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KEY PO INT S

l Fully human BCMA-
targetingCAR exerted
safety and efficacy in
patients with RRMM.

l Patients who relapsed
from prior murine
BCMA CAR T-cell
therapy may still
benefit from CT103A.

B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies have
shown efficacy in relapsed/refractory multiple myeloma (RRMM). Because the non-human orig-
inated antigen-targeting domain may limit clinical efficacy, we developed a fully human BCMA-
specific CAR, CT103A, and report its safety and efficacy in a phase 1 trial. Eighteen consecutive
patientswithRRMM, including4withpriormurineBCMACARexposures,wereenrolled. CT103A
wasadministeredat1, 3, and63106CAR-positive T cells/kg in thedose-escalationphase, and13
106 CAR-positive T cells/kg in the expansion cohort. The overall response rate was 100%, with
72.2% of the patients achieving complete response or stringent complete response. For the 4
murine BCMACAR–exposed patients, 3 achieved stringent complete response, and 1 achieved a
very goodpartial response. At 1 year, the progression-free survival ratewas 58.3% for all cohorts
and 79.1% for the patients without extramedullary myeloma. Hematologic toxicities were the

most commonadverseevents; 70.6%of thepatients experiencedgrade1or2 cytokine release syndromes.No immuneeffector
cell–associated neurotoxicity syndrome was observed. To the cutoff date, CAR transgenes were detectable in 77.8% of the
patients. The median CAR transgene persistence was 307.5 days. Only 1 patient was positive for the anti-drug antibody.
Altogether, CT103A is safe and highly active in patients with RRMM and can be developed as a promis-ing therapy for RRMM.
Patients who relapsed from prior murine BCMA CAR T-cell therapy may still benefit from CT103A. This trial was registered at
http://www.chictr.org.cn as #ChiCTR1800018137. (Blood. 2021;137(21):2890-2901)

Introduction
Despite recent advances in multiple myeloma (MM) treatment
strategies, particularly the emergence and clinical application of
immunomodulatory drugs, proteasome inhibitors, and mono-
clonal antibodies that have improved the survival of MM,1-4 it
remains an incurable plasma cell cancer, and relapse is almost
inevitable in all patients. Results from previously published clinical
trials showed that ;33% to 88% of patients with relapsed/
refractoryMM (RRMM) had objective antimyeloma responses after
treatment with anti–B-cell maturation antigen (BCMA) chimeric
antigen receptor (CAR) T cells.5-11 However, it remains a great
challenge to achieve durable responses, and relapse or disease
progression is observed in ;28% to 88% of patients at a median
follow-up time of 2 to 15 months.5,7-11

The level of CAR T-cell proliferation and the duration of cellular
persistence in the blood may be one determinant of the duration of
response (DOR).11 Multiple mechanisms, including antigen escape,

T-cell intrinsic mechanisms, tumor microenvironment–mediated
suppression, and host anti-CAR immunity,may be responsible for the
inability of certainCARTcells to survive in vivo.12 Particularly, previous
studies have suggested that CARs with humanized13,14 or fully
human15-18 single-chain variable fragments (scFvs) may bypass the
potential host anti-CAR immunogenicity and retain antitumor activity.

In the current study, we developed a novel BCMA-targeting CAR
construct (CT103A) with a fully human scFv and conducted an
open-label, single-arm phase 1 clinical trial to evaluate the safety
and preliminary efficacy of CT103A for patients with RRMM.

Methods
Study design
This open-label, phase 1 study was conducted at the Department
of Hematology of Tongji Hospital in Wuhan, China. The study
consisted of 2 parts: a dose escalation phase using a traditional
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3 1 3 protocol and a dose expansion phase (Figure 1). The study
protocol was approved by the institutional review board of Tongji
Hospital, Tongji Medical College, Huazhong University of Science
and Technology, and registered with the Chinese Clinical Trial
Registry (http://www.chictr.org.cn; #ChiCTR1800018137). Written
informed consent was obtained from each participant in compli-
ance with the Declaration of Helsinki.

CAR T-cell preparation
The second-generation CAR construct was composed of a fully
human scFv, a CD8a hinge, and transmembrane domain, 4-1BB
costimulatory, and CD3z activation domains (Figure 2A). The
procedures of CART-cell production, validation, and in vitro/in vivo
antimyeloma effect evaluation are described in the supplemental
Methods (available on the Blood Web site).

