extended our analysis to evaluate neutrophil migration in a
2-dimensional (2D) confined microenvironment (4.5 mm height)
(Figure 1D). Similar to the results obtained in the 1D migration
assay, neutrophils from cKO P2 mice showed increased motility
compared with their WT counterparts, as evidenced by longer
trajectories of equivalent durations (Figure 1E), greater speed
(Figure 1F), and higher mean square displacement (MSD) values
(Figure 1G). On the other hand, under identical conditions, cKO
P2H2 neutrophils did not show any difference in speed or MSD
values compared with their WT counterparts (Figure 1H-I). In-
terestingly, cell migration in a nonconfining 2D chamber (12 mm
height) did not show any difference in speed, trajectories, or
MSD value (supplemental Figure 1D-F). Thus, these data in-
dicate that the PHD2-HIF2a pathway regulates cell migration by
facilitating mobility strictly in confined spaces.

PHD2-deficient neutrophils display enhanced
nondirected motility in complex environments
We used 3-dimensional (3D) collagen matrices to confirm the
role of PHD2 in neutrophil migration in a microenvironment of
collagen fibers of different pore sizes, mimicking the movement
of the immune cell once it arrives in the interstitial tissue after
extravasation. Therefore, migration of freshly isolated BMDNs
from cKO P2 mice and WT littermates was compared in dense
3D collagen gels (4 mg/mL) (Figure 2A) during which cKO P2
neutrophils showed greater motility, as evidenced by a higher
displacement radius (Figure 2A). Detailed analysis of these random
trajectories showed that cKO P2 neutrophils displayed greater
speed and MSD values compared with WT cells (Figure 2B-C).
Interestingly, this difference was completely lost in less dense
collagen gels (2 mg/mL) (Figure 2B; supplemental Figure 2A).

We verified whether this motility phenotype was dependent on
HIF2a by assessing the migration of cKO P2H2 neutrophils.
Surprisingly, they showed enhanced motility in 2 mg/mL and
4 mg/mL collagen gels relative to their WT counterparts (sup-
plemental Figure 2B).

Because cKO P2H2 neutrophils showed a migratory behavior
similar to that of their WT counterparts in 1D and 2D confined
migration assays, this is suggestive of an effect that is dependent
on the collagen microenvironment. Therefore, the enhanced
migration of PHD2-deficient neutrophils in collagen gels cannot
be unambiguously linked to HIF2a.

Because it has been suggested that silencing of PHD2 in neu-
trophils leads to their enhanced chemotaxis,35 we assessed this
effect in our complex 3D collagen matrix setup using CXCL2 as
chemoattractant. Directionality of cKO P2 neutrophils toward
CXCL2 remained unaltered (Figure 2D). In addition, speed ki-
nematics upon chemokine treatment were similar in PHD2-
deficient and WT neutrophils (Figure 2E). Equivalent results
were observed in cKO P2H2 neutrophils (supplemental Figure 2C).
These results show that PHD2 deficiency does not affect CXCL2-
induced neutrophil chemotactic capacity and indicate that
enhanced motility in cKO P2 neutrophils is restricted to sponta-
neous migration.

The migratory capacity of several cell types in complex micro-
environments is highly dependent on their capacity to deform
when encountering narrow pores.36,37 Therefore, we evaluated
whether cKO P2 neutrophils can overcome severely constricted
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spaces of only 1 mm width (Figure 2G).17,38 Remarkably, PHD2-
deficient neutrophils showed an enhanced preference to pass
through these constrictions (Figure 2H) and were also faster
compared with WT neutrophils (Figure 2I). Interestingly, under
these conditions, cKO P2H2 neutrophils showed reduced mi-
gration and similar migration kinetics as WT cells (Figure 2J-K),
suggesting a PHD2/HIF2a-dependent axis in migration through
extremely narrow constrictions.

