
Please e-mail the corresponding author for original data. Although the
idea for the study originated from observation on our recently published
case report (listed in Ruffatti et al4), that patient was not enrolled in the
current investigation.
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Therapy-related myeloid neoplasms (TMNs) constitute one of
the most challenging complications of cancer treatment.1 Al-
though understanding of the pathogenesis of TMNs remains
fragmentary, genomic studies in adults have thus far refuted the
notion that TMNs simply result from cytotoxin-induced DNA

damage.2-4 Analysis of the preclinical evolution of a limited
number of adult TMNs have traced themajority of cases to clonal
hematopoiesis (CH) that predates cytotoxic treatment and lacks
the mutational footprint of genotoxic therapies.2-6 Balanced trans-
locations, generally attributed to treatment with topoisomerase II
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Figure 1. Development ofCHandTMNs inpatients 1 and 2. (A) The neuroblastoma treatment course for patient 1 in parallel with the emergenceof CH (clone 1 in blue and clone 2
in gray) and the progression of clone 1 to t-MDS denoted in orange and red. Sequencing coverage (X) is indicated for whole-genome sequencing (WGS) and targeted sequencing
(TS). For patient 1, targeted sequencing coverage is reported at the PTPN11G503E locus. Themedian VAFs ofmutations defining each clone are indicated as a percentage value next
to their respective circle. Black circles indicate that no evidence (ie, no significant enrichment ofmutant reads) of the clone in question was found at that time point. (B) Themutational
spectra defining clone 2 for patient 1 (light blue and dark blue circles), clone 2 (gray circle) and t-MDS (red and orange circles) are defined by the number of single-base substitutions
(SBSs, y-axis) per trinucleotide context (x-axis). SBS spectra characteristic of platinum agent-induced mutagenesis are shaded yellow. The pie charts to the right of each mutational
spectra plot indicate that themajority of the SBSs at all timepoints are accounted for by platinumagent–associatedmutational signatures (SBS31 and SBS35), with the small remainder
ofmutations attributed to clock-likemutational processes associatedwith ageing (SBS1 and SBS5) and oxidative stress (SBS18). (C) The neuroblastoma treatment timeline for patient 2
in parallel with the progression of CH (light blue circle) to AML (red circle), with persistence of residual CH after t-AML remission (dark blue circle). As in panel A, the median VAF of
mutations defining each clone is indicated as a percentage value. *Treatment for t-AML before allogeneic transplant comprised cytarabine, daunorubicin, and etoposide (ADE) and
fludarabine, high-dose cytarabine, idarubicin, and granulocyte colony-stimulating factor (FLAG-IDA) chemotherapy. (D) The mutational spectra defining clonal hematopoiesis and
t-AML for patient 2 is shown in the same manner as that for patient 1 in panel B.
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inhibitors, are implicated in a minority of TMNs.1 TMNs are a
leading cause of premature death in childhood cancer survivors
and affect 7% to 11% of children treated for high-risk neuro-
blastoma and sarcoma.7,8 However, the origin of pediatric TMNs
remains unclear. Targeted sequencing of known cancer genes
detects CH in ;4% of children after cytotoxic treatment,6,9

whereas CH is vanishingly rare in young individuals in the general
population.10,11 Moreover, to our knowledge, no cases of child-
hood TMNs have been traced to pretreatment CH. In light of
these observations, we asked whether a broader driver land-
scape had eluded targeted CH screens in pediatric cancer
patients and/or whether therapy-induced mutagenesis may be
an under-recognized catalyst of CH and TMN in this patient
group.