Patients and treatments
RRMM patients with positive BCMA expression (defined in the
supplementalMethods) according to either immunohistochemistry
or multiparametric flow cytometry were enrolled. Patients were
diagnosed according to the updated criteria of the International
Myeloma Working Group.19 The major inclusion criteria were as

follows: age 18 to 70 years, an Eastern Cooperative Oncology
Group performance status score of 0 or 1,20 adequate major organ
function, a life expectancy of $12 weeks, and at least 3 lines of
prior therapies that must include a proteasome inhibitor and an
immunomodulatory agent. All eligible patients underwent leuka-
pheresis for peripheral blood mononuclear cell (PBMC) collection
and received lymphodepletion chemotherapy with a regimen of
fludarabine at 25mg/m2 and cyclophosphamide at 20mg/kg daily
for 3 consecutive days (days 24 to 22) before CT103A infusion.
Bridging therapy was allowed between PBMC collection and
lymphodepletion. CT103A was administered at 1, 3, and 6 3 106

CAR-positive (CAR1) T cells/kg in the dose escalation phase and
1 3 106 CAR1 T cells/kg in the expansion phase. Related labo-
ratory and imaging evaluations were performed for toxicity and
response assessment according to study procedures in the sup-
plemental Trial Protocols.

Anti-drug antibody detection assay
The anti-drug antibody (ADA) of CT103A was evaluated by using
an electrochemiluminescence bridging assay on the MSD-ECL
platform (Meso Scale Discovery, Gaithersburg, MD).21,22 A multi-
tiered ADA testing approach was used to detect ADA, including

Enrollment (n=24)

Excluded (n=3)*

Dosed (n=18)

Dose Escalation (n=12)

1×106/kg (n=3) 3×106/kg (n=6) 6×106/kg (n=3)

Discontinued Study (n=5)

   Disease progression (n=3, with
   one death)
   Other (n=2, with two deaths)‡

Ongoing n=7

Dose Expansion (n=6)

1×106/kg (n=6)

Ongoing n=4

Receive Lymphodepletion (n=21)

Not dosed (n=3)†

Discontinued Study (n=2)

   Disease progression (n=1, with
   one death)
   Other (n=1)§

Figure 1. Flowchart of this trial. *Three patients were excluded because they did not meet inclusion criteria or because of rapid progression. †Three patients who received
lymphodepletion were not dosed because of heart failure, severe liver function damage, and severe infection, respectively. ‡Two patients died of infection. §One patient refused
follow-up in the study site but remained in a state of sCR until the cutoff date.
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screening assay, confirmatory assay, and titration assay. The positive
samples for screening assay underwent confirmatory assay to test
the ADA specificity and the titration assay to determine the titer.

End point assessments
The primary end point was to evaluate the safety and tolerability,
including the dose-limiting toxicity (DLT) and the maximum
tolerated dose, and to determine the recommended phase 2
dose of CT103A. The secondary end points were efficacy
and pharmacokinetic and pharmacodynamic data of CT103A.
Toxicity was graded by using the National Cancer Institute
Common Terminology Criteria for Adverse Events Version 5.0
(https://academy.myeloma.org.uk/wp-content/uploads/sites/
2/2015/04/CTCAE_v5.pdf). All adverse events (AEs) and severe
AEs (SAEs) were recorded throughout the follow-up; these in-
cluded cytokine release syndrome (CRS) and symptoms of im-
mune effector cell–associated neurotoxicity syndrome (ICANS),
which were graded according to the criteria of Lee et al.23 The
definition of parameters for end point assessment, including
progression-free survival (PFS), overall survival (OS), time to
response (TTR), and DOR, is provided in the supplemental Trial
Protocols.

Clinical response and disease progression were evaluated acc-
ording to the International Myeloma Working Group consensus
criteria24 at serial time points after CT103A infusion. Bone marrow
examination was applied to assess disease response for non-
secretory patients. Minimal residual disease (MRD) was assessed by

using multiparametric flow cytometry and next-generation se-
quencing if experimentally feasible, and CAR transgene copies in
the patient PBMCs were monitored by using digital droplet poly-
merase chain reaction,25 detailed in the supplemental Methods.
The definition of extramedullary myeloma (EMM) is the presence of
soft tissue masses in extraosseous locations resulting from hema-
togenous spread that are not contiguous to the involved bone.26

The cutoff date was 30 April 2020.

