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KEY PO INT S

l Progression signature
identified from in vivo
disease modeling
revealed clinical
relevance in MM.

Clonal evolution drives tumor progression, dissemination, and relapse in multiple myeloma
(MM), withmost patients dying of relapsed disease. Thismultistage process requires tumor
cells to enter the circulation, extravasate, and colonize distant bone marrow (BM) sites.
Here, we developed a fluorescent or DNA-barcode clone-tracking system on MM PrEDiCT
(progression through evolution and dissemination of clonal tumor cells) xenograft mouse
model to study clonal behavior within the BMmicroenvironment. We showed that only the
few clones that successfully adapt to the BM microenvironment can enter the circulation

and colonize distant BM sites. RNA sequencing of primary and distant-site MM tumor cells revealed a progression
signature sequentially activated along human MM progression and significantly associated with overall survival when
evaluated against patient data sets. A total of 28 genes were then computationally predicted to be master regulators
(MRs) of MM progression. HMGA1 and PA2G4 were validated in vivo using CRISPR-Cas9 in the PrEDiCT model and
were shown to be significantly depleted in distant BM sites, indicating their role in MM progression and dissemination.
Loss of HMGA1 and PA2G4 also compromised the proliferation, migration, and adhesion abilities of MM cells in vitro.
Overall, our model successfully recapitulates key characteristics of human MM disease progression and identified
potential new therapeutic targets for MM. (Blood. 2021;137(17):2360-2372)

Introduction
Cancer is a genetically complex evolutionary process whereby
transformed cells continue to acquire genetic and/or epigenetic
lesions, giving rise to heterogeneous populations of functionally
distinct clones.1-3 The number of mutant clones per cancer can
range from tens to hundreds (most commonly) or thousands, out
of which only few clones are functionally relevant true drivers.1,3

Forced to compete for limited resources under natural selection,
with the presence of microenvironmental and other constraints,
the most resilient clones with best fitness to self-renew are se-
lected for extensive proliferation, migration, and invasion.4 Ul-
timately, cancer cells that survive can go on to repopulate distant
tumor microenvironments, possibly carrying new alterations that
enhance their malignant potential.3,5,6

Multiple myeloma (MM), an incurable plasma cell malignancy of
the bone marrow (BM), is a particularly heterogeneous type of
cancer7-10 whose progression from the well-defined precursor
stages of monoclonal gammopathy of undetermined significance

(MGUS) and smoldering MM (SMM) is underlain by marked
evolution.11-13 As such, although at the early stage of disease, a
few clones with limited number of alterations are present,
subsequent abnormalities are acquired as patients progress to
overt disease, conferring fitness advantage and allowing for
tumor expansion.8,14 Nevertheless, genetic/epigenetic aber-
rations are seldom enough to drive cancer progression by
themselves; a permissive microenvironment and reciprocal
interactions between tumor and microenvironmental cells are
equally important.15,16 Multiple components in the tissue en-
vironment can influence cancer clonal evolution, and cancer
cells in turn can also remodel the microenvironment for their
competitive advantage.15,17,18 Thus, a model of MM progres-
sion with the presence of tumor microenvironment is crucial
and can provide a unique platform to understand clonal het-
erogeneity, evolution, and dissemination mechanisms.

In this study, we describe a novel “bone chip” xenograft mouse
model (MM PrEDiCT), which in combination with a fluorescent or
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DNA-barcodes system can be used to track and profile het-
erogeneous clonal evolution as they disseminate from the pri-
mary sites to peripheral blood anddistant BM sites. Subsequently,
we use this model to define an RNA expression signature of
progression, which we find to correlate with disease progression
and survival in MM patient data, confirming its relevance. Finally,
we identify potential drivers of progression, HMGA1 and PA2G4,
in our model and validate their significance in MM disease pro-
gression and dissemination through an in vivo CRISPR screen and
in vitro assays.

Methods
Mouse studies and tumor transplantation
All mouse experiments were performed with an Institutional
Animal Care and Use Committee–approved animal protocol at
our facility (Dana-Farber Cancer Institute). Severe combined
immunodeficiency (SCID)-beige mice (C.B-Igh-1b/GbmsTac-
Prkdcscid-Lystbg N7) were obtained from Taconic. For tumor-
bearing bone chip implantation, femurs were resected from
6- to 7-week-old female SCID-beige mice. Two million myeloma
cells were injected into the BM cavity of femurs resected from
donor mice and were then transplanted subcutaneously into
syngeneic recipient mice of the same age.

