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KEY PO INT S

l RIBE reduce the long-
term hematopoietic
reconstitution of
human HSCs and the
colony-forming ability
of human HPCs.

l RIBE impair human
HSCs and HPCs via
oxidative DNA
damage, and
antioxidants can
lessen the effects.

Total body irradiation (TBI) is commonly used in host conditioning regimens for human
hematopoietic stem cell (HSC) transplantation to treat various hematological disorders.
Exposure to TBI not only induces acute myelosuppression and immunosuppression, but
also injures the various components of the HSC niche in recipients. Our previous study
demonstrated that radiation-induced bystander effects (RIBE) of irradiated recipients
decreased the long-term repopulating ability of transplanted mouse HSCs. However, RIBE
on transplanted human HSCs have not been studied. Here, we report that RIBE impaired
the long-term hematopoietic reconstitution of human HSCs as well as the colony-forming
ability of human hematopoietic progenitor cells (HPCs). Our further analyses revealed that
the RIBE-affected human hematopoietic cells showed enhanced DNA damage responses,
cell-cycle arrest, and p53-dependent apoptosis, mainly because of oxidative stress.
Moreover, multiple antioxidants could mitigate these bystander effects, though at dif-
ferent efficacies in vitro and in vivo. Taken together, these findings suggest that RIBE

impair human HSCs and HPCs by oxidative DNA damage. This study provides definitive evidence for RIBE on
transplanted human HSCs and further justifies the necessity of conducting clinical trials to evaluate different anti-
oxidants to improve the efficacy of HSC transplantation for the patients with hematological or nonhematological
disorders.

Introduction
Transplantation of hematopoietic stem cells (HSCs) is a critical
therapy for various malignant and nonmalignant hematological
disorders and immune dysfunction.1-5 The key to successful
transplantation is that the transplanted HSCs home to the host’s
bone marrow (BM) niche and differentiate into multilineage
mature blood cells, thus providing the patient with a revitalized
hematopoietic and immune system.6 Total body irradiation
(TBI) is widely used for myeloablative conditioning regimens to
eliminate malignant or autoimmune cells of the patients with
acute lymphoblastic leukemia or acute myeloid leukemia before
HSC transplantation.7 TBI has remained the first choice in many
centers for acute lymphoblastic leukemia.8 However, non-
irradiated engrafted donor cells are also subject to damage
affecting their survival and function, known as radiation-induced
bystander effects (RIBE), which are caused by harmful factors

transmitted by irradiated cells.9-11 Moreover, we have previously
demonstrated acute negative bystander effects of irradiated
recipients on transplanted mouse HSCs12 and recently also
shown rapid differentiation of transplanted HSCs in an irradiated
host.13 Nevertheless, RIBE on human HSCs have not been
established.

In this study, we used an in vivo RIBE model as well as an in vitro
model to mimic RIBE in patients who undergo TBI, and in-
vestigated RIBE on human HSCs and comprehensive mecha-
nisms. Our results indicated that RIBE also occurred in human
HSCs both in vitro and in vivo: the long-term hematopoietic
reconstitution of human HSCs was significantly decreased, and
the clonogenic ability of HPCs was also reduced. RIBE induced
the human hematopoietic cells to undergo enhanced DNA
damage, which in turn led to cell-cycle arrest, cell apoptosis, or
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senescence. Moreover, the damage to bystander human he-
matopoietic cells was mainly from oxidative stress. Importantly,
our results showed that multiple antioxidants could alleviate the
damage of RIBE to bystander human hematopoietic stem and
progenitor cells (HSPCs), although they differed in their degree
of effectiveness. Taken together, these findings demonstrate
that RIBE impair human HSCs through oxidative DNA damage.
Our current study further justifies the plausible usefulness of
specific antioxidants in improving the engraftment of trans-
planted HSCs for relevant patients.

