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KEY PO INT S

l CAR T-cell resistance is
associated with tumor
and systemic immune
dysregulation that is
greater in patients
with high tumor
burden.

l Poor CAR T-cell
expansion is
associated with tumor
IFN signaling and
peripheral blood
M-MDSCs.

Axicabtagene ciloleucel (axi-cel) is a chimeric antigen receptor (CAR) T-cell therapy for re-
lapsed or refractory large B-cell lymphoma (LBCL). This study evaluated whether immune
dysregulation, present before CAR T-cell therapy, was associated with treatment failure.
Tumor expression of interferon (IFN) signaling, high blood levels of monocytic myeloid-
derived suppressor cells (M-MDSCs), and high blood interleukin-6 and ferritin levels were
each associated with a lack of durable response. Similar to other cancers, we found that in
LBCL tumors, IFN signaling is associated with the expression of multiple checkpoint ligands,
including programmed cell death–ligand 1, and these were higher in patients who lacked
durable responses to CAR-T therapy. Moreover, tumor IFN signaling and blood M-MDSCs
associated with decreased axi-cel expansion. Finally, patients with high tumor burden had
higher immune dysregulation with increased serum inflammatory markers and tumor IFN
signaling. These data support that immune dysregulation in LBCL promotes axi-cel resistance
via multiple mechanistic programs: insufficient axi-cel expansion associated with both cir-
culating M-MDSC and tumor IFN signaling, which also gives rise to expression of immune
checkpoint ligands. (Blood. 2021;137(19):2621-2633)

Introduction
Axicabtagene ciloleucel (axi-cel) is a CD19-directed, CD28-
costimulated, chimeric antigen receptor (CAR) T-cell product. It
was approved for patients with relapsed or refractory large B-cell
lymphoma (LBCL) on thebasis of the ZUMA-1 trial that reported an
overall response rate of 82%, with an ongoing response in 39%, at
a median follow-up of 27 months.1,2 On trial, .90% of progres-
sions occurred within 6 months after axi-cel infusion. Identified
factors that affect the efficacy of CAR T-cell therapy include the
quality of circulating T cells used for manufacturing, homeostatic
cytokine levels at the end of lymphodepleting (LD) chemotherapy,
and CAR T-cell expansion.2-4 Efficacy results seem similar in
patients with LBCL treated with CD19 CAR T cells costimulated by
4-1BB instead of CD28, with or without fixing the ratio of CD4:CD8
cells.5,6 Therefore, despite different manufacturing processes
and varying costimulatory signals, a similar number of patients
seem to attain a durable benefit. Conversely, observational
studies in the standard-of-care CAR T-cell therapy setting have
identified patient factors that associate with decreased axi-cel

efficacy. These include a poor performance status, the re-
quirement for bridging therapy, a higher tumor burden, and
elevated baseline lactate dehydrogenase (LDH) levels.7,8

LBCL is genetically and biologically heterogeneous. This di-
versity includes both tumor and the corresponding tumor mi-
croenvironment (TME), and it affects response to standard
immunochemotherapy.9-13 Patients with active disease experi-
ence systemic immune dysregulation detectable in peripheral
blood and characterized by elevated cytokines, altered myeloid
cell populations, and T-cell deficits.14-19 In addition, patients with
lymphoma have high levels of circulating myeloid-derived
suppressor cells (MDSCs) compared with healthy control sub-
jects; in LBCL, a higher number of CD141, HLA-DRlow monocytic
(M)-MDSCs associate with higher risk disease and poorer efficacy
after chemotherapy.16,20

Thus, axi-cel therapy involves infusion of engineered T cells into
patients with LBCL who have already experienced various types
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of systemic and tumor immune dysregulation. We hypothesized
that characteristics of immune dysregulation in patients with
LBCL may influence the efficacy of axi-cel therapy.