RNA-sequencing analysis
For RNA sequencing, poly(A) selection and complementary
DNA synthesis were performed, followed by library preparation
using Illumina TruSeq RNA Sample Prep Kit, sequencing (75-bp
paired reads), and sample identification for quality control. RNA-
sequencing data were processed by Kallisto,19 a pseudoalign-
ment tool used to quantify abundances of transcripts, which
were represented as transcripts per million. Estimated counts
were imported by R package tximport for downstream analysis.
Differential expression analysis was performed by DESeq220 with
a false discovery rate (FDR) cutoff of 5%.

Study approval
All mice were treated, monitored, and sacrificed in accordance
with an approved protocol of the Dana-Farber Cancer Institute
Animal Care and Use Committee.

BM samples from relapsed/refractory MM patients were
obtained under the approval from the Dana-Farber Cancer
Institute Institutional Review Board. Informed consent was
obtained from all patients in accordance with the Declaration
of Helsinki.

Statistical analysis
All statistical analysiswasperformed inR (https://www.r-project.org/),
and multiple hypothesis testing was corrected using the Benjamini-
Hochberg method.

Results
Generation and validation of MM PrEDiCT mouse
model as a clone-tracking tool
To investigate the dynamics of clonal heterogeneity in vivo
within the BM microenvironment, we developed a tumor dis-
semination xenograft model characterized by subcutaneous
implantation of myeloma-bearing femur bone chips into syngeneic

SCID-beige mice (supplemental Figure 1A, available on the
Blood Web site). Two weeks following bone chip implantation,
engraftment was assessed using confocal microscopy. At that
point, functional vessels and bone remodeling could be ob-
served, while myeloma cells had started colonizing the proxi-
mal vessel plexus, suggesting that the implanted bone chips
had rapidly engrafted and were functioning as a permissive
microenvironment for the growth and migration of myeloma
cells (supplemental Figure 1B). Disseminated MM cells had
colonized distant BM sites by week 6 (supplemental Figure 1C),
while by weeks 8 to 10, host mice presented with limb paralysis,
displaying multiple skeletal lytic lesions. We were able to re-
producibly model distant BM dissemination of various mye-
loma cell lines using bone chip implants (supplemental
Figure 1D), mimicking the human MM dissemination pheno-
type. In contrast, direct subcutaneous injection of MM.1S into
SCID-beige mice did not reveal significant amount of dis-
seminated GFP1 cells in the blood, BM, or spleen (supple-
mental Figure 2). These data suggest that MM cells alone are
not sufficient for progression, and a permissive BM stromal
environment is required for disease progression/dissemination.
Thus, we named this model MM PrEDiCT (MM progression
through evolution and dissemination of clonal tumor cells).

Subsequently, we took advantage of the fluorescent tagging
system to generate a stable 15-color cell library with cells
bearing fluorescence proteins encoding GFP, BFP, RFP, and
iRFP (Figure 1A).21 These 15-color subpopulations can be flow-
sorted, mixed in equal proportions (Figure 1), and “visually”
tracked in the PrEDiCT model, hereafter referred to as the
“rainbow” system.

In vivo tracking of rainbow cells reveals clonal
selection in distant BM sites
Rainbow cell–bearing bone chips were implanted as described
above. Approximately 60 days after transplantation, rainbow
cells from in vitro culture, in vivo primary bone chips, and distant
BM were isolated and analyzed by flow cytometry. Results
revealed that both primary and distant tissues are composed of
persistent and fluctuating clones. The fluorescence distribution
of in vitro culture was approximately even at days 30 and 60 after
transplantation (Figure 1B). By contrast, although all 15 sub-
populations in the primary tumor could be detected at day 60,
they showed uneven distributions in size, with some colors
unequivocally overtaking others (Figure 1C), reflecting the ex-
istence of clonal competition even within the primary bone chip,
where few “dominant” clones adapted quickly and were able to
evolve and outcompete the rest. Upon disease progression,
reduced clonal (color) diversity was observed in the distant BM
and a few large clones, accounting for majority of all cells
(Figure 1C; supplemental Figure 3A). Interestingly, clones that
dominate the matched circulating tumor cell (CTC) population
were also found to dominate distant BM sites (Figure 1C),
consistent with certain clones locally invading the primary tumor
parenchyma, intravasating into nearby microvessels, and seed-
ing distant BM sites. Strikingly, although “dominant” clones
exhibited intermouse variability, similar “dominant” clones were
observed in the left and right femur of each mouse, with tightly
correlated fluorescence distributions between matched femurs
and CTCs (supplemental Figure 3B). These results suggest that
following circulatory dissemination, the tumor microenvironment