Materials and methods
Exposure to irradiation in vivo and in vitro
For the in vivo RIBE model, CD341 cells purified from human
cord blood (CB) were intravenously injected into irradiated
(10 Gy) or nonirradiated NOD/Shi-scid/IL-2Rgnull (NOG) mice
separately. After 17 hours, homed human CD341 cells (in vivo
bystander cells) from recipients were individually detected or
sorted for subsequent experiments. For the in vitro RIBE model,
we cocultured CB-CD341 cells with 10 Gy irradiated or non-
irradiated human BM cells using a transwell system (see sup-
plemental Methods, available on the Blood Web site). After
17 hours of coculture, the CD341 cells in the insert (in vitro
bystander cells) were collected for subsequent experiments.

BM transplantation assays
Female NOG mice were irradiated at a dose of 2.0 Gy 1 day
before transplantation. The homed human CD341 cells were
transplanted into recipients at a dose of 5000 cells/mouse in-
travenously. For serial transplantations, 1 3 107 whole BM cells
from each primary recipient were intravenously transplanted into
secondary recipient mice that were exposed to sublethal irra-
diation (2.0 Gy). Details of processing and detection of mice are
in the supplemental Methods.

Results
In vivo RIBE significantly dampen human long-term
hematopoietic reconstitution and clonogenic ability
According to previous studies,12,14 almost all transplanted HSCs
were observed to home to the BM and had not begun to divide
17 hours after transplantation. Therefore, we chose 17 hours
after transplantation to assess the impact of RIBE on human
hematopoietic cells (Figure 1A). First, we isolated human CD341

cells and injected them into 10 Gy irradiated (RIBE group) or
nonirradiated NOG mice (control group). Then, the homed cells
from irradiated and nonirradiated recipients were flow-sorted
17 hours after transplantation individually, and transplanted at
equivalent cell doses into sublethally (2 Gy) irradiated NOGmice
intravenously. The percentage of homed CD341 cells in the RIBE
group was a little more than that in the control group (supple-
mental Figure 1A). However, no significant differences between
groups were found in the absolute number of CD341 cells
because of the drastic decrease of the number of total bone
marrow cells after irradiation (supplemental Figure 1B). There-
fore, the homing ability of human CD341 cells was similar be-
tween the control and RIBE groups (supplemental Figure 1A-B).
The repopulation kinetics of human HSCs were measured at
different time points after transplantation. We observed that
the percentage of human CD451 cells in the RIBE group was

significantly lower than that of the control group as early as
4 weeks after transplantation (Figure 1B). Twenty weeks after
transplantation, human CD451 cell engraftment of the RIBE
group was decreased by 2.7- and 2.3-fold in the BM and spleen,
respectively, compared with the control group (Figure 1C-D;
supplemental Figure 1C-D). Importantly, we found that the
enrichment of HSC (CD341CD382) and HPC (CD341CD381)
cells in the RIBE group were lower than in the control group
(Figure 1E-F, respectively), suggesting a negative effect of ir-
radiated recipients on donor HSCs/HPCs. Themajority of human
cells in the BM were CD191 B cells in all the NOG mice
(Figure 1G). The RIBE group had significantly decreased ery-
throid engraftment than the control group (Figure 1H).

Secondary transplantations remain the most commonly used
strategy to assess the self-renewal ability of HSCs. Thus, we
performed parallel secondary transplantations from both RIBE
and control primary recipients. Interestingly, human cells from
primary RIBE recipients generated a 33.1-fold decrease of
the mean engraftment levels in the BM compared with those
from the control group (Figure 1I-J). These data demon-
strated that RIBE abrogated the long-term engraftment
potential of HSPC.

The cells that initiated engraftment in xenotransplants were
operationally defined as SCID-repopulating cells (SRCs). The
SRC assay provided a direct quantitative in vivo assay tomeasure
human HSC activity and engraftment. We next performed lim-
iting dilution analysis (LDA)15,16 to measure the frequency of
SRCs. One in 2979 cells in the RIBE group clonally initiated long-
term hematopoiesis in NOGmice, whereas 1 in 1416 cells did so
in the control group (Figure 1K; supplemental Table 2). In ad-
dition, colony-forming cell (CFC) assay showed that the number
of CFCs in the RIBE group significantly decreased in comparison
with that in the control group (Figure 1L). These data revealed
that the clonogenic potential of human CD341 cells was sup-
pressed after exposure to irradiated recipients.