Next, we studied whether the ability of cKO P2 neutrophils to
pass through small confinements is related to changes in their
deformability when an external force is applied. For this, we first
analyzed neutrophil deformability using real-time fluorescence
and deformability cytometry (supplemental Data), which can

extract the stiffness of cells (Young’s modulus) in high
throughput without contact at millisecond (ms) timescales.39,40

We used steady-state BMDNs, phorbol 12-myristate 13-acetate
(PMA)-activated BMDNs, and peripheral blood neutrophils
isolated 6 hours after thioglycolate-induced peritonitis. How-
ever, no difference was observed between cKO P2 and WT
neutrophils under any of the conditions tested (supplemental
Figure 2D). Likewise, a microcapillary microcirculation mimetic
assay41,42 using peritonitis neutrophils did not show any differ-
ence in their ability to passively navigate through multiple
constrictions at high speed (supplemental Figure 2E). Taken
together, these assays strongly suggest that loss of PHD2 does
not affect neutrophil deformability under externally applied
stress without confinement.
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Figure 1. Neutrophils deficient for PHD2 display enhanced motility in highly confined 1D and 2D microenvironments in an HIF2a-dependent manner. (A) Example of
low-resolution (original magnification, 310) imaging of WT neutrophils migrating in 1D-microchannels (3 mm width) (upper panel). Arrowheads indicate cell position. Nucleus
(red) was labeled with Hoechst. Bright-field high-resolution (original magnification,363) image of a neutrophil migrating in amicrochannel (lower panel). (B-C) Average speed of
neutrophils migrating throughmicrochannels with a width of 3, 4, or 5mm. At least 89 cells for theWT/cKOP2 group and 127 cells for theWT/cKOP2H2 groupweremeasured. (D)
Example of low-resolution (original magnification 310) imaging of WT neutrophils migrating in 2D-confined devices (4.5 mm width) (left panel). Higher resolution (original
magnification,340) image of a single neutrophil migrating in a microchannel (right panel). Nucleus (red) was labeled with Hoechst. (E) Representative neutrophil tracks during
random 2D migration. t indicates the period of the displayed tracking, and r represents the mean displacement ratio in this period. (F,H) Quantification of mean speed of single
neutrophil trajectories migrating in 2D confined microdevices. Panel F corresponds to tracks in panel E. Data are represented as box plots (1median), and whiskers range from
the 10th percentile to the 90th percentile. (G,I) Mean square displacement of neutrophils analyzed in panels F and H, respectively. All graphs are a representative result of $3
independent experiments. *P , .05, Mann-Whitney U test.
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PHD2-deficient neutrophils extravasate faster
in vivo and accumulate in inflamed tissue
Based on the enhanced ability of PHD2-deficient neutrophils to
overcome very small constrictions, we decided to study the be-
havior of these cells in vivo, specifically in a more complex setting
of sterile skin inflammation. Earlobes from cKO P2 and WT lit-
termate mice that did not display any difference in the total
numbers of hematopoietic stem cells, myeloid progenitors, or
mature neutrophils (supplemental Figure 3A) were ectopically
treated with PMA, and the recruitment of Ly6G1 cells was vi-
sualized using intravital 2-photon microscopy (Figure 3A). In line