MODELING DISSEMINATION OF MULTIPLE MYELOMA IN VIVO blood® 29 APRIL 2021 | VOLUME 137, NUMBER 17 2361

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/17/2360/1805937/bloodbld2020005885.pdf by guest on 08 M

ay 2024

https://www.r-project.org/


A

B BR BGR

G BI BGI

R GR BRI

I GI GRI

BG RI BGRI

LV infection

MM cell lines

GFP BFP RFP iRFP

Sorting 15
populations

Mix at even
proportion

Donor
mice

Recipient
mice

FPs
1FP B

G
R
I
BG
BR
BI
GR
GI
RI
BGR
BGI
BRI
GRI
BGRI

2FPs

3FPs

4FPs

Color B G R I

GFP

iR
FP

BFP

Tu
rb

oR
FP

BRI

GRI
BGRI B

G

R

I

BG

BR
BIGRGI

RI

BGR

BGI

In vitro culture
(day 0)

B

In vitro culture
(day 30)

Co
lo

r c
od

ed
 cl

on
es

In vitro culture
(day 60)

Primary BM(L) BM(R) CTC Primary BM(L) BM(R) CTC Primary BM(L) BM(R) CTC

C
P21 P22 P24

P25 P26 P27

P29 P30P28

B
G
R
I
BG
BR
BI
GR
GI
RI
BGR
BGI
BRI
GRI
BGRI

BFP

GFP

RFP

iRFP

D

BFP

GFP

RFP

iRFP

E

-102

-102
100
102

103

104

105

100102 103 104 105

-101

-102

102

103

104

105

102 103 104 105

Figure 1.

2362 blood® 29 APRIL 2021 | VOLUME 137, NUMBER 17 SHEN et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/17/2360/1805937/bloodbld2020005885.pdf by guest on 08 M

ay 2024



might be largely similar across different BM sites, allowing for
expansion of similar clones with minimal site heterogeneity.

We next sought to understand the clonal architecture within
each site by observing the implanted bone chip and distant BM
sites with confocal microscopy. Tumor cells appeared to form
multiple clusters in both sites. Interestingly, under high mag-
nification, the primary site clusters appeared to comprise various
cell subpopulations, as evidenced by the multitude of colors
seen in those clusters (Figure 1D), whereas most of distant BM
clusters comprised single-color populations (Figure 1E). These
results demonstrate the existence of significant spatial hetero-
geneity within each distant BM site, with clear demarcation of
each clone’s area of residence.

Monitoring clonal evolution in vivo at the
single-cell level
To improve clone-tracking depth and accuracy, we developed a
lentiviral DNA-barcoding system with a 12-base random se-
quence tag that can generate #16 million unique and inherit-
able barcodes detectable by next-generation sequencing.22

Two million barcoded cells were injected into femurs as de-
scribed above. As expected, while the pretransplantation pool
showed no major clonal bias (Figure 2B), primary tumors, dis-
seminated cells, and CTCs exhibited clonal selection, with
distant sites demonstrating much less diversity (Figure 2C).
In addition, within each mouse, left/right femurs and CTCs
exhibited the same “dominant” clones (Figure 2C), while clonal
distributions in different mice were distinct, as evidenced by
strong shifts in the respective cumulative distribution rankings
(Figure 2D). These results further confirm that clonal competi-
tion, in the context of tumor heterogeneity, started at an early
stage, and only a small number of clones that can adapt to the
environment and evolve quickly to compete with other clones
have the ability to successfully disseminate.