RIBE obstruct HSPC cell-cycle entry and increase
apoptosis and senescence in vivo
The hematopoietic system is the most sensitive to irradiation,
and irradiation leads to acute hematopoietic damage by in-
ducing cell death of all the hematopoietic tissues.17-20 To explore
the mechanisms underlying the impaired long-term engraftment
of bystander hematopoietic cells (Figure 2A), we first examined
the cell-cycle status of bystander human CD341 cells by 5-
bromo-29-deoxyuridine (BrdU) incorporation. The proportion of
BrdU1 cells in the CD341 cells of the RIBE group was lower than
that of the control group, suggesting that cell-cycle arrest oc-
curred in bystander human HSPCs (Figure 2B). The fractions of
apoptotic cells of CD341 cells in the RIBE group were increased
(Figure 2C). Furthermore, senescence-associated b-galactosidase
(SA-b-gal) staining revealed a significant increase in the senes-
cence of CD341 cells in the RIBE group comparedwith the control
group (Figure 2D). Altogether, the observed impaired long-term
engraftment of bystander hematopoietic cells is partially attrib-
uted to the altered cell-cycle status, apoptosis, and senescence
of HSPCs.

Previous studies have reported that exposure to radiation causes
a persistent increase in reactive oxygen species (ROS) pro-
duction, and high levels of ROS are toxic to HSPCs both in vitro
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and in vivo.21-26 Thus, we speculated that irradiation-induced
oxidative stress may contribute to RIBE. To validate this hy-
pothesis, we evaluated the ROS levels of bystander human
HSPCs by analysis of oxidation of 29,79-dichlorofluorescein
diacetate (DCF-DA) and dihydroethidium. A marked increase in
ROS levels was observed in bystander human HSPCs (Figure
2E-F). In addition, mitochondrial ROS levels were significantly

elevated in bystander human HSPCs (Figure 2G), resulting in
impaired mitochondrial membrane potential (Figure 2H-I).

In vitro RIBE cause human HSPCs to undergo
defects similar to the in vivo RIBE
The number of bystander human HSPCs that can be collected
from the in vivo RIBE model is limited. To better understand the
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mechanisms of RIBE, we designed in vitro experiments by
coculturing human CD341 cells with irradiated or nonirradiated
human BM cells in a transwell system (Figure 3A). The re-
constitution activity and clonogenic potential of CD341 cells
were evaluated in both the RIBE and control groups. There was a
decreased level of human cell engraftment in the peripheral
blood in the RIBE group (supplemental Figure 2A-B). Human

CD451 cell engraftment in the BMof the RIBE groupwas 1.9-fold
lower than that in the control group (Figure 3B). Additionally,
compared with the control group, with a lower level of HSC-
enriched cells, the proportion of HPCs were slightly decreased in
the RIBE group (supplemental Figure 2C-D). This was due to
HSCs being more sensitive to radiation and oxidation than
HPCs.27,28 Similar to the in vivo model, the majority of human
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group). (J) Difference of SA-b-gal activity of human CD341 cells from each group was confirmed by the SA-b-gal enzyme activity assay as shown in the microscopic images, and
bars represent the proportion of blue stained cells. (K) Flow cytometric analysis of fold change in mitochondrial ROS levels by MitoSOX staining in human hematopoietic cells
(n5 5 per group). (L-M) Fold change of mitochondrial membrane potential of humanCD341 cells determined by flow cytometry with TMRE (L) andDilC1(5) staining (M) (n5 5 per
group). (N) Transmission electron microscopy (TEM) analysis of the mitochondria damage in human CD341 cells of in vitro RIBE model. (O-Q) The energy phenotype of CD341