Methods
Patients and samples
Patient characteristics and clinical outcomes are shown in sup-
plemental Table 1 (available on the Blood Web site). Details on
the assay and blood analyte sample sizes are shown in supple-
mental Table 2. Assays were run for patients with adequate
samples at the time of analysis without other selection. In total,
samples were obtained from 105 patients treated with axi-cel;
85 patients received standard of care therapy, 14 patients as part
of a clinical trial, and 6 patients received axi-cel under the ZUMA-9
(ClinicalTrials.gov identifier: NCT03153462) expanded access
trial for products outside of manufacturing specifications. Samples
were prospectively collected under institutional review board–
approved protocols. Research was conducted in accordance with
the Declaration of Helsinki. Durable responders were defined as
patients who remained in remission with a minimum follow-up of
6 months after axi-cel infusion. Nondurable responders were
patients who died of any cause or experienced relapsed lym-
phoma. Cytokines were measured as previously described.21

Tumor gene expression
NanoString RNA expression was measured by using the IO360
panel. Results were analyzed based on outcome (no durable re-
sponse [NDR] vs durable response [DR]) and preselected cutoffs to
create high and low groups. RNA-sequencing libraries were pre-
pared by using the NuGen RNA-Seq Multiplex System (Tecan US)
following manufacturer protocols. The libraries were sequenced on
the Illumina NextSeq 500 system with a 75-base paired-end run at
80 to 100 million read pairs per sample.

Multiplex immunofluorescence
Antibodies used were against CD19 (LE-CG19, dilution 1:100;
Dako), CD20 (L26, 1:900; Dako), CD3 (SP7, 1:200; Thermo Fisher
Scientific), major histocompatibility complex (MHC) I (EMR8-5,
1:400; Abcam), MHC II (CR3/43, 1:400; Dako), and pro-
grammed cell death-ligand 1 (PD-L1) (E1L3N, 1:200; Cell Sig-
naling Technology). Multiplexing and image quantification
methods are detailed in supplemental Figure 1.

Myeloid-derived suppressor cells
M-MDSCs (Lin–, CD11b1, CD331, CD15–, CD141, and HLA-DRlow)
were enumerated in apheresis product or blood by flow cytom-
etry. For suppression assays, M-MDSCs, and autologous T cells
(CD31) were obtained from apheresis material by flow sorting,
beads and amagnetic column (Miltenyi), respectively. T cells were
stimulated with CD3/CD28–coated beads, and proliferation index
was measured by overnight 3H thymidine incorporation after
48 hours of culture.

Axi-cel expansion
Axi-cel levels were measured by quantitative polymerase chain
reaction on days 1, 8, and 15 following CAR T-cell infusion.
Additional methods are provided in supplemental Figure 6.

Genomic data analysis
NanoString data analysis used nSolver4.0 with the Advanced
Analysis R package. NCICCR-DLBCL data were downloaded

from the GDC Data Portal (study accession, phs001444; NIH
dbGaP #23872). ISG.RS gene expression enrichment score was
calculated based on the R package GSVA, with a panel of 38
genes as previously described.22 Gene expression values were
compared based on theWilcoxon test implemented in ggpubr R
package. The optimal cut point for dichotomized ISG.RS sig-
nature score was determined by using the survminer R package.

Results
Tumor interferon signaling associates with a lack of
durable response after axi-cel
Systemic inflammation producedby the tumor and TMEmaydrive
immune evasion in LBCL.23 We obtained tumor biopsy specimens
before axi-cel therapy and compared results between patients
attaining a DR, defined as patients who remained in remission at a
minimum of 6 months’ following axi-cel infusion, and those with
NDR due to disease relapse or death. Using multiplex immu-
nofluorescence, we simultaneously assessed CD19, CD20, CD3,
PD-L1, MHC I, and MHC II (n 5 26) (supplemental Figure 1A-B).
The percentages of malignant B cells (defined as CD191 and/or
CD201) that were also positive for MHC II or PD-L1 were higher
in NDR patients compared with DR patients (Figure 1A-B). No
difference was noted between NDR and DR patients for per-
centage of infiltrating CD31 T cells, nor percentage of positive
malignant B cells also positive for MHC I (supplemental
Figure 1C). The expression of PD-L1 and MHC II, which may
cause exhaustion by binding to T-cell programmed cell death
protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3),
respectively, is regulated by tumor interferon (IFN) signaling.24-27