We also compared different injection methods on clonal evo-
lution. The clonal distributions of CTCs and disseminated BMs of
both intravenous and intratibial injections had much higher di-
versity (supplemental Figure 4), indicating that clonal selection/
competition power was much lower than bone chip model. The
implanted bone chip acts as a strong bottleneck that selects for
cells that are able to first survive at the primary sites and it is out
of those that circulation is permitted, enabling a clearer tracking
of winning clones from primary tumor to circulation and to
distant BM. Thus, PrEDiCT model largely reflects a multistage
process of dissemination/metastasis, including invading the
local primary tissue, intravasating into the tumor vasculature,
circulating, and ultimately extravasating into the parenchymal of
distant tissue for further colonization.23-25

A “progression signature” identified from the
PrEDiCTmodel correlates withMM patient survival
To explore the molecular mechanisms underlying disease pro-
gression, we performed RNA sequencing on 3 human cell lines
(MM.1S, IM-9, and OPM2) harvested from matched primary
bone chips and distant BMs separately. Since IM-9 is an Epstein-
Barr virus–transformed B lymphoblastoid cell line derived
from MM patients and MM.1S and OPM2 have notable genetic
differences, such as mutation status of the TP53 gene, we thus
used MM.1S as our main model for signature discovery and
OPM2 and IM-9 as references. Differential expression analysis
identified 1109 upregulated genes and 1865 downregulated
genes in theMM.1S model at an FDR cutoff of 5% (supplemental
Table 1). The top 300 up- and downregulated genes were se-
lected as a signature to track the dissemination potential of MM
cells (Figure 3A), and we designated this gene set as the pro-
gression signature. We employed gene set enrichment analysis
and showed that both up- and downregulated signatures were
significantly enriched in the IM-9 model (supplemental Figure
5A-B), and only downregulated signatures were also significantly
repressed in the OPM2 model (supplemental Figure 5C).

Next, we sought to validate the relevance of this signature in
human MM progression using a public patient gene expression
data set (GSE6477).26 Strikingly, our signature was sequentially
activated during MM progression, with more significant P values
observed at later stages (Figure 3B). Of note, signature en-
richment could already be detected at theMGUS stage (P5 .004),
potentially reflecting the malignant potential of this early
precursor stage, and was further increased in plasma cell leu-
kemia (Figure 3C), an advanced and aggressive form of MM.
Most importantly, the progression signature was significantly
associated with inferior overall survival (P 5 .0344) (GSE24080;
Figure 3D; supplemental Figure 6).27 Together, our results
suggest that the PrEDiCT model closely mirrors MM disease
progression within the patient clinical setting at the phenotypic,
cellular, and molecular level. Pathway enrichment analysis of
dysregulated genes in MM.1S indicates that several pathways
contribute to progression potential of MM cells (Figure 3E;
supplemental Table 2). For example, apoptosis and the p53
signaling pathway were repressed, which are related to pro-
liferation and transformation. Some immune pathways, such as
Fc g receptor2mediated phagocytosis signaling, are repressed
as well. Spliceosome is the only activated pathway, and its bi-
ological significance remains to be explored.

Identification of potential upstream regulators
that drive MM progression
Gene expression signatures are known to represent pheno-
typical markers and do not usually suggest upstream regulators.
Previous studies have shown that regulon analysis using the

Figure 1. BM dissemination model with color-codedMM cells. (A) A schematic diagram illustrating the study procedures. MM cell lines were transduced with a lentiviral (LV)
mixture carrying 4 fluorescent proteins (FPs; BFP [B], GFP [G], RFP [R], and iRFP [I]), generating 15 subpopulations with different fluorescence markers. Each cell population was
sorted by flow cytometry, expanded in vitro, and thenmixed together at an even proportion. Twomillion color-codedMMcells were injected into the BM cavity of femoral bones
freshly resected from syngeneic donor mice. Then, myeloma-bearing bone chips were subcutaneously transplanted under the dorsal skin of recipient mice. (B) The proportion of
each of the 15 subpopulations of cells passaged in vitro throughout the animal experiment did not change. (C) To assess in vivo clonal dynamics in animals during disease course,
cells from the implanted bone chip (primary site), left and right femur BM (distant BM sites), andCTCswere analyzed upon symptoms of hindlimb paralysis. Each uniquely colored
circle represents a single colored clone in an animal. The area of the circle is proportional to the size of each clone. The proportion of the 15 subpopulations of distant BM sites
(left and right femurs) showed biased color distribution, compared with primary implanted sites. Color distributions of left and right femurs were similar to that of matched CTCs.
(D-E) Confocal imaging of color-coded MM cells in the primary implanted bone (D) and femur BM (E). Scale bar, 100 mm.
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master regulators (MRs) inference algorithm can help identify
aberrantly activated tumor drivers.28 Briefly, we applied ARACNe29