with our previous experiments, we found that PHD2-deficient
neutrophils were able to extravasate ;30% faster from the
vessel into the ear tissue than were their WT counterparts
(Figure 3B-C). Furthermore, the cumulative effect of faster
neutrophil extravasation time resulted in an anticipated increase
in Gr11 cells in the inflamed cKO P2 ear compared with that in
WT littermates at 24 hours after PMA treatment (Figure 3D).
Conversely, but consistently, this difference in migration was
abolished in cKO P2H2 mice (Figure 3E), further confirming a
role for HIF2a activity in driving the increased migration capacity
of these neutrophils.
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Figure 3. Loss of PHD2 in neutrophils enhances the speed of transendothelial migration in a mouse model of acute skin inflammation. Schematic representation of the
acute skin inflammation model (A), including time points for the intravital microscopy analysis (B) and final histological analyses (D-G). (B-C) Intravital imaging of representative
neutrophils using 2-photonmicroscopy, 3 hours after PMAwas applied to the ear (WT vs cKOP2). Time point 00m00s shows Ly6G1 neutrophils (1white dashed lines surrounding
the red cell) that had stopped rolling/moving at the blood-endothelial barrier (5 white dashed lines) before diapedesis and migration into the inflamed tissue. The last frames
represent the first time point that the individual neutrophil had completely left the bloodstream (scale bars, 10 mm). (C) The average time necessary for individual neutrophils to
complete the diapedesis. Total amount of cells were collected from 3 individual mice per genotype. Representative immunofluorescent images of Gr11 neutrophils on ear
sections 24 hours after PMA application (D-E, scale bars, 50 mm) and quantification of the total number of cells per area or fraction of apoptotic neutrophils (cCas31) (F-G). Each
data point represents an average amount based on $6 images per individual mouse. (H-I) Extracellular acidification rate (ECAR) measurements from steady-state neutrophils
immediately after negative selection. Data points represent individual mice from$3 experiments - normalized values against WT control. Data are mean6 standard error of the
mean. *P , .05, Mann-Whitney U test.

3420 blood® 17 JUNE 2021 | VOLUME 137, NUMBER 24 SORMENDI et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/24/3416/1809232/bloodbld2020007505.pdf by guest on 08 June 2024



Because previous studies have described PHD2-related im-
proved survival of neutrophils during inflammation,4,43 we
evaluated the level of apoptotic cells in ears that were treated
with PMA for 24 hours, but we did not find any difference in
cleaved caspase-31 cell numbers (cCas31) between the different
genotypes (Figure 3F-G; supplemental Figure 3B-C). This was
also confirmed in different ex vivo setups; no difference was
observed in the amount of apoptotic neutrophils after serum
starvation or subsequent efferocytosis by WT or cKO P2 bone
marrow–derived macrophages (supplemental Figure 3D-E).
Additionally, because recent work has associated PHD2 with
enhanced neutrophil glycolysis and their recruitment to sites of
inflammation,35 we assessed the glycolytic capacity of BMDNs
from cKO P2 mice, cKO P2H2 mice, and their respective WT
counterparts by measuring the extracellular acidification rate. In
line with previous reports, PHD2-deficient neutrophils appeared
to be significantly more glycolytic than their respective WT
counterparts (Figure 3H). However, neutrophils lacking PHD2
and HIF2a also showed significantly higher glycolysis (Figure 3I).
Taken together, although HIF2a directly controls the migration
speed of neutrophils in confined spaces and inflamed tissues,
this effect is independent of their survival or glycolytic activity.

HIF2a stabilization upon loss of PHD2 affects
cytoskeletal gene expression profiles
It is well accepted that the functionality of innate immune cells
varies depending on the lipid-type composition of their cyto-
plasmicmembrane.44,45 Therefore, weevaluatedwhether an altered
membrane lipid composition of cKO P2 neutrophils could account
for their different migratory abilities by performing high-throughput
lipidomic analysis of freshly isolated BMDNs (supplemental Data).
However, because there were not any significant alterations be-
tween cKO P2 and WT BMDNs (supplemental Figure 2D;
supplemental Table 3), it appears unlikely that differences in the
lipid composition are directly responsible for the dramatic dif-
ference in the migratory capacity of cKO P2 neutrophils.

Next, to further characterize the molecular underpinnings of the
HIF2a-driven neutrophil migration phenotype, we used next-
generation sequencing to analyze the steady-state transcriptomes
of BMDNs derived from cKO P2 and cKO P2H2 mice and
compare it with those of their respective WT counterparts
(Figure 4A). Gene signatures of various lineages were evaluated
using gene-set enrichment analysis (GSEA), as described
previously.46-48 In line with our in vivo cCas31 results, we did not
detect any significant apoptosis signatures among any of the
genotypes (Figure 4B), and next-generation sequencing con-
firmed a significant enrichment of glycolysis/gluconeogenesis-
related genes in cKO P2 and cKO P2H2 BMDNs (Figure 4C).
Strikingly, steady-state BMDNs lacking PHD2, with or without
HIF2a, displayed a significant reduction in genes related to the
innate immune response but not the chemokine-signaling path-
way (Figure 4D). Together, these observations suggest that sig-
nificant HIF2a-independent changes in the glycolytic capacity and
immune response of PHD2-deficient neutrophils can likely be
linked to HIF1a activity, as previously suggested.2,35