cells in the in vitro RIBE model (O), the oxygen consumption rate (OCR) (P), and extracellular acidification rate (ECAR) (Q) were assayed by Seahorse assay (n 5 5 per group).
(R) Relative ATP levels in human CD341 cells of in vitro RIBE model (n 5 5 per group) (*P , .05; **P , .01; ***P , .001).
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cells were CD191 B cells in the BM of all NOG mice (Figure 3C).
However, unlike in vivo RIBE, the in vitro bystander human HSCs
did not display erythroid differentiation defects, which may be
caused by the absence of cell-to-cell contacts of the in vitro RIBE
model (supplemental Figure 2E). As observed in the BM, the
CD451 cells in the SP of RIBE group were significantly fewer than
those in the control group (supplemental Figure 2F) and the
majority of cells in the SP were CD191 B cells (supplemental
Figure 2G). These experiments indicated that the long-term
repopulating capacity of bystander human HSPCs was signifi-
cantly reduced in the in vitro RIBE model.

To further assess the self-renewal potential of in vitro bystander
human HSCs, we performed parallel secondary transplantation
and SRC assays. Compared with that in the control group, the
mean engraftment level of human cells from primary recipients
in the RIBE group showed a 3.7-fold decrease (Figure 3D). The
majority of human cells were CD191 B cells in the BM of all
secondary NOG mice (supplemental Figure 2F). Next, LDA
showed that 1 in 977 cells in the RIBE group clonally initiated
long-term hematopoiesis compared with 1 in 638 cells in the
control group (Figure 3E; supplemental Table 2). Moreover, the
number of CFCs in the RIBE group significantly decreased
compared with that in the control group (Figure 3F). Taken
together, these data indicated that, although not as strong as the
in vivo RIBE, the long-term repopulating capacity and clono-
genic potential of human HSPCs were also dampened after
exposure to irradiated BM cells, further confirming the negative
bystander effects of irradiated BM cells on human HSPCs.

We next detected the cell-cycle status and apoptosis status of
in vitro bystander human CD341 cells and demonstrated cell-
cycle arrest (Figure 3G; supplemental Figure 3A) and increased
apoptosis in the in vitro bystander human HSPCs (Figure 3H;
supplemental Figure 3B). Furthermore, cellular senescence de-
tected by SA-b-gal staining showed that senescent cells accu-
mulated in the RIBE group compared with that in control group
(Figure 3I; supplemental Figure 3C). These results were confirmed
by SA-b-gal enzymatic activity assay as shown in microscopic
images (Figure 3J). Taken together, these data indicated that RIBE
caused cell-cycle arrest, apoptosis, and senescence in human
HSPCs.

Previous studies have confirmed that mitochondria are the
main sources of ROS.29,30 Therefore, we further examined mi-
tochondria and energy metabolism in bystander human HSPCs.
Our data showed an elevated mitochondrial ROS level of
in vitro bystander human CD341 cells (Figure 3K; supplemental
Figure 3D), resulting in impaired mitochondrial membrane po-
tential (Figure 3L-M; supplemental Figure 3E-F). Furthermore,
transmission electron microscopy analysis showed that the mi-
tochondria in bystander human CD341 cells were swollen and
round, and the number of elongated mitochondria was signifi-
cantly decreased, accompanied by prevalent mitophagosome
formation (Figure 3N). Mitochondrial dysfunction leads to a
reduction in adenosine triphosphate (ATP) synthesis because of
the disruption of energy metabolism. We thus investigated
whether the energy phenotype of bystander human CD341 cells
was altered. Their energy metabolism was generally reduced
(Figure 3O), including aerobic respiration (indicated by extra-
cellular oxygen consumption rate) (Figure 3P) and glycolysis
(indicated by extracellular acidification rate) (Figure 3Q), which

led to a reduction in intracellular ATP (Figure 3R). These results
suggest that the mitochondria in bystander human HSPCs dis-
play severe dysfunction.