on a public MM patient expression data set (GSE6477) and
identified a regulatory network, which contains 591 MRs targeting
12 395 genes, with a P value cutoff of 1028. VIPER28 was then
applied to identify potential MRs that could be driving MM
progression and dissemination in our model, as measured by
enrichment of progression signature. A total of 28 MRs were
found to be significant with an FDR threshold of 5%, including
15 activated and 13 repressed regulators (Figure 4A; supple-
mental Table 3). Of note, some of the repressed MRs were
downregulated in distant BM sites, including FOSB, JUN, and
KLF6. Next, we looked at the MR gene dependency scores in
the Project Achilles data set (v20Q2) and found that the ma-
jority of the MRs discovered in our model are indeed essential
in MM cell lines (Figure 4B; supplemental Figure 7).30 For the
purposes of validation, we selected activated ones, as they
may serve as novel therapeutic targets. After ruling out pre-
viously reported factors in MM like MYC,31-33 CDKN2A,34-36

TOP2A,37,38 and TCF3,39 as well as nonessential genes in MM
based on DepMap data, HMGA1, PA2G4, and TRIM28 were
selected based on statistical significance, novelty, and puta-
tive functional importance as potential therapeutic targets
(Figure 4C).

In vivo validation of MRs regulating MM
progression using a targeted CRISPR screen
We designed a targeted CRISPR library containing 30 single
guide RNAs (sgRNAs) targeting HMGA1, PA2G4, and TRIM28,
as well as 100 nontargeting control sgRNAs (supplemental Ta-
ble 4). Lentiviruses expressing the library were used to transduce
MM.1S-GFP-Luc-Cas9 cells, which were then cultured in vitro for
1 week before being transplanted into SCID-beige mice. For
each gene, we sequenced and compared distribution of nor-
malized sgRNA counts in both primary tumors and BM at
the time of limb paralysis (10-12 weeks after transplantation)
using the software package MAGeCK (Model-Based Analysis
of Genome-wide CRISPR/Cas9 Knockout).40 sgRNAs targeting
HMGA1 and PA2G4 were first significantly depleted in the late-
stage primary sites compared with injection pool (supplemental
Figure 8A) and further depleted in distant BM sites, as compared
with primary sites, while nonspecific sgRNAs have similar median
read counts in primary tumor and BM (Figure 4D). Both HMGA1
and PA2G4 were upregulated MRs, which tend to be essential
for cell survival in MM cell lines (Figure 4B), indicating both
genes can be potential targets for treating myeloma. When
looking at the gene expression data from different stages of MM
using GSE6477 data set, expression levels of both HMGA1 and
PA2G4 were found to be significantly higher in newly diagnosed
and relapsed MM (P 5 .011 and P 5 .013, P 5 3.90e-05, and
P 5 1.23e-04, respectively) compared with healthy donors, and

in the case of PA2G4, expression levels were even significantly
higher in MGUS and SMM (P 5 .019 and P 5 .04, respectively)
(Figure 5). Our results suggest that these genes become in-
creasingly important to MM cells as the disease progresses,
confirming their importance in myeloma progression and as
potential therapeutic targets.

We next tested whether HMGA1 and PA2G4 regulate the
same set of genes from progression signature. Loss of HMGA1
and PA2G4 were confirmed by western blot (supplemental
Figure 8B). Real-time polymerase chain reaction was performed
on these cells for 5 significantly upregulated (CD38, FANCF,
MGST1, AARSD1, and LBR) and 5 downregulated (KLF6, LGMN,
SIRT2, GAB1, and TIPARP) genes shared by the MM.1S, OPM2,
and IM-9 models. Interestingly, among those genes activated at
disseminated sites, CD38, FANCF, and LBR had significantly
reduced expression in HMGA1-deficient cells, but not in PA2G4-
deficient cells (supplemental Figure 8C). Expression levels of
both MGST1 and AARSD1 were slightly increased in both
HMGA1- and PA2G4-knockout cells. Similarly, for the 5 genes
downregulated at disseminated BM sites, loss of HMGA1 and
PA2G4 drastically increased the expression of LGMN, SIRT2, and
TIPARP, but only loss of PA2G4 increased KLF6 expression
(supplemental Figure 8D). These data suggest that these 2 MRs
potentially regulate different gene networks to give cells distinct
advantages for disease progression; in other words tumor het-
erogeneity gives rise to subclones that possess different evolu-
tionary advantages over the others within the tumor environment.