We therefore used a NanoString limited gene expression panel
enriched for genes of the TME on pretreatment biopsy speci-
mens (n 5 35). Among differentially expressed genes, patients
with NDR had significantly higher expression of genes known to
be targets of tumor IFN signaling (Figure 1C; supplemental
Figure 2A-B). In solid tumors, a tumor IFN–stimulated gene
signature termed ISG.RS is associated with a multigenic program
of T-cell exhaustion and worse outcomes after immune check-
point blockade.22,24 This signature is distinct from the T-cell
IFNG.GS gene signature, which is associated with a higher
response to checkpoint blockade. We performed RNA-
sequencing (n 5 18) and used gene set enrichment analysis
to show that the tumor ISG.RS signature is enriched in patients
with NDR to axi-cel, whereas the T-cell IFNG.GS signature is
enriched in patients with DR (Figure 1D-E).

We next interrogated NanoString gene expression data for genes
associated with immune populations in the TME.28 Macrophages
had the strongest association with NDR (Figure 1F; supplemental
Figure 3A-B). As examples of individual macrophage-associated
genes, CD163 (3.4-fold; P 5 .02) and the IFN-targeted macro-
phage gene Siglec-1 (2.9-fold; P , .001) were higher at baseline
in patients with NDR, whereas no association was seen for CD68
(P 5 .2). Finally, the expression of macrophage genes, or the
macrophage cell signature, positively correlated with the ex-
pression of IFN signaling genes (supplemental Figure 3C). For
example, R values were.0.6 between themacrophage score and
the IFN target genes IFI27, IFIT3, and CCL8. Conversely, the cell
type signature that had the strongest association with DR was
T cells. However, CD3 itself was not significant, and there was a
poor correlation between T cells and IFN signaling gene ex-
pression (supplemental Figure 3C-D).
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Recently, CRISPR screening showed that loss of tumor-associated
death receptors leads to CAR T-cell resistance.29,30 Of genes in-
volved in apoptosis or death receptor signaling, FADD (fold change,
21.2; P 5 .04) and BAD (fold change, 21.4; P 5 .05) exhibited
differential expression in our data set and were modestly lower in
patients with NDR. A complete list of differentially expressed genes
from the NanoString panel is provided in supplemental Table 3.

Suppressive circulating M-MDSCs associate with a
lack of DR after axi-cel
Another feature of the immune dysregulation in patients with
LBCL is an alteration in circulating immune cell subsets. In par-
ticular, M-MDSCs are elevated in patients with LBCL compared
with healthy control subjects and associate with decreased effi-
cacy of standard chemo-immunotherapy.16,20 We first confirmed
the presence of suppressive M-MDSCs in the study patients. We
collected M-MDSCs (Lin–, CD11b1, CD331, CD15–, CD141, and
HLA-DRlo cells) from the fresh apheresis product that was used for
autologous axi-cel manufacture and confirmed these cells sup-
press T-cell activation and proliferation (Figure 2A). The frequency
of M-MDSCs in the peripheral blood during axi-cel therapy was
then quantified. The frequency and the absolute numbers of pe-
ripheral blood M-MDSCs were higher at baseline in patients with
NDR compared with patients with a DR (Figure 2B,D). Similarly,
there was a nonsignificant suggestion that the peak level of
M-MDSCs in blood after axi-cel therapy was associated with NDR
after axi-cel infusion (Figure 2C,E). The frequency of M-MDSCs at
baseline correlated with the peak level (R 5 0.7; P , .0001)
(Figure 2F).