Excessive ROS in bystander human hematopoietic
cells leads to DNA damage in HSPCs
Our data in Figures 1 and 3 showed that the damage to human
HSPCs caused by the in vitro RIBE was consistent with the in vivo
RIBE. Therefore, the in vitro model was appropriate for the study
of detailed mechanisms. Our further studies showed that the
ROS level was also elevated in the in vitro bystander HSPCs
(Figures 4A; supplemental Figure 4A-B). To elucidate the mo-
lecular mechanism of RIBE, we performed RNA-sequencing of
the in vitro human CD341 cells in both the RIBE and control
groups. Gene set enrichment analysis revealed that there was
activation of the p53 signaling pathway, negative regulation of
the cell cycle, and positive regulation of the apoptotic signaling
pathway in HSPCs in the RIBE group (Figure 4B). Real-time
quantitative polymerase chain reaction results showed the up-
regulation of DNA damage response (DDR) markers including
ATM, CHK1, and CHK2, P53; the cell-cycle inhibitors P16INK4a

and P21CIP1; and apoptosis-related caspases in bystander HSPCs
(Figure 4C). Further analyses by western blot and immunoflu-
orescence assays revealed cytological evidence of activated
DDR in human HSPCs cocultured with irradiated BM. The ac-
tivated forms of ATM, p53 binding protein, forkhead box O3a,
g-H2AX, among others, were detected by western blot or im-
munofluorescence (Figure 4D-E; supplemental Figure 4C).
Furthermore, the protein expression of the cell-cycle and apo-
ptotic signaling pathway confirmed that the activation of the p53
signaling pathway by DDR led to negative regulation of the cell-
cycle and positive regulation of the apoptotic signaling pathway
(Figure 4D-E; supplemental Figure 4C). ROS levels of HSPCs
were elevated as soon as 30 minutes after coculture with irra-
diated BM (Figure 4F). However, the level of g-H2AX was
enhanced at about 2 hours after coculture (Figure 4G). Thus,
our data suggested that the activation of a series of DDR
pathways was initiated by increased ROS levels in bystander
human HSPCs. Abundant evidence indicates that HSPCs are
highly sensitive to ROS, which can cause oxidative DNA
damage and lead to cell damage.21,23,31,32 Our data confirmed
that RIBE induced excessive increases in ROS and oxidative
DNA damage in bystander human HSPCs, which may lead to
their exhaustion.