Conversely, a number of HIF2a-dependent gene signatures
associated with PHD2 deficiency were related to the function
and structure of the neutrophil cytoskeleton, including Rho
GTPase activity (Figure 4E). Additionally, using an integrative
method, we identified a number of master regulators that could

potentially control cellular cytoskeletal rearrangements through
transcriptional or protein regulation (supplemental Figure 4A).

Diminished RhoA GTPase activity underlies the
faster HIF2a-dependent migration of
PHD2-deficient neutrophils
Small Rho GTPases (RhoA, Cdc42, and Rac) are key molecular
effectors that steer cytoskeletal dynamics. Although we did not
find any difference in the messenger RNA expression of any of these
3 GTPases (cKO vs WT) (supplemental Figure 4B), we identified
numerous potential protein-protein associations between RhoA and/
or Cdc42 (but not Rac) and 49 gene products identified in the GSEA
signatures (Figure 5A). A number of them were identified as master
regulators (supplemental Figure 4A) or contained putative HIF2a
binding sites (supplemental Figure 4C).49

To substantiate this link between PHD2/HIF2a and Rho GTPa-
ses, we used an ex vivo enzymatic assay to quantify the activity of
these Rho GTPases in untreated freshly isolated BMDNs from
cKO P2 and P2H2 mice. Interestingly, cKO P2 neutrophils
exhibited diminished RhoA and Cdc42 GTPase activity (Figure
5B-C), whereas Rac GTPase activity was comparable to that of
WT neutrophils (Figure 5D). Further, cKO P2H2 neutrophils did
not display any significant reduction in RhoA, Cdc42, or Rac
GTPase activity, suggesting that regulation of RhoA and/or
Cdc42 is dependent on the PHD2/HIF2a-axis (Figure 5B-D).

Given this reduction in RhoA and Cdc42 GTPase activity in
PHD2-deficient neutrophils, we examined whether their direct
inhibition in WT neutrophils can mimic the motility phenotype
displayed by cKO P2 neutrophils. Therefore, we performed a
series of ex vivo 1D-migration assays using the RhoA inhibitor
CCG100602 and the Rho inhibitor exoenzyme C3 transferase.
Although the use of low doses of CCG100602 or exoenzyme C3
transferase enhanced the speed of migrating neutrophils in
3-mmmicrochannels (Figure 5E), treatment of cells with a Cdc42
inhibitor (ML141) did not have any effect on the velocity of
BMDNs (Figure 5F). Taken together, our data argue strongly for
a PHD2/HIF2a-orchestrated regulatory loop in the RhoAGTPase
activity–dependent motility of BMDNs.