Baseline dysregulation of cytokines persists
through LD chemotherapy
Serum ferritin is a marker of inflammation that is routinely
measured in patients receiving CAR T-cell therapy and may be
elicited by interleukin-6 (IL-6) or type I or II IFNs.31-33We collected
available ferritin levels at the time of T-cell apheresis (3-4 weeks
before axi-cel infusion), before LD chemotherapy (day26), and in
the morning before infusion of axi-cel (day 0). Baseline ferritin
levels were higher in patients with NDR, significantly when
measured on the day of axi-cel infusion (Figure 3A). There was a
strong correlation between ferritin levels before and after LD
chemotherapy (Figure 3B,F). Furthermore, we measured IL-6
levels either at apheresis or before LD (“baseline”) and on
the day of axi-cel infusion (day 0); we also recorded the highest
(“peak”) measured value in the first month. Similar to ferritin, IL-6
levels were significantly higher at day 0 in patients with NDR
(Figure 3C). Baseline IL-6 levels correlated with day 0 IL-6 levels
as well as with baseline ferritin levels (Figure 3D-F). Additional
cytokines known to change during CAR T-cell therapy, including
IL-1b, IL-2, IL-15, IFN-g, tumor necrosis factor-a (TNF-a), and the
ratio ANG2/ANG1, were also measured. Ferritin levels most
prominently correlated with IL-6 but also with other cytokines.
Multiple cytokines correlated with the same measurement at
another time point. Finally, C-reactive protein (CRP) levels were
found to correlate with ferritin and IL-6 levels (supplemental
Figure 4A-B). CRP levels were significantly higher at apheresis
(P 5 .02) and before lymphodepletion (P 5 .01) in NDR com-
pared with DR patients (supplemental Figure 4C). These results
support that systemic inflammation involving multiple acute-
phase reactants (notably ferritin, CRP, and IL-6) persists through
LD chemotherapy and is associated with poorer outcome after
axi-cel.

Ferritin is associated with tumor IFN signaling but
not M-MDSC frequency
We next evaluated the relationships between serum inflammatory
markers, tumor IFN signaling, and M-MDSCs. We compared
patients with a high ferritin level to gene expression in the TME,
with a cutoff of 1000 ng/mL based on its significance in a variety of
settings.34,35 We compared TME gene expression according to
NanoString in patients with a high ferritin level (.1000 ng/mL;
n5 8) vs patients with lower ferritin levels (,1000 ng/mL; n5 28).
By differential expression, genes targeted by tumor IFN signaling
as well as macrophage-associated genes in the TME were higher
in the patients with a high baseline ferritin level (Figure 4A-E;
supplemental Figure 5A-B; supplemental Table 4).

We next considered blood M-MDSCs. Although M-MDSCs have
been linked to inflammation in other cancers,36 no correlation
was found between M-MDSCs and serum inflammatory markers
(Figures 3F and 4F; supplemental Figure 4D). There was limited
overlap of M-MDSC data and TME gene expression data sets
(n 5 11) (supplemental Table 2), but none of the IFN genes in
Figure 1C was significantly different between patients with high
and low M-MDSCs (data not shown). These results show that
high systemic inflammation and tumor IFN signaling cooccur
within the same patients, whereas M-MDSCs may be associated
with alternate processes.

M-MDSCs and tumor IFN signaling are associated
with decreased axi-cel expansion
In the pivotal ZUMA-1 trial, the degreeof early axi-cel expansion in
the peripheral blood associated with a DR.1,2 In our patients,
median peak axi-cel levels were 10-fold higher in patients with DR
compared with those with NDR (P 5 .01) (Figure 5A). Next, we
noted that blood M-MDSC levels negatively correlated with peak
axi-cel levels (Figure 3F). Similarly, patients with a high baseline
M-MDSC level (greater than median; 250 cells per mL) experi-
enced a 4-fold lower peak axi-cel expansion compared with those
with a lower baseline M-MDSC level (P 5 .02) (Figure 5B). In
addition, gene expression in the TME was compared between
patients with above-median peak axi-cel levels (“high” expansion
.2 3 106 copies per mg; n 5 13) vs those with below-median
levels (“low”; n 5 9). Here, IFN signaling genes were highly
expressed in patients with poor axi-cel expansion (Figure 5C;
supplemental Figure 6). Finally, we evaluated the relationship
between serum inflammatory markers and peak axi-cel levels and
noted only a weak correlation between cytokines and expansion
(Figure 3F). Similarly, peak expansion was not significantly dif-
ferent between patients with high or low levels of baseline ferritin,
baseline CRP, or day 0 IL-6 (Figure 5D-E; supplemental Figure 4E).