Cytokines may exert multiple functions involving stress and in-
flammatory responses, which are also associated with RIBE.33We
observed several cytokines including interleukin-1 (IL-1), IL-6,
IL-8, and tumor necrosis factor-awere increased after irradiation,
as reported33 (Figure 4H). Interestingly, the messenger RNA
and protein levels of IL-1ra were significantly elevated after
irradiation (Figure 4I). Moreover, we added IL-1a or IL-1ra to
the in vitro culture system and then measured the g-H2AX
protein by western blot. Based on the protein levels, we found
that IL-1a could lessen DNA damage of HSPCs both in the
control and RIBE groups, and IL-1ra can slightly increase DNA
damage of bystander HSPCs (Figure 4J). However, ROS levels
of HSPCs did not change in either IL-1a– or IL-1ra–treated
groups, suggesting that the alterations of DNA damage in-
duced by these cytokines may not be attributable to ROS levels
(supplemental Figure 4D).
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Figure 4. Excessive ROS in bystander human hematopoietic cells results in DNA damage in HSPCs. (A) Flow cytometric analysis of fold change of ROS levels by DCF-DA
staining in human CD341 cells of in vitro RIBE model. (B) Gene set enrichment analysis of the activation of the p53 signaling pathway, negative regulation of the cell cycle, and
positive regulation of the apoptotic signaling pathway in human CD341 cells of the in vitro RIBE model. (C) Real-time quantitative polymerase chain reaction analysis of the
related genes in human CD341 cells of in vitro RIBE model. (D) Western blot verified the expression of related signaling pathway at the protein levels. Each bar represents the
mean 6 standard deviation for biological triplicate experiments. (E) Human CD341 cells of in vitro RIBE model were immunostained for p-p53, g-H2AX, p-ATM, p-53BP1, and
FOXO3a (p-p53, g-H2AX, p-ATM, p-53BP1, and FOXO3a, green; 49,6-diamidino-2-phenylindole, blue). Scatter plots represent foci per cell from each group (scale bars, 7mm). (F)
Flow cytometric analysis of fold change of ROS levels by DCF-DA staining of human CD341 cells after different processing times. (G) g-H2AX expression of CD341 cells at the
protein level after different processing times. (H) Relative RNA expression of cytokines of nonirradiated or irradiated human bone marrow cells (n 5 3 per group). (I) Human
cytokine array showed the relative expression of IL-1ra in nonirradiated or irradiated bone marrow supernatant; the right panel shows the quantification results. (J) g-H2AX
expression of CD341 cells at the protein level in different cytokine-treated groups (*P , .05; **P , .01; ***P , .001).
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Inhibition of ROS elevation rescues human HSCs
from functional deterioration
Next, we asked whether the pharmacological inhibition of ROS
elevation could protect human HSPCs from functional degra-
dation. We used 3 antioxidants: N-acetyl-L-cysteine (NAC),
sulforaphane (SF), and resveratrol (Res), to eliminate excessive
ROS from bystander human HSPCs in vitro (Figure 5A-B). In
addition, treatment with these antioxidants prevented DNA
damage (Figure 5C-D) and reduced apoptosis (Figure 5E) of
in vitro bystander human HSPCs. However, combination of these
antioxidants did not exhibit further improvement (Figure 5B-E).

Then, we attempted to rescue bystander human HSPCs from
functional exhaustion in long-term repopulation and clonogenic
potential through treatment with antioxidants alone both in vitro
and in vivo. For the in vitro RIBE, the BM cells were treated with
NAC, SF, or Res for 30 minutes before irradiation, and the an-
tioxidants continued to exist in the coculture system until the CB
CD341 cells were collected and transplanted into sublethally
irradiated NOG mice intravenously (Figure 5A). Twenty weeks
after transplantation, the engraftment of bystander human
CD451 cells was improved by antioxidants treatment (Figure 5F;
supplemental Figure 5A). Furthermore, we found that antioxi-
dants could also improve HSC-enriched cell engraftment, but
only SF and Res could improve HPC engraftment (Figure 5G-H).
The majority of human cells were CD191 B cells in the BM of all
NOG mice, whereas the Res group had significantly higher
myeloid and erythroid (supplemental Figure 5B-C) engraftment
than the RIBE group, suggesting that Res administration in vitro
had positive effects on myeloid and erythroid differentiation,
which was consistent with the observations of a previous study.34

As was observed in the BM, the antioxidants could also improve
the in vitro bystander human cell engraftment in the SP (Figure
5I). Secondary transplantation demonstrated that antioxidants
could partially improve human HSPC long-term repopulation
compared with that in the RIBE group (supplemental Figure 5D).
The LDA assay showed that HSPCs in antioxidant-treated groups
contained more long-term repopulating cells than the RIBE group
(supplemental Figure 5E; supplemental Table 5). Additionally, we
used a CFC assay to evaluate the clonogenic potential of in vitro
antioxidant-treated bystander CB-CD341 cells. The number of
CFCs significantly increased after antioxidant treatment (Figure 5J).