Statistical analysis
The analysis of categorical variables was performed by using
Fisher’s exact test. For continuous variables, the Wilcoxon rank
sum test was used, and the Kaplan-Meier method was used to
estimate the probabilities of OS and PFS. Statistical analyses were
performed by using SPSS version 22 (IBM SPSS Statistics, IBM
Corporation, Armonk, NY) and GraphPad Prism 8 (GraphPad
Software, La Jolla, CA).P values,.05 (two-tailed) were considered
statistically significant.

Results
Production and validation of CT103A
The fully human anti-BCMA scFv of CT103A was selected from 42
leading scFvs from .5300 candidates discovered through yeast
display and functional assays in T cells (supplemental Figure 1).
The affinity between CT103A cell and BCMA-Fc fusion protein
was determined (supplemental Figure 2; supplemental Table 1). In
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Figure 2. Schematic diagram of CT103A CAR construct and treatment response and outcome in patients with CT103A infusion. (A) The second-generation CAR
consisted of a scFv from a fully human antibody against human BCMA, the hinge and transmembrane domain fromCD8a, the costimulatory domain from 4-1BB (CD137), and the
activation domain from CD3z. (B) The best responses of all 18 patients with different infusion doses (13 106 cells/kg to 63 106 cells/kg) are shown. The responses were assessed
according to the criteria described in the Methods. Underlined italic numbers indicate patients who relapsed after a prior murine BCMA CAR T-cell treatment. Bold numbers in
red indicate patients with EMM. Arrows indicate ongoing remission. L, linker; MR, minor response; NA, not applicable; PR, partial response; SP, signal peptide; VGPR, very good
partial response; VL, variable light chain; VH, variable heavy chain.
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vitro validation of antimyeloma efficacy showed that CT103A had
stable and specific degranulation activity and excellent specific
cytotoxicity against U266 cells (supplemental Figures 3-5). In vivo
study using a U266 human myeloma xenograft mice model
showed the robust antimyeloma efficacy of CT103A (supple-
mental Figures 6-8).

Patient characteristics
Between 7 September 2018, and 8 July 2019, a total of 24 con-
secutive adult subjects with BCMA-positive RRMM were screened
according to the study protocol (supplemental Trial Protocols), and
6 patients were excluded (Figure 1). The results presented are from
18 patients (10 male subjects and 8 female subjects) who received
CT103A in the dose escalation and expansion cohorts. As shown in
Table 1, the median age was 53.5 years (range, 38.0-66.0 years),
and the median time since diagnosis was 31.9 months (range, 8.8-
94.3 months). Seven patients had a high-risk cytogenetic profile.
Five patients had EMM, one of whom (patient 01-013) also de-
veloped secondary plasma cell leukemia before infusion. The
median number of prior therapies before enrollment was 4
(range, 3-6). All the patients had been treated and were re-
fractory to both bortezomib and lenalidomide; 7 patients
(38.9%) were also refractory to other novel agents, including
carfilzomib, ixazomib, pomalidomide, and daratumumab. Six
patients (33.3%) had previously undergone autologous he-
matopoietic stem cell transplantation. Four patients (22.2%)
had received prior murine anti-BCMA CAR T-cell treatment
(registered at Chinese Clinical Trial Registry, http://www.chictr.
org.cn; #ChiCTR-OPC-16009113). Only one patient received
bridging therapy. Detailed information is provided in supple-
mental Tables 2 and 3.

CT103A is highly active and induces rapid
responses in patients with RRMM
All patients received the prescribed cell dose of CT103A. Patients
were assessed for clinical responses and were observed for up to
587 days (median, 394 days) by the cutoff date. Each patient’s
response and survival profile are visualized as a bar chart in
Figure 2B. In the first 2 weeks after infusion, the overall response
rate (ORR) was 77.8% (14 of 18). At 1month postinfusion, theORR
was 88.9% (16 of 18), with a complete response (CR) or a stringent
CR (sCR) rate of 44.4% (8 of 18). TheORRwas 100% for all patients
(18 of 18), with enhanced responses over time.A total of 72.2% (13
of 18) of the patients finally achieved a CR or sCR (supplemental
Figure 9). All patients evaluated for MRD (17 of 17) in the bone
marrow were MRD-negative at 1024 nucleated cells by flow
cytometry within 1 month; 9 of them were tested by next-
generation sequencing, and 4 patients achieved the best re-
sponses of MRD negativity by the level of 1026 nucleated cells
over time (Figure 2B; supplemental Table 4). The median TTR was
15 days (range, 14-62 days) for all patients.

