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KEY PO INT S

l Expression of mutant
JAK2 increased the
proportion of
megakaryocyte-
biased CD41hi

hematopoietic stem
cells with lower long-
term potential.

l IFNa further increased
the proportion of
CD41hi HSCs and
depleted JAK2-
mutant HSCs in mice
and patients
with MPN.

We studied a subset of hematopoietic stem cells (HSCs) that are defined by elevated
expression of CD41 (CD41hi) and showed bias for differentiation toward megakaryocytes
(Mks). Mouse models of myeloproliferative neoplasms (MPNs) expressing JAK2-V617F
(VF) displayed increased frequencies and percentages of the CD41hi vs CD41lo HSCs
compared with wild-type controls. An increase in CD41hi HSCs that correlated with JAK2-
V617F mutant allele burden was also found in bone marrow from patients with MPN.
CD41hi HSCs produced a higher number of Mk-colonies of HSCs in single-cell cultures
in vitro, but showed reduced long-term reconstitution potential compared with CD41lo

HSCs in competitive transplantations in vivo. RNA expression profiling showed an upre-
gulated cell cycle, Myc, and oxidative phosphorylation gene signatures in CD41hi HSCs,
whereas CD41lo HSCs showed higher gene expression of interferon and the JAK/STAT and
TNFa/NFkB signaling pathways. Higher cell cycle activity and elevated levels of reactive
oxygen species were confirmed in CD41hi HSCs by flow cytometry. Expression of Epcr, a
marker for quiescent HSCs inversely correlated with expression of CD41 in mice, but did
not show such reciprocal expression pattern in patients with MPN. Treatment with

interferon-a further increased the frequency and percentage of CD41hi HSCs and reduced the number of JAK2-V617F1

HSCs in mice and patients with MPN. The shift toward the CD41hi subset of HSCs by interferon-a provides a possible
mechanism of how interferon-a preferentially targets the JAK2 mutant clone. (Blood. 2021;137(16):2139-2151)

Introduction
Several studies have identified subsets of stem cells in the pool
of phenotypic long-term hematopoietic stem cells (HSCs) with
an intrinsic megakaryocytic (Mk) bias and propensity to
commit directly to the Mk lineage.1-6 These subsets of HSCs
have been defined primarily by functional readouts and in-
creased expression of endogenous cell surface proteins (eg,
high CD41 [CD41hi] or high c-Kit).4,7,8 Alternatively, expres-
sion of a reporter construct (VWF-GFP) has been used to
identify Mk-biased HSCs.2 Among the known HSC marker
genes, increased expression of the endothelial protein C
receptor (Epcr, encoded by the Procr1 gene) on HSCs has
been shown to mark functional long-term repopulating HSCs
in mice.9,10

Myeloproliferative neoplasms (MPNs) are clonal stem cell dis-
orders caused by somatic gene mutations in JAK2, CALR, or
MPL.11 Patients with MPNs caused by mutated JAK2 can have
distinct phenotypic manifestations that are classified as poly-
cythemia vera (PV) with significant expansion of erythropoiesis,
essential thrombocythemia with increased production of
megakaryocytes and platelets, or primary myelofibrosis (PMF)
with extramedullary hematopoiesis in the spleen.12 The concept
of Mk lineage–biased subsets of HSCs provides a possible basis
for the observation that the presence of the JAK2-V617F mu-
tation in some patients with MPN can be restricted to 1 or 2
lineages (eg, granulocytes and/or platelets).13,14 In our previous
studies in which we used transplantations of single HSCs,
we observed that some recipient mice displayed a pure
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Figure 1. Increased frequency of CD41 expressing Mk-biased HSCs in mutant JAK2-expressing mice. (A) Frequencies (left) and percentages (right) of CD41hi and CD41lo

HSCs within the phenotypic HSC compartment in BM in the indicated genotypes (n 5 7 mice per genotype). Frequencies (left) and percentages (right) of CD41hi and CD41lo

HSCs in the phenotypic HSC compartment in the spleen of the indicated genotype (n5 7mice per genotype). (B) Analysis of colonies grown from a FACS-sorted single CD41hi or
CD41lo HSC in liquid culture showing the percentages of colonies containing Mk (CD411), myeloid (CD161), or mixed (Mk and myeloid, CD411/CD161) cells after 10 days

2140 blood® 22 APRIL 2021 | VOLUME 137, NUMBER 16 RAO et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/16/2139/1805816/bloodbld2020005563.pdf by guest on 07 M

ay 2024



thrombocytosis phenotype, whereas others displayed pure
erythrocytosis, which appeared to be mutually exclusive.15

Interferon-a (IFN-a) is currently the only treatment, apart from
stem cell transplantation, that can induce deep molecular re-
mission in a subset of patients with MPNs.16 The mechanism of
how IFN elicits these beneficial effects in MPN remains poorly
understood. IFN-a was shown to promote cell cycle entry and
increase the division rate of normal HSCs.17