For the in vivo RIBE, the mice were treated with NAC, SF, or Res
for 7 days. CB CD341 cells were injected into nonirradiated or
10 Gy irradiated NOG mice in either the control, RIBE, or RIBE
with antioxidant treatment groups. After 17 hours, the homed
human CD341 cells were sorted individually and transplanted
into sublethally irradiated NOG mice (Figure 6A). At 20 weeks,
the transplantation results demonstrated that these antioxidants
could also improve in vivo bystander human cell engraftment
(Figure 6B; supplemental Figure 6A). The engraftment of HSC-
enriched cells was improved (Figure 6C), and unlike treatment
in vitro, only Res could improve HPC engraftment in vivo
(Figure 6D). Furthermore, antioxidants used in vivo showed that
themajority of human cells in the BMwere CD191B cells in NOG
mice, and antioxidants could not improve the erythroid potential
of human HSPCs within the in vivo RIBE model (supplemental
Figure 6B-C). The antioxidants could also improve in vivo by-
stander human HSPC engraftment in the SP, as observed in the
BM (Figure 6E). Moreover, we assessed the clonogenic potential

of in vivo antioxidant-treated bystander CB CD341 cells and
found that the number of CFCs significantly increased after
antioxidant treatment (Figure 6F). Secondary transplantation
and LDA assay showed that antioxidants could partially improve
human HSPC long-term repopulation activity damaged by RIBE
(supplemental Figure 6D-E; supplemental Table 5). Taken to-
gether, our data show that the impaired long-term engraftment
and clonogenic potential of bystander human HSPCs can be
restored by antioxidants. These results show that the excessive
ROS level is the primary cause of DNA damage in bystander
human HSPCs, and the pharmacological inhibition of ROS
elevation effectively prevents deterioration of human HSPC
function both in vitro and in vivo.

Discussion
Human HSCs are uniquely able to be implanted into the BM of a
recipient and to expand and provide long-term multilineage
hematopoiesis. However, sustained and qualitative implantation
of donor HSCs requires preconditioning, traditionally with ra-
diation or chemotherapeutics, which not only ablates most of the
hematopoietic and immune system of the host, but also exposes
the implanted donor hematopoietic cells to bystander effects.
Previously, we reported that RIBE significantly injured the long-
term repopulating ability of transplanted mouse HSCs.12 How-
ever, RIBE on human HSCs have not been well studied. In this
study, we found that RIBE also impaired human HSPCs, which
showed that the long-term repopulating ability of bystander
HSCs and the clonogenic capacity of bystander HPCs were
significantly reduced. Our data showed that erythroid engraft-
ment of bystander HSPCs was impaired in the NOGmicemodel.
Although CD452CD235a1 erythroid cells could be detected in
the NOG mouse model, they were at very low levels.15 Human
red blood cells were rejected by macrophages in immunode-
ficient mice,35 although an improvedmouse model for red blood
cell reconstitution has been reported.36,37 Further investigations
of improving erythroid engraftment are needed. However, to our
knowledge, the current study is the first to investigate RIBE on
transplanted human hematopoietic cells.

Multiple mechanisms underlying RIBE have been reported,
among which excessive ROS generation is one of the main
culprits.33,38,39 For example, Lyng et al found that ROS was re-
sponsible for in vitro bystander cell death.40 Moreover, our
previous study demonstrated that elevated ROS was at least
partially responsible for the in vivo RIBE on mouse HSCs.12

Importantly, our current results showed that oxidative stress in
bystander human hematopoietic cells leads to DDR, cell-cycle
arrest, senescence, and p53-dependent apoptosis through the
in vitro RIBE model. Excessive ROS produced by irradiation can
lead to mitochondrial dysfunction, which in turn reduces ATP
production, alters cellular metabolism, and induces apoptosis.41