The PHD2/HIF2a axis controls neutrophil
accumulation in joints during severe
inflammatory arthritis
To test the biological effects of the enhanced migratory ca-
pacity of PHD2-deficient neutrophils, we subjected the different
mouse strains to an autoantibody-induced inflammatory arthritis
model (K/BxN), which has been shown to bemyeloid dependent
(Figure 6A).50,51 cKO P2mice displayed enhanced swelling of the
hind limbs compared with their WT littermates (Figure 6B), and
this effect was sustained throughout the first 2 weeks of the
experiment. In line with our previous results, cKO P2H2mice and
their WT littermates did not display any difference in swelling
(Figure 6C). To characterize the myeloid composition of the
inflamed knee joints, we performed flow cytometry analysis of
the synovial fluid drawn on day 5, which revealed much higher
accumulation of neutrophils in cKO P2 knee joints (approxi-
mately threefold increase vs WT), along with slightly enhanced
macrophages (Figure 6D). Importantly, these differences were
not associated with changes in survival, because the geno-
types displayed similar fractions of viable Ly6G1 cells in their
synovial fluid (WT vs cKO P2: 90.8% 6 3.6% vs 89.15% 6 2.2%;
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Figure 4. PHD2-deficient neutrophils present a distinct signature associated to cytoskeleton dynamics. (A) Schematic overview of the deep-sequencing approach,
comparing RNA sequencing data from cKO P2 and cKO P2H2 mice, as well as their respective WT littermates. Apoptosis signatures in both transgenic lines are not changed
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mean 6 standard deviation). Immunofluorescence for Gr1 on
sections of knee joints (day 5) further confirmed the increased
amount of neutrophils (Figure 6E). Conversely, although no dif-
ference was observed in joint swelling between cKO P2H2 mice
and their WT littermates, their synovial fluid showed a slight, but
significant, reduction in neutrophil numbers at day 5 compared
with cKO P2 mice (Figure 6F). Thus, PHD2/HIF2a is also a central
axis during the initial stages of inflammation in arthritic joints.

Discussion
In this study, we explored whether hypoxia pathway proteins can
directly regulate neutrophil motility and revealed that sustained
activation of HIF2a in mouse neutrophils due to constitutive
PHD2 loss enhances neutrophil migration through very confined

environments independent of chemotactic, glycolytic, or apo-
ptotic activity. Using a combination of in vivo, ex vivo, and
deep-sequencing approaches, we provide evidence that the
enhanced migratory capacity of cKO P2 neutrophils relates to
changes in their cytoskeleton dynamics that are mediated by a
substantial reduction in RhoA GTPase activity.

Although it is generally accepted that neutrophils are the first
immune cells to arrive in the tissue during inflammation, the
molecular basis of neutrophil recruitment, which encompasses
extravasation and interstitial migration, remains elusive. Further,
neutrophil recruitment has been evaluated using a variety of
migration assays in multiple studies related to the innate
immune response,52-55 including in the context of hypoxia
pathway proteins,2,4 but these studies call into debate the role of
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Figure 5. Reduced RhoA-GTPase activity in cKO P2 neutrophils
leads to enhanced speed in highly confined environments. (A) The
protein-protein interaction (PPI) network map was built from the
49 genes from GSEA signatures: “cytoskeleton remodeling” and the
small GTPases. Bold lines are potential PPIs between RhoA or Cdc42
and GSEA signature gene products, and thin lines associates both
signature genes. Genes in yellow are defined as master regulators,
and genes in brown contain a putative HIF2a binding site (supple-
mental Figure 4A,C). (B-D) Rho GTPase activity measured in steady-
state BMDNs from all different genotypes and their WT littermates.
Data points represent individual mice from $2 experiments -
normalized values against WT control. Data are mean 6 standard
error of themean. Quantification of average speed ofWT neutrophils
treated with different inhibitors against RhoA (E) or Cdc42 inhibitor (F)
in 3-mm-wide microchannels. Data are represented as box plots
(1median), and whiskers range from the 10th percentile to the 90th
percentile. Data points are representative of 2 independent exper-
iments. *P , .05, Mann-Whitney U test.
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adhesion molecules.56,57 Here, we consistently show that neu-
trophils lacking PHD2 display enhanced cell motility in severely
confined 1D, 2D, and 3D microenvironments, an effect that we
found tobeHIF2a dependent in 1Dand2D settings. At this point, it
is unclear whether overactivation of HIF2a is central in neutrophil
movement through very confined 3D collagen structures because
cKO P2H2 neutrophils showed enhanced velocity in 3D collagen
gels, but it was independent of the density. A potential explanation
for this observation is that the absence of PHD2 and HIF2a affects
the interaction of neutrophils with collagen fibers, exclusively al-
tering their migration capacity independently of the confinement
level. Moreover, enhanced chemokinesis of cKO P2 neutrophils did
not interfere with their chemotactic capacities, because their
movement toward the gradient was unidirectional and reached a
maximumspeeddefinedby the complexity of the collagen network
(eg, density, pore size) and the chemokine. This demonstrates that
the enhancedmigratory capacity regulatedby the PHD2-HIF2a axis
is probably a cell-intrinsic characteristic.