High tumor burden is associated with systemic and
tumor inflammation
We previously found that high metabolic tumor volume (MTV) is
associated with a poor response to axi-cel.37 Here, we observed a
moderate correlation between MTV and multiple baseline cyto-
kines, with the highest R values for IL-6, IL-15, and TNF-a (R5 0.6-
0.7), as well as with LDH (R5 0.75) (Figure 3F). We then compared
patients with a highMTV (.150 mL) vs those with a lower MTV, as
we previously validated this cutoff in association with efficacy. In
the high MTV group, significantly higher levels of ferritin, IL-6,
IL-15, TNF-a, and the ratio of ANG2/ANG1 were reported
(Figure 6A-C). There was no correlation betweenMTV and peak
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Figure 1. Tumor IFN signaling and macrophage markers associate with a lack of durable response after axi-cel. Baseline tumor biopsy specimens were collected within
1 month before axi-cel infusion. Multiplex immunofluorescence on baseline tumor biopsy specimens (n5 26) using a panel consisting of tumor markers CD19 and CD20, MHC I
and II, CD3, and PD-L1 (supplemental Figure 1). (A-B) The percentage of tumor cells (CD191 and/or CD201) that are positive for PD-L1 (A) and MHC II (B) are shown, comparing
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axi-cel expansion (R 5 20.1) (Figure 3F and Figure 6D). There
was a weak correlation (R 5 0.4) between MTV and baseline
peripheral blood M-MDSCs but no significant difference be-
tween the lowMTV and highMTV groups (Figure 6E). MTV data
were available for 26 patients who had NanoString gene ex-
pression profiling performed (n 5 11, high MTV; n 5 15, low
MTV), and IFN target genes IFI6 and IFIT1 were higher in
patients with high MTV (Figure 6F). However, gene expression
differences between patients with high and low MTV were
distinct from differences observed between DR and NDR pa-
tients. For MTV, the most significant differences involved low
expression of extracellular matrix genes in high MTV tumors,

including multiple collagen isoforms (supplemental Table 7).
Finally, we assessed other clinical features such as histology
and bridging therapy for their relationship to inflammatory
markers, but there were no notable differences (supplemental
Figures 7-8).

Tumor IFN signaling is associated with tumor
expression of T-cell inhibitory ligands, myeloid
cells, and SOCS1 and KLHL6 mutations in LBCL
To better understand the role of IFN signaling in LBCL, we in-
terrogated the public NCICCR data set of newly diagnosed
LBCLs for the tumor IFN (ISG.RS) signature.12,22 The ISG.RS score
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exhibited a bimodal distribution, and we therefore compared
patients with high ISG.RS scores vs those with a low ISG.RS score
based on a median cutoff (supplemental Figure 9A). First, we
assessed the expression of T-cell ligands previously identified to
be controlled by tumor IFN signaling in solid tumors.24 Indeed,
patients with high ISG.RS had significantly higher expression of
multiple T-cell inhibitory ligands, including PD-L1 (CD274), PD-L2
(PDCD1LG2), Galectin-9 (LGALS9), HHLA2, and VISTA (C10orf54)
(Figure 7A-B). Gene set variation analysis was next used to calculate
myeloid cell type scores, and unsupervised clustering revealed an
association between ISG.RS and multiple myeloid cell type sig-
natures (Figure 7C). Correlation with the tumor IFN ISG.RS score
was strongest for macrophages (R 5 0.59), neutrophils (R 5 0.56),
and dendritic cells (R5 0.57) (supplemental Figure 9B). We found a
lower correlation between ISG.RS and T cells (R 5 0.43) or regu-
latory T cells (Tregs) (R 5 0.33) (supplemental Figure 9C).

Although the ISG.RS score strongly associated with CAR T-cell
resistance (Figure 1), we wanted to know if this signature also
identified patients with poorer outcomes with standard therapies.
Using the median cutoff, no significant difference in outcome was

noted for patients treatedwith therapies similar to standard frontline
R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine,
prednisone) (P5 .09), but optimal cutoff analysis identified a score
that predicted poorer outcome for the ISG.RS high group (P5 .01)
(Figure 7D). To assess the contribution of T cells to outcomes
associated with ISG.RS, a multivariable Cox regression in-
cluding ISG.RS, T cells, and Tregs was performed. In this model,
ISG.RS was associated with significantly worse overall survival
while T cells and Tregs were not (supplemental Figure 9D). Finally,
we sought to identify driver mutations associated with the ISG.RS
score (supplemental Table 6). The most significant association
between a high ISG.RS score and genetic mutations was for
SOCS1 and KLHL6 (Figure 7E).