Therefore, we investigated the mitochondria in bystander hu-
man HSPCs and found that they were severely impaired and
greatly diminished, leading to reduced ATP production and
altered cellular metabolism. Moreover, we found that IL-1a
could partially weaken but IL-1ra tends to increase DNA damage
of bystander human HSPCs. However, the opposite effects of
these 2 cytokines appeared to be independent of ROS levels.
Pietras et al42 previously showed that chronic IL-1 exposure
negatively affects HSC function and promotes differentia-
tion, and reverses the interruption of IL-1 exposure. It will be
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Figure 5. Inhibition of ROS elevation by antioxidant treatment in an in vitro RIBEmodel lessens the functional deterioration of human HSPCs. (A) Experimental diagram
of in vitro antioxidant treatment RIBEmodel; human BM cells were treated with single antioxidant alone or in combination for 30 minutes before irradiation, and the antioxidants
continued to exist in the coculture system for 40 hours. (B) Flow cytometric analysis of fold change of ROS levels by DCF-DA staining of human CD341 cells from each group.
(C-D) Human CD341 cells from each group were immunostained for p-p53 and g-H2AX (p-p53 and g-H2AX, green; 49,6-diamidino-2-phenylindole, blue). Scatter plots represent
foci per cell from each group (scale bars, 7 mm). (E) Frequency of Annexin V1 cells of human CD341 cells from each group. (F) Collected human CD341 cells from panel A were
transplanted into NOGmice. Mean human cell engraftment (left) was detected and bars represent the fold difference of engraftment levels from each group (right, n5 6-8 per
group). Frequency of human (G) CD341CD382 cells and (H) CD341CD381 cells in the BM of recipient. (I) Mean engraftment level of human cells in the spleen of recipients. (J)
Number of hematopoietic clones formed by human CD341 cells of each group (*P , .05; **P , .01; ***P , .001).
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interesting to investigate the long-term effect and further
mechanisms of acute increase of IL-1ra following RIBE.

Based on the mediating role of ROS in RIBE, we explored the
effects of NAC, SF, and Res on ROS reduction and bystander
human HSC engraftment. As reported previously, treatment
with NAC significantly reduced the level of intracellular ROS and
increased cell viability.43-45 Kong et al showed the effectiveness
of preventiveNAC therapy in the recovery ofmegakaryocytopoiesis
and hematopoietic reconstitution after haploidentical trans-
plantation (registered at www.clinicaltrials.gov as #NCT03236220
and #NCT02978274).46,47 SF can upregulate the expression of
endogenous antioxidants through Nrf2 activation to protect
against oxidative stress and damage.48 It has been suggested
that Res not only promotes the expansion of CD341 cells in vitro
but also ameliorates irradiation-induced long-term BM injury by
inhibiting oxidative stress in HSCs.49,50 In this study, we found
that all the antioxidants above could reduce the level of intra-
cellular ROS and rescue the impaired long-term engraftment of
bystander human HSCs, although at different efficacies. How-
ever, combinations of these treatments showed similar effects to

using a single antioxidant alone (Figure 5B-E). We suppose that
these 3 antioxidants may reduce ROS levels via signaling
pathways in a redundant manner. These results may suggest
that simultaneously using 2 or more antioxidants in clinical
bone marrow transplantations would not provide a further
improvement of therapeutic effects. Taken together, these
findings indicate the plausible usefulness of specific antioxi-
dants in improving the engraftment of transplanted HSCs for
relevant patients, although potential risks of promoting ma-
lignant cell growth must also be weighed.

In summary, our study presents definitive evidence for the ad-
verse effects of RIBE on transplanted human HSCs and also has
implications for improving the prognosis of the patients after
radiotherapy. Because of the limitations of the xenograft mouse
model, we investigated the mechanism of RIBE-induced human
HSC injury also involving an in vitro model. However, the exact
cell-to-cell contacts may differ between the in vivo and in vitro
models, thereby accounting for the different functional readouts
observed. In addition, we focused on RIBE on human HSCs in a
very short time frame after exposure to radiation; thus, the
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long-term impact of RIBE on humanHSCs has not been addressed.
More systematic and comprehensive analyses for the short-term
and long-term impacts of RIBE on engrafted human HSCs are
needed in future studies. Nonetheless, given the nontoxic nature of
many antioxidants, our current study justifies a strong rationale to
conduct clinical trials on multiple antioxidants in preconditioning
regimens for stem cell transplant patients in a broader scope.
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