Loss of HMGA1 and PA2G4 compromised the
proliferation, migration, and adhesion ability
of MM cells in vitro
To further confirm the important roles of HMGA1 and PA2G4 in
driving MM progression, we performed in vitro proliferation,
migration and adhesion assays with and without BM stromal
cells (BMSCs) isolated from relapsed/refractory MM patients.
The overall proliferation rates of MM.1S were increased when
cocultured with BMSCs; however, loss of HMGA1, PA2G4, and
MYC caused significant reductions in proliferation when com-
pared with control cells in both culturing conditions (Figure 6A).
We used MYC here as a positive control. Similarly, all knockout
cells all showed significantly reduced migration and adhesion
(Figure 6B and 6C) toward BMSCs, confirming the important
roles of these genes in driving MM progression and dissemi-
nation. Interleukin-6 is a proinflammatory cytokine crucial to the
growth, proliferation, and survival of myeloma cells.41-43 Addition
of 10 ng/mL interleukin-6 increased overall proliferation and
migration; however, loss of HMGA1, PA2G4, and MYC com-
promised the proliferation and migration ability of MM cells
significantly (supplemental Figure 9).

Figure 3 (continued) the progression signature to MM progression and relapse. A Z score was used to quantify the enrichment level of the signature for each gene expression
profile in data set GSE6477 (see “Methods”). Distributions were compared between MM stages during disease progression to healthy donors, using Wilcoxon rank sum test.
Number of samples in each group and P values are shown. (C) Association of the progression signature toMMprogression and aggressive disease. A Z scorewas used to quantify
the enrichment level of the signature for each gene expression profile in data set GSE2113. Distributions were compared betweenMM stages during disease progression, using
Wilcoxon rank sum test. Number of samples in each group and P values are also shown. (D) The progression signature acts as a predictor of overall survival in MMpatients. Using
a public data set of patient gene expression (GSE24080), the top 200 patients with the highest enrichment of progression signature were defined as a high-risk group, while those
with the lowest enrichment were defined as a low-risk group. Statistical comparison was performed by log-rank test. (E) Pathway enrichment analysis of differentially expressed
genes inMM.1Smodel. R package was used to assess significance of KEGG pathways. Top repressed or activated pathways were shown in green or red, respectively. The full list
of significant pathways can be found in supplemental Table 5. CI, confidence interval; HR, hazard ratio; MAPK, mitogen activated protein kinase; NC, negative control; NewMM,
newly diagnosed MM; PCL, plasma cell leukemia; R, receptor; ReMM, relapsed MM; SmMM, SMM.
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Figure 4. Identification of potential upstream MRs that drive MM progression in the PrEDiCT model. (A) Prediction of MRs. A total of 28 MRs were predicted to be
significant (FDR,5%), including 15 activated and 13 repressed ones. Examples of significant MRs were labeled. The full list of significant MRs is shown in supplemental Table 3.
(B) Achilles CRISPR dependency scores of all significant MRs, including activated (orange) and repressed regulated (blue) MRs. (C) Example of known and novel MRs in MM. Out
of activated (Act) MRs, MYC and CDKN2A rank at the top and are known to be involved in MM progression. HMGA1, PA2G4, and TRIM28 were selected for further experimental
validation. (D) Validation of selectedMRs by in vivo targeted CRISPR screen. Late-timepoint BM samples from 8mice were compared withmatched primary tumor samples using
MAGeCK. The resulting log2 fold changes for each sgRNA were summarized by their targeting gene.
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Discussion
MM is an incurable plasma cell malignancy of the BM. Although
many alterations regulating MM disease progression are tumor
cell autonomous, be they genetic or epigenetic,8,44-46 they are not
the sole determinants of tumor behavior and are insufficient to
induce progression and dissemination.47,48 A permissive micro-
environment is required for overt malignancy to emerge.47,49 In-
deed, studies have shown that the tumor microenvironment is a
key regulator in many steps of the invasion-metastasis cascade,
including oncogenesis, egress, protection in the circulation,
preparation of the metastatic niche, organ-specific homing, and
tumor colonization.50 As such, disease progression in MM is the
result of a well-orchestrated, complex network of interactions that
cannot be studied outside of the context of the BM microenvi-
ronment. Our goal in this study was to develop a xenograft mouse
model to reproduce the clonal evolution underlying dissemina-
tion/metastasis in progressing patients in the context of stromal
microenvironment and enable the investigation of mechanisms
underlying these events where mathematical analysis and library
or drug screening can be further performed.