As proof of concept, we first applied whole-genome sequencing
and deep targeted sequencing of serial bone marrow and blood
samples to investigate the pathogenesis of TMNs arising in
2 children after treatment for high-risk neuroblastoma. This study
was approved by the National Health Service Research Ethics
Service (reference 16/EE/0394). Patients’ guardians provided
written informed consent. DNA extracted from blood, bone
marrow, and tumors (supplemental Table 1, available on the Blood
Web site) underwent whole-genome sequencing and/or targeted
sequencing of hematologic cancer genes (supplemental Table 2).
Mapping to the human reference genome GRCh37 and somatic
variant calling were performed using an extensively validated
pipeline.12 From somatic mutations, we reconstructed phylo-
genetic relationships between samples by using methods
described previously.12 We assessed the signatures of base
substitutions, as defined by their trinucleotide context, to search for
evidence of therapy-related mutagenesis. Sequencing data are
accessible at the European Genome Archive (EGAD00001006423,
EGAD00001006424).

Patient 1 (PD31013), a 7-year-old girl, developed therapy-
related myelodysplastic syndrome (t-MDS) 10 months after
completing treatment for high-risk neuroblastoma (Figure 1A),
which included induction (7 agents, including cisplatin and
carboplatin) followed by myeloablative chemotherapy and
autologous hematopoietic stem cell transplantation (HSCT).13

Persistent thrombocytopenia developed 6 months after treat-
ment was completed. Bone marrow examination revealed

t-MDS with del(7q) and monosomy 7 in 4 of 20 and 11 of
20metaphases, respectively, and leukemogenic PTPN11G503E
and SETBP1 D868G variants. Repeat bone marrow assessment
4 months later identified a stable blast percentage alongside
neuroblastoma relapse, to which the child succumbed.

To reconstruct TMN development, we interrogated blood or
bone marrow samples, including neuroblastoma-infiltrated mar-
row taken before treatment, from 7 time points from which we
microdissected hematopoietic islands. The TMNs were charac-
terized by an increased burden of point mutations (2284) com-
pared with de novo pediatric acute myeloid leukemia (AML;
median, 600) (supplemental Figure 1).14 Most TMN mutations
(88%) were attributed to single-base substitution signatures 31
and 35, which have been closely linked to platinum chemotherapy
exposure (Figure 1B).15-17 Similarly, doublet-base substitutions
clearly exhibited the imprint of platinum agents (DBS5; supple-
mental Figure 2A).

We found the first evidence of a premalignant expansion during
induction chemotherapy: a clone sharing 128 mutations with the
TMN at a median variant allele frequency (VAF) of 1.5%. The
majority (78%) of these mutations exhibited platinum signatures
(Figure 1B). Targeted sequencing first detected the PTPN11
G503E variant in the autograft, but there was no evidence
of the SETBP1 D868G mutation until t-MDS was diagnosed
(supplemental Figure 3A). Of note, the sequence context of the
founding PTPN11 driver mutation confers a 99% probability of
this lesion arising as a result of platinum mutagenesis (supple-
mental Methods). However, because of the sensitivity limits of
copy number variant calling (supplemental Methods), we cannot
conclusively rule out the presence of del(7q) or monosomy 7 in
the autograft.18 In addition to interrogating the loci of TMN
mutations, we called somatic mutations independently in each
sample. This analysis revealed a second clone, separate from the
TMN lineage, within themid-induction bonemarrow (Figure 1A).
The second clone comprised 225 substitutions with a remarkable
median VAF of 7.8%, again predominantly attributed to expo-
sure to a platinum agent (Figure 1B). This clone regressed after
induction treatment.

Patient 2 (PD42747), a girl almost 4 years old, developed therapy-
related AML (t-AML) 6 months after completing treatment for
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metastatic neuroblastoma (with a protocol similar to that used for
patient 1; Figure 1C). The t-AML harbored a balanced KMT2A-
MLLT1 translocation (supplemental Figure 3B), commonly at-
tributed to topoisomerase II inhibitors such as etoposide, which
she had received during induction.1 She remains in remission
8 years after allogeneic HSCT.