CT103A induces a persistent response in patients
without EMM
The median DOR was 325 days (range, 7-573 days) for all 18
patients and 412 days (range, 213-573 days) for the 13 patients
with CR/sCR (supplemental Figure 10). Four patients (22.2%) had
relapsed or progressive disease (PD). Two of the patients feasible
for re-evaluation of BCMA expression exhibited a reduction but
not a complete loss of BCMA expression on myeloma cells
post–CT103A infusion (mean fluorescence intensity and BCMA-
positive percentage by flow cytometry of bone marrow samples,

respectively, 1883 vs 583, 81% vs 29% for subject 01-002; 9053 vs
1825, 99% vs 39% for subject 01-013). Two patients (01-013 and
01-023) died during the follow-up due to PD. In addition, an early
death on day 20 was recorded for patient 01-012, and another
patient (01-009) with persistent sCR died of a sudden severe in-
fection (both detailed in the supplemental Results). Survival

Table 1. Baseline characteristics of all 18 patients at
screening

Characteristic
Eligible patients

(N 5 18)

Median age (range), y 53.5 (38-66)

Sex (male/female) 10/8

Median time since diagnosis (range),
mo*

31.9 (8.8-94.3)

ECOG performance status score
0 3
1 15

DS staging I/II/III 0/1/17

ISS staging I/II/III 10/8/0

High-risk cytogenetic features, n (%)† 7 (38.9)

Bone marrow blast ‡50%, n (%)
Aspiration 2 (11.1)
Biopsy 6 (33.3)

EMM and/or sPCL, n (%)‡ 5 (27.8)

Median BCMA expression on plasma
cells (range), %

82.9 (57.5-99.5)

Median BCMA MFI on plasma cells
(range)§

1393 (761-51 023)

Median sBCMA level (range), ng/mL 101.99 (7.12-198.58)

Median prior lines of therapy (range) 4 (3-6)

Prior drug refractoriness,ǁ n (%)
Bortezomib 18 (100)
Lenalidomide 18 (100)
Ixazomib 3 (16.7)
Daratumumab 2 (11.1)
Carfilzomib 2 (11.1)
Pomalidomide 2 (11.1)
Auto-HSCT 6 (33.3)
Murine BCMA CART trial 4 (22.2)

Auto-HSCT, autologous hematopoietic stem cell transplantation; DS, Durie-Salmon; ECOG,
Eastern Cooperative Oncology Group; ISS, International Staging System; MFI, mean
fluorescence intensity; sPCL, secondary plasma cell leukemia.

*Defined as the time spanning the initial diagnosis until screening in this study.

†Cytogenetic features were evaluated by florescence in situ hybridization. The probes were
Del(17p), 1q21, Del (13q), t(4;14), t(11;14), and t(14;16). High-risk cytogenetic features
included the following abnormalities detected by conventional cytogenetics or
fluorescence in situ hybridization: Del(17p), t(4;14), or t(14;16).

‡No patients had PCL at screening; only 1 patient developed sPCL during the time of CAR
T-cell production.

§MFI was not available for patient 01-023, a patient with EMM who had no involvement in
the bone marrow.

ǁRefractoriness to a drug (administered either alone or in combination with other agents)
was defined as no response (less than partial response) or progression on therapy or within
60 days of stopping the drug-containing regimen.
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analysis showed that the rates of PFS andOS at 1 year were 58.3%
and 75%, respectively (Figure 3). In 5 patients with EMM, 4 with
multiple extramedullary lesions had PD or relapse (supplemental
Table 5). The other patient (01-005) with an isolated extra-
medullary lesion achieved CR and had an ongoing CR status
(Figure 2B; Figure 4A). Kaplan-Meier analysis indicated that EMM
was associated with a shortened PFS (79.1% vs 20.0%, P 5 .015)
but not OS (79.1% vs 60.0%, P 5 .328) at 1 year (supplemental
Figure 11), possibly due to the limited sample size and/or follow-
up time.