Studies by many groups have made the effort to track clonal
outgrowth and dissemination in syngeneic mouse models using
intravenous injection method, and similar conclusions were
made that establishment of dissemination/metastasis is ex-
tremely inefficient and individual clones exhibited marked dif-
ferences in proliferation and gene expression patterns in BM
niche.51-53 We also compared the differences in clonal evolution
using bone chip, intravenous, and intratibial injection methods
and observed significantly reduced clonal diversity in CTCs
and distant BM in the PrEDiCT model, indicating that clonal
selection/competition power was much higher. The implanted
bone chip acts an optimal niche but a strong bottleneck that
selects for cells that first survive at primary sites, and it is out of

those that circulation is permitted. PrEDiCT could model the
entire dissemination/metastatic cascade (invasion, intravasation,
circulation, extravasation, and colonization). This approach
revealed 3 major findings: (1) clonal competition was already
present at the primary sites; (2) establishment of CTCs was
extremely inefficient, and the efficiency was further decreased at
distant BM sites; and (3) the individual disseminated MM cells
exhibited marked differences in their proliferative fates, with the
majority of final tumor burden within a bone being attributable
to the progeny of very few clones. Thus, the PrEDiCT model
provides a powerful platform for studying the role of tumor
cell–autonomous alterations and BM stromal compartment
in MM disease progression.

In an effort to elucidate expression changes associated with
progression, we performed RNA sequencing on tumor cells
(MM.1S, IM-9, and OPM2) isolated from primary and distant BM
sites at the time of limb paralysis. We identified significantly up
and downregulated genes shared across cell lines and desig-
nated those found significant in MM.1S cells as “progression
signature.” In light of the data that tumor cells alone are not
sufficient for dissemination/metastasis without the presence of a
BM environment, the progression signature from the PrEDiCT
model would reflect the changes in adaptation to the primary
and secondary bone environment as well as the intrinsic evo-
lutionary advantages evolved to enable dissemination during
progression. Confirming our model’s relevance in studying
humanMM progression, gene set enrichment analysis of patient
expression data showed that the progression signature was
sequentially activated during MM progression, and more sig-
nificant P values were observed when later stages of MM were
compared with normal controls. Even more importantly, our
signature was shown to be significantly associated with inferior
overall survival in patients. These results suggest that the PrE-
DiCT model adequately represents the biological processes
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Figure 5. Elevated expression levels of validated MRs in human MM. Log2 fold change analysis showing expression levels of HMGA1 (left) and PA2G4 (right) in healthy
negative control (NC), MGUS, SMM (SmMM), newly diagnosed MM (NewMM), and relapsed MM (ReMM) patients in the GSE6477 data set. Statistical comparison was
performed by 1-sided rank sum test compared to NCs. *P , .05, ***P , .001.
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Figure 6. Loss of HMGA1 and PA2G4 inhibited pro-
liferation, migration, and adhesion potential of MM
cells in vitro. (A) MM.1S cells infected with nontargeting
control sgRNAs or HMGA1, PA2G4, and MYC targeting
sgRNAs were cultured with and without BMSCs from re-
lapsed/refractory MM patients for 48 hours. Proliferation
rates were normalized to control sgRNA–infected cells
cultured without BMSCs, and cells with loss of HMGA1,
PA2G4, or MYC exhibited significantly reduced pro-
liferation. (B) BMSCs were seeded 1 day ahead in the lower
chamber of 96-transwell plate. MM.1S cells transduced as
described in panel A were seeded in the upper chamber
for 4 hours. The percentage of cells that migrated to the
lower chamber was normalized to control cells without
BMSCs, and cells with loss of HMGA1, PA2G4, or MYC
exhibited significantly reduced migration toward BMSCs.
(C) MM.1S cells transduced as described in panel A were
prelabeled with Calcein-AM and cocultured with pre-
seeded BMSCs for 2 hours. The percentage of cells that
adhered to BMSCs was normalized to control sgRNA–
infected cells, and loss of HMGA1, PA2G4, or MYC
compromised the adhesion rates significantly. Two ex-
periments from 2 independent infections were performed,
and 1 representative result is shown. Error bars indicate
standard deviation. *P , .05, **P , .01, ***P , .001.
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underlying disease progression in MM and thus can be used as a
tool to improve our understanding of the mechanisms involved
and identify new therapeutic targets.