An important process during neutrophil recruitment is the final
and time-limiting step of transendothelial migration, which is
mediated, in part, by mechanical forces generated by the mi-
grating neutrophil itself.58-60 We reveal a central role for HIF2a
in this process. Indeed, considering the narrow pores between
neighboring endothelial cells during the early phase of neu-
trophil diapedesis,59 our results from multiple approaches re-
iterate 2main observations: greater numbers of cKO P2 neutrophils
pass through small constrictions with enhanced speed. Intuitively,
these observations account for the shorter transendothelial
migration time in a local ear inflammationmodel. The cumulative
effects of such enhanced transmigration into inflamed tissues

were observable even at later time points in 2 completely in-
dependent in vivo models (ie, inflammatory skin lesions and
sterile arthritis). Indeed, it is possible that the enormous increase
in cKO P2 neutrophils is positively affected by the fact that once
a pore is opened, successive neutrophils are more likely to
extravasate at this spot, enabling more neutrophils to enter the
interstitium (skin) or the synovium (joint) of the inflamed tissue.59

Previous studies in a model of acute lung injury and different
ex vivo approaches have reported enhanced glycolytic capacity
of PHD2-deficient neutrophils, potentially due to HIF1a stabili-
zation, which was associated with enhanced neutrophil recruitment
to the inflammatory site.35 Here, we confirm enhanced glycolysis in
cKO P2 neutrophils and show that it is independent of HIF2a,
strongly suggesting that glycolytic metabolism does not underlie
the migratory phenotype described in our study. The absence of
differences in neutrophil apoptosis in vivo was corroborated by the
RNA sequencing data from single- and double-knockout neutro-
phils, implying that the prolonged inflammation phenotype in cKO
P2mice probably was not due to the persistence of the neutrophils.
This is in contrast to results obtained using in vitro approaches that
describe reduced apoptosis in HIF2a-overexpressing neutrophils,
which then resulted in delayed resolution of the inflammatory
response.4 That group also reported delayed apoptosis in
PHD2-deficient neutrophils and connected this to persistent
inflammation.35 We believe that these discrepancies are related
to differences in the experimental models used.

Although several studies have linked the hypoxia pathway to the
migratory capacity of a cell, only a few have suggested a role for
the PHD/HIF axis in regulating cell migration through changes in
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cytoskeletal function.20-22 In migrating neutrophils in vivo, dy-
namic polymerized actin converges at the leading edge of
pseudopods, whereas stable actin with high actomyosin con-
tractility assembles at the rear. Polarization and maintenance
of this cytoskeletal asymmetry strongly rely on Rho GTPase
activity.61,62 Using deep-sequencing data from neutrophils of
single- and double-transgenic lines, we show that a vast number
of genes associated with Rho GTPase signaling are directly or
indirectly regulated by HIF2a. Interestingly, cKO P2 neutrophils
displayed a significant downregulation of RhoA GTPase activity.
These findings are in agreement with those reported earlier (ie,
increased flux of RhoA-deficient neutrophils and aggravated
tissue damage in lipopolysaccharide-induced acute lung
injury).63 Our data also show that RhoA activity is not completely
abolished in cKO P2 neutrophils. To mimic this condition in vitro,
we used low amounts of RhoA inhibitor in the migration ex-
periments. However, we noticed that the use of high doses of
RhoA inhibitor decreased neutrophil migration under high
confinement (M.D. and P.V., unpublished results). This indicates
that RhoA might have a dual role in the regulation of neutrophil
migration. In agreement, Jennings and colleagues found in-
creased neutrophil motility in the absence of RhoA only upon
adhesion-independent stimuli.63 Because leukocyte migration
under confinement does not depend on cell adhesions,64 it is
possible that the mode of motility used by neutrophils under
strong compression is different from the one used in the absence
of confinement, as proposed in activated dendritic cells.33