Discussion
The current study found that the efficacy of axi-cel therapy in LBCL
is affected by immune dysregulation. We observed that a lack of
durable response to axi-cel is found in patients with tumor in-
flammation characterized by high levels of IFN target genes and
multiple T-cell checkpoint ligands, a systemic inflammatory state
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characterizedby high ferritin, CRP, and IL-6 levels in the peripheral
blood, and a high level of circulating suppressive myeloid cells.
Patients with tumor IFN signaling or elevated M-MDSCs experi-
enced a lower peak CAR T-cell expansion. Overall, patients with
high tumor burden had higher levels of systemic inflammation and
greater expression of some IFN gene targets within tumors. These
findings suggest a novel mechanistic explanation of the clinical
parameters most significantly associated with inability to achieve
DR: Eastern Cooperative Oncology Group performance status
influenced by systemic inflammation and high International
Prognostic Index score influenced by both inflammation
(performance status) and tumor burden (stage, extranodal
disease, and LDH level).38

Immune dysregulation could affect both the quality of the CAR
T-cell product and CAR T-cell function after adoptive transfer.
For example, CAR T-cell fitness is related to the quality of the
starting T cells obtained by apheresis, whichmay be affected by
tumor and prior therapy.3,39,40 Furthermore, the CAR T-cell
manufacturing process can be affected by the presence of
non-CAR T cells, particularly suppressive myeloid cells.41-43 It is

also known that lymphodepletion and the establishment of an
optimal homeostatic cytokine environment is critical for robust
CAR T-cell expansion and function.4,44,45 The current study found
that cytokine levels at baseline correlate with levels after lympho-
depletion and at peak after CAR T-cell infusion. Therefore, immune
dysregulation at baseline may impair the establishment of an op-
timal systemic cytokine environment post-lymphodepletion. Finally,
infused CAR T cells may encounter suppressive cells in the pe-
ripheral blood, limiting optimal expansion.

We also found that characteristics of the baseline TME were as-
sociated with axi-cel outcome. Tumor IFN signaling and macro-
phage marker expression were associated with NDR, and these
processes were correlated, consistent with the finding that tumor
IFN and macrophage gene expression correlated in the NCICCR
data set. In addition, macrophages in the TME have been asso-
ciated with relapse in 2 recently reported clinical trials of CD19
CAR T cells in LBCL.46,47 Further study is needed to determine the
mechanism by which macrophages affect CAR T-cell function and
whether it differs from macrophage suppression of tumor-
infiltrating lymphocytes.48 There is also evidence that circulating
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MDSCs are able to differentiate into macrophages within the
TME, and future studies should assess this possibility in LBCL.49

The effect of IFNs on antitumor immunity varies depending on the
cell type and whether the exposure to IFN is acute or chronic. On
acute exposure to IFN,most immune cells increase their antitumor
function.50 However, during viral infections, chronic type I and II
IFN signaling can lead to immune suppression and a failure to
clear viral infection.51-53 Recently, the Minn group elucidated how
chronic IFN signaling mediates immunosuppression and re-
sistance to radiation and immune checkpoint inhibitor therapy
in solid tumors.22,24,54 When tumors express a gene signature
(ISG.RS) consisting of genes coordinately activated by multiple

