
findings from such studies may explain
why crisis worsens, even though cf-mtDNA
did not increase beyond baseline.

Findings from this report will likely spur
the further studies needed to unravel
the complex processes by which sickle
erythrocytes increase inflammation be-
yond the damage caused to the vessel
wall by sickled erythrocytes. If cf-mtDNA
can be specifically targeted and in-
flammation is reduced in SCD mice, then
cf-mtDNAmay be an important mediator
of inflammation that increases vaso-
occlusion by what the investigators sug-
gest is neutrophil activation and NETosis.
Direct comparisons of DAMPs in SCD
will reveal whether cf-mtDNA is an im-
portant mediator of inflammation and
vasocongestion or just another biomarker
of inflammation.
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FV/FVa revealed
Josefin Ahnström | Imperial College London

In this issue of Blood, Ruben et al present detailed structures of coagulation
factor V (FV) and FVa, generated through cryogenic electron microscopy
(cryo-EM). This study provides, for the first time, structural detail on con-
formational changes in FV upon its activation, which control not only its ability
to enhance coagulation but also how it is regulated and degraded.1

Coagulation is initiated upon vascular
injury as an innate response to prevent
blood loss. FV is central to this process
by acting as a cofactor for FXa within
the prothrombinase complex.2 In the ab-
sence of vascular injury, FV circulates as a
procofactor comprising an A1-A2-B-A3-
C1-C2 domain structure. As a proco-
factor, FV has no procoagulant functions
but instead serves as an anticoagulant
regulator by enhancing 2 anticoagulant
pathways, the tissue factor pathway in-
hibitor (TFPI) and the activated protein C
(APC) pathways.3 Only once coagulation
has been initiated is FV activated to FVa
by limited proteolysis at 3 sites, Arg709,

Arg1018, and Arg1545, resulting in com-
plete removal of the B domain.2 The
procoagulant functions of FVa are in turn
regulated by APC-mediated proteolysis
at Arg306 and Arg506.2,3 Although we
have a general understanding of the mo-
lecular mechanisms behind the pro- and
anticoagulant functions of FV/FVa, struc-
tural information has been lacking.
Previous studies have provided some
structural insight into FVa or its inactive
derivatives.2,4-7 However, these have not
included an experimentally determined
structure of the human FV A2 domain.
This is of particular importance, because
this domain is key to both the procoagulant

cofactor function of FVa as well as its in-
activation by APC.2 Ruben et al have for
the first time determined the structures
of both FV and FVa, including their A2
domains (see figure).

The structures illustrate how the 2 FV
C domains provide a platform supporting
the A domains, similar to the previously
published structure of bovine FVai.6 The
A1 and A3 domains sit on top of the
C domains, with the A2 domain resting
between the A1 and A3 domains and
having no contact with the C domains
(see figure). In contrast to the A and
C domains, the B domain is overall disor-
dered, looping around the protein in a
dynamic conformation. Unfortunately, this
means that there is no structural insight into
the FV B-domain acidic and basic regions,
which are essential in maintaining FV in a
procofactor state.2 However, the most N-
and C-terminal segments of the B domain,
directly connected with the A2 and A3
domains, were more stable, crucially
allowing the resolution of the functionally
important Arg709 and Arg1545 thrombin
cleavage sites.

Through comparing the FV and FVa
structures (see figure), the authors show
how removal of the B domain from FV
resulted in increased disorder in the
A domains, mostly in the C-terminus of
the A2 domain, as well as (somewhat
surprisingly) in the C2 domain (FV/FVa
structures are shown from additional
angles in Figure 2 of the article by Ruben
et al). These changes in conformation
and subsequent functional epitope ex-
posure in the A2 domain are most
likely necessary for FVa to assemble with
FXa in the prothrombinase complex.
Furthermore, although the APC Arg306
and Arg506 cleavage sites are largely
buried in FV, they becomemore exposed
after thrombin-mediated activation of FV,
essentially priming FVa for APC-mediated
inactivation. The relatively inefficient
cleavage by APC of the Arg506 cleavage
site in FV, compared with that in FVa, is
therefore explained.8 The large distance
between the Arg306 and Arg506 APC
cleavage sites supports independent cleav-
age. Indeed, biochemical studies have
shown a significant difference in cleavage
kinetics between the 2 sites. Further-
more, their differing dependence for
cleavage on protein S, the cofactor of
APC, may be partially explained by this
spatial separation.3,9
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In addition to structural insight into
overall FV/FVa function and regulation,
this study also suggests explanations for
the structural impact of various naturally

occurring mutations in the FV gene. The
authors discuss how the FV Leiden,9 FV
Besanҫon,10 and FV Nara3 thrombophilic
mutations are likely to affect the structure

of FV/FVa. The latter 2 likely destabi-
lize the C2 and C1 membrane interac-
tions, essential for FV/FVa activation and
regulation.

One of the anticoagulant functions of FV
is caused by FV interactions with TFPIa
through the acidic region in the B do-
main, which is exposed in partially acti-
vated forms of FV as well as in naturally
occurring FV splice variants.9 Splice var-
iants of FV, such as the FV short, which is
upregulated in East Texas bleeding dis-
order,9 have a truncated B domain and
are single-chain proteins. Following
from the present study, it is tempting to
speculate that they may be amenable to
cryo-EM structural determination with
the potential of providing further in-
formation on the TFPIa interaction site.
Also, as mentioned by the authors, the
present structures are of FV/FVa in iso-
lation. Future structural determination of
the prothrombinase and FVa inactivation
complexes may now be possible and,
although a challenge, will provide even
greater insight into the mechanisms
surrounding the various functions of FV
and FVa.
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more exposed after thrombin-mediated activation (please compare FV and FVa structures), priming FVa for APC-
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