Patients treated with a prior murine BCMA CAR
benefit from CT103A
Four patients who had previously received a murine BCMA CAR
T-cell treatment and then relapsed or had PD were enrolled in this
trial. After CT103A infusion, 3 patients achieved sCR and remained
in the sCR state for at least 455 days, and patient 01-013, who had
EMM and secondary plasma cell leukemia, achieved the best
response of very good partial response and survived for 225 days
(supplemental Table 6). The change in the serum light chain level
of patient 01-001 is shown in Figure 4B. The best response ever
achieved before his enrollment in this study was a partial response
resulting from murine BCMA CAR T-cell therapy; the disease then
quickly progressed, with a PFS of only 44 days. Impressively, the
light chain level rapidly decreased and remained at a normal level
with a normal k/l ratio post–CT103A infusion.

Humoral immunogenicity
ADA was tested in all patients before infusion and/or at serial
follow-up visits postinfusion if possible. Four plasma samples from
3 patients were above the detection threshold in the screening
assay, of which 2 samples from patient 01-016 were further val-
idated as positive by confirmatory assay. The rest of the samples
were all negative for ADA (Figure 5A). The titer of the 2 positive
samples was 8.30 (day 90) and 126.64 (day 120), respectively.
Notably, loss of CAR transgene occurred almost simultaneously
with the emergence of ADA in this patient around day 90
(Figure 5B). However, the relapse was detected at day 347.

Adverse events
During the first 8 weeks’ postinfusion, a total of 73 different types
of treatment-related AEs were recorded in all 18 patients, and
those with an incidence $15% are presented in supplemental
Table 7. All patients experienced grade 3 or higher AEs, most of
which were hematologic toxicities, including leukopenia (18 of 18
[100%]), neutropenia (18 of 18 [100%]), lymphopenia (18 of 18
[100%]), anemia (16 of 18 [88.9%]), and thrombocytopenia (17 of
18 [94.4%]). These AEs are the expected toxic effects of lym-
phodepleting chemotherapy and CT103A infusions. Delayed
recovery from cytopenia was observed. The median recovery
times for the absolute neutrophil count (1.0 3 109 cells/L) and
platelet count (503 109 cells/L) were 14.5 days (range, 8-58 days)
and 38 days (range, 13-274 days) after infusion, respectively
(supplemental Figure 12). No difference in cytopenia duration was
observed between patients who had received previous murine
BCMA CAR T-cell therapy and other patients (supplemental
Figure 13). Other grade 3 or higher AEs were fibrinogenopenia,
elevated aspartate aminotransferase, hyponatremia, fever, hyp-
oxia, and hypotension. Recovery from all AEs except for hema-
tologic toxicities was observed within 4 weeks.

The treatment-related SAEs recorded during the first 8 weeks’
postinfusion included CRS, coagulation disorder, hypoxemia,
pleuritis, prolonged cytopenia, and pulmonary infection. Other
SAEs that occurred during long-term follow-up (from 8 weeks’
postinfusion to cutoff date) included appendicitis, cellulitis,
herpes zoster, pulmonary infection, and septic shock (Table 2;
supplemental Table 8). In total, 94.4% (17 of 18) of all patients
experienced CRS, of which 70.6% (12 of 17) were grades 1 and 2,
23.5% (4 of 17) were grade 3, and 5.9% (1 of 17) were grade 4.
The median time to onset of CRS was 2 days (range, 0-7 days),
and the median duration of CRS was 8 days (range, 1-19 days)
(Figure 6A). The timingof tocilizumab andglucocorticoid treatment
is also shown in Figure 6A. Subgroup analysis showed that severe
CRS (grade 3 or higher) was only associated with the 63 106 CAR1

T cells/kgdose level (supplemental Figure 14). A significant increase
in ferritin and interleukin-6 (IL-6) levels during the CRS phase was
observed. The elevation of serum ferritin and IL-6 levels seemed
parallel with the CRS grade, and the peak of IL-6 appeared slightly
earlier than that of ferritin inmost patients (Figure 6B; supplemental
Figure 15). No ICANS was observed in any of the dose groups.