Samples from 3 time points were available for patient 2: auto-
graft harvest, t-AML diagnosis, and t-AML remission. The t-AML
harbored an elevated number of substitutions (1264) compared
with de novo childhood AML,14 93% of which exhibited platinum
signatures (Figure 1D; supplemental Figure 2B). We detected
t-AML variants, although not the KMT2A fusion, in both auto-
graft and remission bone marrow at median VAFs of 0.9% and
1.2%, respectively. There were no other clones in the autograft
or t-AML remission sample.

As mentioned earlier, targeted sequencing of known cancer
genes identifiedCH in;4%of children after cytotoxic treatment.6,9

The finding that both patients harbored at least 1 clone without a
recognized driver event prompted us to extend our unbiased
sequencing approach to 18 further pediatric patients with solid

tumors for whom blood, parental blood (to assess inherited and
de novo germline variants), and detailed clinical information
were available. For 17 patients, we were also able to sequence
tumor samples (supplemental Table 1). Included was the sister
(PD31012) of patient 1. She had undergone treatment of low-risk
infant neuroblastoma (3 cycles of etoposide and carboplatin
only) and did not have CH. Germline analysis revealed that the
sisters’ predisposition to cancer may have been attributable to an
inherited germline pathogenic variant in BARD1 (c.1935_1954dup,
p.Glu652Valfs*69),19 although neither had an exceptional burden
of de novo germline mutations (Figure 2A).

Analysis of the extension cohort revealed 1 instance of CH, again
lacking a recognized oncogenic mutation, in a 4-year-old girl
(patient 3, PD34954) who was treated for relapsed bilateral
neuroblastoma (which ultimately proved fatal). This clone was
defined by 810 substitutions (median VAF, 6.5%), 85% of which
exhibited platinum signatures. Neither the 2 tumors from this
child, nor the tumor from patient 1 bore evidence of platinum
mutagenesis, despite previous exposure (Figure 2B). We did not
detect any further cases of CH in the 6 other children exposed to
platinum chemotherapy.
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Collectively, our results reveal that the imprint of platinum-agent
mutagenesis dominated all clones in the 3 children with de-
tectable CH in marked contrast to CH observed in adults treated
with these drugs.5,6 The reasons for this disparity are unclear. It is
conceivable that the age of hematopoietic stem cells has an
impact on susceptibility to mutagenesis or capacity to survive it
and continue replicating. Furthermore, all 3 patients with CH
harbored at least 1 clone without a known driver mutation, which
corroborates evidence that knowledge of the somatic events
under selective pressure is incomplete and that driverless CH
cannot be accounted for by neutral drift alone.11,20,21

In the 2 patients with TMN, the preponderance of platinum
signatures in nascent premalignant clones, high TMN mutation
burdens, and 99% probability that the founding driver mutation
in the tumor of patient 1 arose to therapy-related mutagenesis
contrast sharply with findings in adult TMN.2-6 Together, these
results suggest that the role of therapy-related mutagen-
esis in pediatric TMN may extend beyond the rare gener-
ation of balanced translocations linked to topoisomerase II
inhibitors.1,22,23

The overall survival benefit of high-dose chemotherapy with
autologous HSCT is unclear for several pediatric cancers, in-
cluding neuroblastoma,24 and TMN is a leading cause of non-
relapse mortality for these patients.7,8 The only factor clearly
associated with improved survival in childhood TMN is a shorter
time between diagnosis and allogeneic HSCT.25 In both of our
patients with TMN, preleukemic clones predated myeloablative
treatment and pervaded the autograft. Pretransplant CH is
emerging as a biomarker of the risk of TMN and nonrelapse
mortality in adult autograft patients.26 This raises the possibility
that early detection of pediatric CH, with or without known leu-
kemogenic drivers, may inform personalized autograft decisions,
enable earlier TMNdiagnosis, and improve outcomes. Unbiased,
systematic evaluation of the true frequency and prognostic
implications of pediatric therapy-related CH is needed to
determine any role for screening in clinical practice.
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TO THE EDITOR:

Decreased activity and stability of pyruvate kinase in sickle
cell disease: a novel target for mitapivat therapy
Minke A. E. Rab,1,2 Jennifer Bos,1 Brigitte A. van Oirschot,1 Stephanie van Straaten,3 Penelope A. Kosinski,4 Victor Chubukov,4 Hyeryun Kim,4

Heidi Mangus,4 Roger E. G. Schutgens,2 Gerard Pasterkamp,1 Lenny Dang,4 Charles Kung,4 Eduard J. van Beers,2 and Richard van Wijk1

1Central Diagnostic Laboratory–Research and 2Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 3Sophia
Children’s Hospital, Erasmus Medical Center, Rotterdam, The Netherlands; and 4Agios Pharmaceuticals Inc, Cambridge, MA

Sickle cell disease (SCD) is a devastating disease characterized
by a single-nucleotide mutation in the b-globin chain, encoding
the production of an abnormal type of hemoglobin (Hb): he-
moglobin S (HbS). HbS polymerizes upon deoxygenation, causing
red blood cells (RBC) to sickle. Sickled RBCs are poorly deformable,
which leads to vasoocclusion and hemolytic anemia. In addition,
increased red cell adhesion, endothelial dysfunction, inflammation,
oxidative stress, hemostatic activation, and rheological abnor-
malities all contribute to the complex pathophysiology of SCD.1

Among the factors that influence sickling are RBC metabolic in-
termediates, in particular, levels of 2,3-diphosphyglycerate (2,3-
DPG) and adenosine triphosphate (ATP). 2,3-DPG is produced in
the Rapoport-Luebering shunt, a unique RBC-specific glycolytic
bypass, and serves as an important regulator of oxygen affinity of
Hb. The increased intracellular 2,3-DPG levels lower oxygen
affinity, thereby promoting polymerization of HbS upon de-
oxygenation and, hence, sickling.2 ATP is critical for maintaining
RBC membrane integrity and deformability, and ;50% of the
cell’s ATP is generated in the last step of glycolysis catalyzed by
pyruvate kinase (PK). Decreased levels of ATP have been re-
ported in SCD mice,3 and ATP depletion has been associated
with an increased number of irreversibly sickled cells.4 Inter-
estingly, these metabolic changes are strongly reminiscent of
keymetabolic changes observed in PK deficiency, a rare inherited
glycolytic enzymopathy that is caused by mutations in the PKLR
gene and that is associated with nonspherocytic hemolytic

anemia.5 PK deficiency results in decreased levels of ATP, whereas
retrograde accumulation of glycolytic intermediates leads to
increased levels of 2,3-DPG.6 Mitapivat is an allosteric activator
of PK and currently is in phase 3 clinical trials for PK deficiency
(#NCT02476916, #NCT03548220, #NCT03559699, #NCT03853798)
and in phase 1 trial for SCD (#NCT4000165). This small molecule
directly targets PK by binding in a pocket at the dimer-dimer
interface, resulting in enhanced activity of both wild-type and
mutant PK.7 Both phase 1 and 2 studies in healthy volunteers and
patients whowere PK deficient demonstrated glycolytic pathway
activation upon treatment with mitapivat and confirmed safety
and efficacy.8,9 In this study, we investigated key properties of PK
in SCD, and the effect of ex vivo treatment with mitapivat on PK
properties, metabolic features, and sickling behavior.

Whole blood from patients with SCD and healthy controls was
collected according to protocol and approved by the Ethical
Committee of UMCUtrecht (17-450/M and 17-392/M). Unless stated
otherwise, blood was collected in EDTA. Routine hematological
parameters were measured using the Cell-Dyn Sapphire (Abbott
Diagnostics). Fetal Hb and HbS levels were measured by high-
performance liquid chromatography (Tosoh G8) during routine
visits to the outpatient clinic. PK and hexokinase (HK) activity
measurements, PK protein levels, and thermostability were per-
formed on RBCs purified from whole blood using microcrystal-
line cellulose-a-cellulose.10 PK thermostability was measured on
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