A potential explanation is that partial RhoA inhibition would primarily
decrease dynamic protrusions at the cell front, which is known to
restrict cell migration by competingwith stable actin cables at the cell
rear.18 Such a mechanism has been already proposed to be required
to sustain cell polarity during neutrophil migration.65

Alternatively, the HIF2a axis could be directly involved in the
induction of cell contractility, which promotes neutrophil and
dendritic cell migration under strong confinement.17,32 However,
further efforts are required to identify the specific molecular
mechanism. However, it cannot be excluded whether there is
also a relative contribution of HIF1a activation to the motility of
the PHD2-deficient neutrophils in confined environments other
than via enhanced glycolysis. In that respect, HIF1 has been
associated with enhanced cell motility and migratory capacity
that result from the accumulation of F-actin22 or even colocali-
zation of F-actin with pyruvate kinase muscle 2 in filopodia.19

In summary, our results demonstrate that HIF2a-activation,
resulting from constitutive loss of PHD-2, enhances the motility
of neutrophils in highly confined surroundings, also during in-
flammation. Importantly, this phenotype is independent of
chemotaxis signaling, glycolysis, or apoptosis. Mechanistically,
the reduction in RhoA GTPase activity enhances the motility of
PHD2-deficient neutrophils through very confined microenvi-
ronments. These findings highlight the potential deleterious effects
of sustained HIF2a activity andmay have important implications for
the uncontrolled use of hypoxia-mimetic agents that are currently
licensed or are in phase 2 or phase 3 clinical trials.
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55. Reátegui E, Jalali F, Khankhel AH, et al.
Microscale arrays for the profiling of start and
stop signals coordinating human-neutrophil
swarming. Nat Biomed Eng. 2017;1:94.

56. Renkawitz J, Sixt M. Mechanisms of force
generation and force transmission during in-
terstitial leukocyte migration. EMBO Rep.
2010;11(10):744-750.

57. Yamada KM, Sixt M. Mechanisms of 3D cell
migration. Nat Rev Mol Cell Biol. 2019;20(12):
738-752.

58. Toyjanova J, Flores-Cortez E, Reichner JS,
Franck C. Matrix confinement plays a pivotal
role in regulating neutrophil-generated trac-
tions, speed, and integrin utilization. J Biol
Chem. 2015;290(6):3752-3763.

59. Heemskerk N, Schimmel L, Oort C, et al.
F-actin-rich contractile endothelial
pores prevent vascular leakage during leu-
kocyte diapedesis through local
RhoA signalling. Nat Commun. 2016;7(1):
10493.

60. Filippi MD. Neutrophil transendothelial mi-
gration: updates and new perspectives.
Blood. 2019;133(20):2149-2158.

61. Hind LE, Vincent WJ, Huttenlocher A. Leading
from the back: the role of the uropod in
neutrophil polarization and migration. Dev
Cell. 2016;38(2):161-169.

62. Sit ST, Manser E. Rho GTPases and their role in
organizing the actin cytoskeleton. J Cell Sci.
2011;124(Pt 5):679-683.

63. Jennings RT, Strengert M, Hayes P, et al. RhoA
determines disease progression by controlling
neutrophil motility and restricting hyper-
responsiveness. Blood. 2014;123(23):
3635-3645.

64. Reversat A, Gaertner F, Merrin J, et al.
Cellular locomotion using environmental
topography. Nature. 2020;582(7813):
582-585.

65. Wong K, Pertz O, Hahn K, Bourne H.
Neutrophil polarization: spatiotemporal dy-
namics of RhoA activity support a self-
organizing mechanism. Proc Natl Acad Sci
USA. 2006;103(10):3639-3644.

NEUTROPHIL MIGRATION THROUGH MICROENVIRONMENTS blood® 17 JUNE 2021 | VOLUME 137, NUMBER 24 3427

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/24/3416/1809232/bloodbld2020007505.pdf by guest on 08 June 2024