Toxicity among different dosage of CT103A
During dose escalation, all 3 patients had grade 3 or higher CRS at
the 63 106 CAR1 T cells/kg dose level. The incidence of grade 3
or higher CRS was significantly higher in this dose group com-
pared with the other 2 dose groups (supplemental Figure 16A).
Specifically, patient 01-012 developed a grade 4 CRS, which was
considered a DLT, at this dose level. Therefore, 3 additional
patients were further enrolled in the seconddose group (3.03 106

CAR1 T cells/kg), and 6 additional patients were enrolled in the
first dose group (1.0 3 106 CAR1 T cells/kg) as the expansion
cohort. No other DLT was observed, suggesting that a dose of
#3.0 3 106 CAR1 T cells/kg was well tolerated in these subjects.
Tocilizumab and glucocorticoids were applied in 61.1% (11 of 18)
and 66.6% (12 of 18) of all patients, respectively (Figure 6A). The
patients receiving a dose of#3.03 106 CAR1 T cells/kg required
less treatment of CRS than the patients who received a dose of
6.0 3 106 CAR1 T cells/kg (supplemental Figure 16B). No dose-
dependent effect could be observed among the 3 groups in terms
of responses, PFS, or OS (supplemental Figure 9; supplemental
Figure 17), possibly due to limited sample size. However, a lower
dosage of CT103A seemed to have a better safety profile.

Pharmacokinetic parameters of CT103A
The CAR copies at serial points before and after infusion are
shown in Figure 7A. After infusion, the median time to reach peak
concentration was 12 days (range, 7-26 days), a strong indication
of rapid CAR expansion. Values for the maximum plasma drug
concentration (Cmax), time to reach peak concentration, and area
under the curve from 0 to 28 days did not show significant dif-
ferences among the 3 dosing groups (supplemental Figure 18).
High expansion of CT103A, roughly represented by the Cmax and
area under the curve from 0 to 28 days of the CAR transgene
copies, was associated with the severity of CRS and CRS-related
use of tocilizumab or glucocorticoid (supplemental Figure 19).
CAR transgenes were not detectable only in 4 patients to the
cutoff date. The median CAR T-cell persistence was 307.5 days
(range, 20-587 days). No significant difference was observed in
CAR T-cell expansion or durability of response based on baseline
BCMA intensity on myeloma cells (supplemental Figure 20). For
the 4 patients who had participated in prior murine BCMA CAR
T-cell trials, 2 unique probes were designed to simultaneously
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monitor the expansion of CT103A and the previous murine CAR
T cells. Low levels (,1000 copies/mg genomic DNA) of expan-
sions of previously infusedmurine CAR T cells were observed (3 of
4 [patients 01-001, 01-007, and 01-013]) with short durations (,20
days) after CT103A infusion (Figure 7B).

Serum BCMAmay serve as an indicator of response
The serum BCMA (sBCMA) levels were measured at screening,
before infusion, and then regularly postinfusion. Compared
with the baseline level, sBCMA levels showed a significant
reduction at 1 month postinfusion, with a median clearance of
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chain levels in patient 01-001. After the murine BCMA CAR infusion, the serum light chain level decreased for a short time and soon recovered, and the PFS was 44 days. In
comparison, after CT103A infusion, the light chain level quickly decreased and remained stable at a normal level with a normal k/l ratio, indicating continuous sCR. The PFS was
587 days at the cutoff date.
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95.3% (range, 31.9%-98.5%). No significant difference was ob-
served in the clearance of sBCMA 1 month postinfusion between
patients who achieved very good partial response or better and
patients who did not (median, 95.3% vs 95.1%; P 5 .297) (sup-
plemental Figure 21A). Three patients with nonsecretory MM
(patients 01-004, 01-021, and 01-022) (supplemental Table 2)
had a similar clearance rate of sBCMA as the patients with
secretory MM (median, 95.2% vs 95.3%; P5 .912) (supplemental
Figure 21B). For the patients with relapse or PD, either delayed
clearance or an increase in sBCMA was observed (supplemental
Figure 21C). These results indicate that sBCMA may be used as a
biomarker for response monitoring, especially for patients with
nonsecretory MM, who lack measurable M protein or light chain.

Discussion
Anti-BCMACAR T-cell trials have already shown promising results
in patients with RRMM.5-11 However, a relatively high incidence of

relapse remains a significant challenge to anti-BCMA CAR T-cell
therapies. The short persistence of CAR T cells in vivo may be one
of the most important reasons for BCMA-positive relapse. The-
oretically, fully human CAR might offer the advantage of reduced
immunogenicity and therefore facilitate a better persistence of
CAR T cells.27 The current study used a second-generation anti-
BCMA CAR with a fully human component and reported the
clinical trial of this product.