To demonstrate the potential of our model for therapeutic target
detection, we employed aMR analysis approach to identify potential
upstream regulators of the progression signature. We selected and
validated activated MRs, since they might serve as potential thera-
peutic targets. Loss of HMGA1 and PA2G4 compromised tumor
adaptation to the primary sites and dissemination to distant sites
in vivo, and in vitro assays further confirmed compromised abilities of
these cells to proliferate, migrate, and adhere to BMSCs, indicating a
role for HMGA1 and PA2G4, as progression-related MM additions
and loss of both genes compromised the overall ability of tumor cells
to overcome each bottleneck in metastasis process. Although
HMGA1 has been implicated in oncogenic transformation, invasion
and metastasis in various cancers,54-60 its role in pathogenesis and
progression of MM is largely unknown. Similarly, PA2G4 has been
reported as a regulator for proliferation, but its role in cancers has
being paradoxical.61-64 Here, we report for the first time thatHMGA1
and PA2G4 were sequentially activated along human MM pro-
gression in a public data set65 and might play key roles in regulating
dissemination of MM tumor cells within BM microenvironment,
potentially as markers and therapeutic targets for progression.

Although both HMGA1 and PA2G4 were validated to be im-
portant for MM progression, the gene expression networks reg-
ulated by them are very different. Loss of HMGA1, but not loss of
PA2G4, caused reduced expression of CD38, FANCF, and LBR,
which are activated genes identified from the progression sig-
nature, and both genes could only inhibit some of the repressed
genes (LGMN, SIRT2, and TIPARP) in the progression signature.
This is in line with our clonal tracking observations that tumor
clones at metastatic sites had much reduced diversity but still
exhibited marked differences, with some clones dominating
disseminated sites. In other words, we observed significant tumor
heterogeneity from primary tumors to the metastatic sites, which
gives rise to subclones that possess an evolutionary advantage
over the others within the tumor environment, as manifested by
distinct gene expression patterns, metabolism, motility, pro-
liferation, and metastatic potential.

Recent studies showed that tumors are more than insular masses
of proliferating cancer cells.1,66,67 Instead, they are complex tissues
composed of multiple distinct cell types participating in hetero-
typic interactions with one another.4,46,68-70 One of the limitations
of current model is lacking an intact immune system, while it is
technically and experimentally challenging to perform bone chip
modeling in syngeneic immune competent mice, we found a
permissive BM stromal environment is crucial, because without it,
dissemination is not achievable. Indeed, coculture of patient
BMSCs with MM cells increased the malignant potential of MM
cells, as manifested by significantly enhanced proliferation, mi-
gration, and adhesion. It will be interesting to further explore the
specific components of stromal compartment and their biological
functions in driving dissemination to accelerate our understand-
ings of the complex BM environment in the future.

In summary, we established a novel xenograft mouse model
termed PrEDiCT to track clonal dynamics and dissemination of
MM, and we further validated HMGA1 and PA2G4 as potential
drivers. Our model is unique in its ability to largely mirror the

phenotypic, cellular, and mechanistic features of myeloma
progression in the context of the BM stromal microenvironment.
It constitutes a powerful platform for studying tumor cell and
microenvironmental alterations in myeloma progression while
providing new opportunities for investigation of mechanisms
underlying these events where therapeutic target discovery or
drug screening can be further performed.
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