types of IFN, amultigenic therapy resistance program is activated.
One part of this program is to increase tumor expression of
multiple T-cell ligands that lead to exhaustion of T cells infiltrating
the TME. In this study, we found that IFN genes and the tumor
ISG.RS signature associate with NDR. Similarly, using immuno-
fluorescence, tumor expression of PD-L1 and MHC II (tumor IFN
controlled ligands for PD-1 and LAG-3 on T cells) were associated
with NDR. The expression of multiple T-cell ligands is posited to
lead to an exhausted CAR T-cell phenotype. Alternatively, be-
cause ISG.RS is a resistance signature for checkpoint inhibitor
therapy, it raises the possibility that effective CAR T-cell therapy
requires activation of non–CAR T-cell immunity against the tumor.
This idea is substantiated by recent immunofluorescence data
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showing that bystander T cells are activated in the TME after
axi-cel therapy.55 In our study, elevated T-cell gene expression
signature in baseline tumors was associated with DRs; however,
neither CD3 single gene expression nor frequency of CD31

cells by immunofluorescence was associated with response.
Further studies are needed to determine if there are T-cell
subsets that may be activated as a bystander and enhance CAR
T-cell efficacy.

By interrogating publicly available LBCL data, we identified that
the ISG.RS signature is enriched in tumors with SOCS1 and KLHL6
mutations. SOCS1 loss canonically leads to the activation of JAK-
STAT-IFN signaling.56,57 Similarly, KLHL6 mutations lead to the
messenger RNA degradation of TNFAIP3/A20, a key inhibitor of
inflammation.58,59 Moreover, the ISG.RS high tumors expressed
multiple ligands that interact with immune checkpoints found on
exhausted T cells. These results suggest that a subset of LBCLs
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rely on tumor IFN signaling to mediate T-cell exhaustion and
defend against antitumor immunity.23 This subset of LBCLs may
have a poorer outcome after standard therapy, and this biology
may therefore be enriched in patients undergoing CAR T-cell
therapy, who relapsed multiple times.

High tumor burden is associated with poorer outcomes after axi-
cel therapy.37,60 The recently reported ZUMA-1 trial biomarker
analysis showed that patients with high tumor burden
(measured on conventional computed tomography imaging)
required greater CAR T-cell expansion to generate durable
responses.60 Higher baseline ferritin, CRP, and IL-6 levels had
only weak associations with tumor burden. However, these in-
flammatory markers were associated with worse efficacy out-
comes and a worse effector:target ratio, represented by lower
peak CAR T-cell expansion (fewer effectors) in relation to the
volume of tumor (more targets). In the current analysis using
MTV, a more robust measure of tumor burden, only moderate
associations between tumor burden and levels of systemic in-
flammatory markers were found. Comparing biopsy specimens in
a limited set of our patients, those with high tumor burden had
greater amounts of some tumor IFN signaling genes compared
with patients with low tumor burden. We thus provide evidence
for the hypothesis that large and highly avid tumors on positron
emission tomography resist CAR T-cell therapy via systemic in-
flammation and a more suppressive TME. Tumor-mediated ab-
rogation of T-cell function, whether it be T cells collected for
manufacture or the CAR T cells themselves after transfer, com-
pounds the effector:target problem because large tumors require
the highest expansion. Complex in vitro and in vivo systems may
be required to tease out key initiators of this immunosuppressive
inflammatory state deleterious to the expansion and function of
CAR T cells: do tumors with IFN signaling, which we found can be
present at diagnosis, drive more resistant tumors likely to be
larger? Alternatively, as tumors escalate in growth rate, size, and
metabolic demand, do they increasingly tax the immune envi-
ronment driving IFN signaling and resistance programs? Re-
gardless, our results are consistent with multivariable analysis of
clinical markers in large groups of patients indicating that poor
performance status (likely brought on by systemic inflammation) and
high LDH levels (related to tumor burden) are the key clinical features
independently associated with a lack of durable remission.7

This study was observational in patients receiving axi-cel therapy
and is therefore limited to describing associations rather than
concluding causal links. Multivariable modeling of clinical out-
comes using tumor genetics, peripheral blood cytokines, MTV,
TME characteristics, and circulating immune subsets would be
ideal, but we were unable to analyze every biomarker in each
patient due to constraints in sample collection.

In summary, our observations support that immune dysregula-
tion is associated with resistance to CAR T-cell therapy in pa-
tients with LBCL. High circulating cytokine levels, tumor IFN
signaling, and M-MDSCs are characteristics of this immune
dysregulation, which may be modifiable to reduce relapses that
occur after CAR T-cell therapy.
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