The impressive responses to CT103A include a median TTR of
15 days and 100% ORR, indicating highly efficient plasma cell
elimination by CT103A. The median PFS was not reached at the
median follow-up time of 394 days (;13 months). The response
time, rate, and durability seem to be comparable to the best results
achieved from other published BCMA CAR T-cell trials using
nonhuman CARs, in which the TTR was ;1 month, the ORR was
;33% to 88%,5,7-10 and the median PFS was ;7 to 15 months.7-10
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Table 2. CRS, ICANS, and SAEs reported after infusion (N 5 18)

Variable Grade 1-2 Grade 3 Grade 4 Grade 5 All grades

AEs related to CT103A
CRS 13 (72.2) 3 (16.7) 1 (5.6) — 17 (94.4)
ICANS — — — — 0 (0.0)

SAEs recorded during the first 8 weeks’
postinfusion
CRS — — 1 (5.6) — 1 (5.6)
Coagulation disorder 1 (5.6) — — — 1 (5.6)
Hypoxemia — — 1 (5.6) — 1 (5.6)
Pleuritis 1 (5.6) — — — 1 (5.6)
Prolonged cytopenia 2 (11.1) 1 (5.6) — — 3 (16.7)
Pulmonary infection — 1 (5.6) — 1 (5.6) 2 (11.1)

SAEs recorded during long-term follow-up
(from 8 weeks’ postinfusion to
cutoff date)
Appendicitis — 1 (5.6) — — 1 (5.6)
Cellulitis — 1 (5.6) — — 1 (5.6)
Herpes zoster — 2 (11.1) — — 2 (11.1)
Pulmonary infection 1 (5.6) 1 (5.6) — — 2 (11.1)
Septic shock — — — 1 (5.6) 1 (5.6)

Data are presented as no. (%).
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This was corroborated by swift and robust expansions of CT103A, as
indicated by pharmacokinetic data from digital droplet polymerase
chain reaction. In comparison, other studies reported adiscrepancy in
CAR transgenes between responders and nonresponders, in which
the Cmax could differ by orders of magnitude.9-11 Given the relatively
small variation of Cmax among subjects across all dose groups in the
current study, a minimal dose of CT103A can be administered to
obtain a better safety profile without compromising efficacy in future
trials. Interestingly, slight expansions of previously infused murine
CAR following lymphodepletion and CT103A infusion were ob-
served, but the underlying mechanisms remain unclear. Given the
minor expansions with short durations of murine CAR, it is unlikely

that previously infused murine CAR would have significant anti-
myeloma activity to induce a sustained therapeutic response.

Several features of the trial, including scFv-bindingproperties, patient
population, conditioning regimen, and immunogenicity, may con-
tribute to the persistency of CT103A observed. Compared with the
scFv used in another BCMA CAR T-cell trial,9 our fully human scFv
may bind to BCMA slower, remain longer, and dissociate slower, as
indicated by in vitro analysis (supplemental Table 1). Subtle differ-
ences in binder properties, in combination with other signals such as
4-1BB and CD3z incorporated in the CAR molecule, may lead to
complex variations in antigenic signaling strength and duration.
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Although all patients in the current study received at least 3 lines
of prior therapies and were refractory to both bortezomib and
lenalidomide, the cohort seems to be less heavily pretreated
compared with those from other BCMA CAR T-cell trials,9,28 due
to limited availability of certain drugs in China such as carfil-
zomib, pomalidomide, and daratumumab. The proportion of
patients who previously received autologous hematopoietic
stem cell transplantation was also relatively low but comparable
to the average level in Chinese patients with MM.29,30 Such

differences in patient populations may confer a favorable impact
on the efficacies of CT103A.

The lymphodepletion regimen including a total of 60 mg/kg
cyclophosphamide was adopted from previous trials of CD19-
CAR T cells in patients with non-Hodgkin lymphoma and adult
B-cell acute lymphoblastic leukemia.31,32 However, such a dose of
cyclophosphamide was higher than that used in other BCMA
CAR T-cell trials.7-11 To our knowledge, the optimal dose of
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cyclophosphamide for lymphodepletion prior to BCMA CAR T-cell
therapy remains inconclusive. Speculatively, a higher dose of cy-
clophosphamide may offer potential benefits on response rate and
CAR-T persistence by reduction of tumor burden and/or intensified
lymphodepletion prior CAR-T infusion. To test this hypothesis, new
clinical trials should be designed to directly compare lymphode-
pletion regimens with different doses of cyclophosphamide.

Several lines of evidence have indicated that CARs derived from
murine scFvs can elicit cellular and humoral immune responses,
which may cause elimination of certain CAR T cells.33,34 This po-
tential immunogenicity against CAR T cells in vivo is marked by the
very limited success in re-dosing of CAR-T products in various
trials.35-37 Particularly, CAR-specific T-cell responses were detected
in patients upon infusions of anti-CD19 CAR-T.31,38 However, the
attempt to evaluate the levels of anti–CAR-T antibody yielded in-
consistent results across different CAR-T trials. Xu et al10 reported
that 85.7% (6 of 7) of PD/relapsed patients were ADA positive,
which may be one of the major risk factors for PD/relapse of murine
BCMA CAR T-cell therapies. In contrast, preexisting antimurine
CD19-CAR antibodies detected in 84.8% of patients and
treatment-related ADA did not affect the expansion or cellular
kinetics of a murine anti-CD19 CAR-T, nor did preexisting
antibodies affect response or relapse.39 Interestingly, in the
current study, only 1 (5.6%) in 18 patients was ADA positive,
and such emergence of ADA may be associated with the loss of
CAR existence in the patient. Nevertheless, thorough evalua-
tion including both cellular and humoral immunogenicity
should be conducted in further studies to provide a rationale for
re-dosing of CT103A. Notably, it was the first time that prior
BCMA CAR-exposed patients were eligible to participate in an
anti-BCMACAR T-cell trial. The CT103A expansion did not seem
to be influenced by prior murine BCMA CAR, indicating that
CT103A may be able to bypass the potential immunogenicity
induced by the previously infused CAR. In addition, because
potential selection of escape mutations and alternative splicing
of the target antigen have been reported in CD19-directed
immunotherapy,40 whether the cognate BCMA epitope played
a role in different responses for both BCMA-targeting CAR with
different scFvs is yet to be determined.

Relapse after CAR T-cell therapy is common, including both
antigen-negative and antigen-positive relapse. Tumor antigen
loss usually results from clonal evolution/devolution41,42 and, in
some cases, by other causes such as trogocytosis.43 The reason for
antigen-positive relapse is more complicated, however, such as
T-cell exhaustion and senescence, costimulatory domain selec-
tion, generation of ADA, and immune escape,31,44-47 which may
cause poor persistency of CAR T cells. Notably, all PD/relapse
cases in this study were EMMwith multiple lesions, indicating that
CT103A could only serve as a bridging rather than a definitive
therapy in these patients. Other mechanisms may contribute to
the short DOR in patients with EMM. First, extramedullary lesions
are highly heterogenic, and thus tumor cells can more easily
generate clones with escape mutations of BCMA.26 Second, the
microenvironment of extramedullary lesions is relatively more
“hostile” for the penetration and persistence of CAR T cells.14 Due
to the limited sample size of the current trial, this phenomenon
should be further validated in a larger cohort.

A relatively high rate of CRSwas observed in the study. However,
the majority of grade 3 or higher CRS cases (4 of 5) were rapidly

relieved after conventional CRS treatment, including tocilizumab
and steroids. Except for 1 patient (who required intensive care
unit treatment and who died of possible pulmonary infection
after mechanical ventilation to treat grade 4 CRS), there were no
CRS-related fatal cases after CT103A infusion. The infection
complications and prolonged cytopenia observed might be
related to the higher dose of cyclophosphamide.

Notably, no ICANS was observed in the entire cohort. As a
common AE of CAR T-cell therapy, ICANS was found in 1.8% to
42% of previous BCMA CAR T-cell trials.5,7-9,11 The incidence of
ICANS in this study did not parallel that of CRS. The occurrence
of ICANS was reported to be associated with specific cytokines,
such as IL-6, IL-8, monocyte chemoattractant protein-1, and
interferon inducible protein-10 in patients with acute lympho-
blastic leukemia.48 The spectrum of cytokines activated by
CT103A might be different from those in other CARs. The rel-
atively high proportion of glucocorticoid usage to control CRS
might be another reason for the low incidence of ICANS, as
glucocorticoids are the most common treatment of ICANS.49 We
also observed no association between glucocorticoid usage and
the response to CT103A.

In conclusion, data from this phase 1 clinical study showed that
CT103A is safe and highly active in patients with RRMM. At the
lower dosage levels (1 and 3 3 106 CAR1 T cells/kg), CT103A
remained active and effective, with minimal side effects. No-
tably, patients who relapsed after prior murine BCMACAR T-cell
therapy may still benefit from CT103A.
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