In this study, we investigated the functional role of Mk-biased
HSCs in MPN in mouse models and samples from patients with
MPN. We also examined the responsiveness of HSCs that ex-
press mutant JAK2 toward IFN-a. We found that mutant JAK2
led to the expansion of a CD41hi subset of HSCs and these
CD41hi HSCs were inferior to the CD41lo subset of HSCs in
sustaining long-termmultilineage engraftment. Prolonged treat-
ment with IFN-a further increased the proportion of CD41hi

HSCs in JAK2 mutant mice and patients with MPN and resulted
in a reduction of quiescent CD41lo HSCs capable of long-term
maintenance of MPN, thus providing a possible mechanism of
how IFN-a may induce molecular remissions in MPN.

Materials and methods
Mice
Tamoxifen inducible SclCre;JAK2-V617F (VF), SclCre;mJak2-
V617F knock-in (Ki), and SclCre;JAK2 Exon12 (E12) transgenic
mice have been described.18-20 JAK2 mutant mice were crossed
with the UBC-GFP strain,21 and bone marrow (BM) cells that
coexpress green fluorescent protein (GFP) as a reporter were
used for competitive transplantations. SclCre;JAK2-V617F/
Ifnr12/2 mice were generated by breeding SclCre;JAK2-V617F
transgenic mice with the mice lacking Ifnr1.22 Cre recombinase
expression was induced by intraperitoneal injection of 2 mg
tamoxifen (Sigma-Aldrich) for 5 consecutive days. All mice were
of pure C57BL/6N background and were maintained in specific-
pathogen–free conditions and in accordance with Swiss federal
regulations.

pIpC, pegIFN-a, and thrombopoietin treatment
Polyinosinic polycytidylic acid (pIpC; P1530; Sigma-Aldrich) was
injected intraperitoneally (300 mg per mouse) every third day,
and pegIFN-a (50 mg per mouse) was injected subcutaneously
once per week. For thrombopoietin (TPO) treatment, a single
dose of recombinant mouse TPO (Peprotech) was injected in-
traperitoneally (200 mg/kg per mouse).

BM transplantations
For competitive transplantation assays, fluorescence-activated
cell sorting (FACS)-purified CD41hi or CD41lo HSCs subsets or
Epcrhi or Epcrlo HSCs (50 cells) from VF or E12 transgenic mice or
wild-type (WT) mice coexpressing GFP were mixed with 13 106

BM cells ofWT competitors and injected intravenously (in 200mL

phosphate buffered saline per mouse) into lethally irradiated
(12 Gy) C57BL/6 recipients. Hematopoietic reconstitution was
assessed by flow cytometry in peripheral blood (PB) at
specified times.

Patients
The collection of blood and BM samples and clinical data from
patients with MPN was approved by the Ethik Kommission
Beider Basel and the ethics boards of the Universities of Inns-
bruck, Bonn, and RWTH Aachen. Written informed consent was
obtained from all patients in accordance with the Declaration of
Helsinki. The diagnosis of MPNwas established according to the
revised criteria of the World Health Organization.12

Results
Increased frequency of Mk-biased HSCs in mutant
JAK2-expressing mice
We determined the frequencies of CD41hi and CD41lo HSCs
in 3 Cre-inducible mouse models of MPN: transgenic
mice expressing human JAK2-V617F (VF),18 a knock-in model
expressing mouse Jak2-V617F (Ki),19 and transgenic mice
expressing human JAK2-N542-E543del (E12).20 The gating
strategy for the CD41hi subset of HSCs4 is shown in supplemental
Figure 1A, available on the Blood Web site. As described
previously,18-20 the frequencies of HSCs in BM and spleen in all
3 JAK2 mutant strains were increased compared with WT
controls (Figure 1A). VF and Ki mutant mice also showed an
absolute and relative increase of CD41hi HSCs in BM and spleen
(Figure 1A), as well as an increase in CD41hi hematopoietic
progenitors (supplemental Figure 1B). This increase in CD41hi

HSCs was not observed in E12 mutant mice.

To investigate whether CD41hi HSCs also showed increased Mk
differentiation potential, we performed single-cell liquid cultures
of FACS-sorted CD41hi or CD41lo HSCs4 (Figure 1B; supple-
mental Figure 1C). The purity of the sorted HSCs was confirmed
by postsort flow cytometry (supplemental Figure 1D). After
10 days of culture, CD41hi HSCs generated a higher percentage
of Mk colonies composed of larger CD411 cells, whereas CD41lo

HSCs generated more myeloid or mixed-lineage colonies
(Figure 1B; supplemental Figure 1E-F). This shift toward more
Mk-biased output was less prominent in WT and E12 mutant
mice compared with VF and Ki.

To assess the lineage potential of CD41hi and CD41lo HSCs
in vivo, we performed competitive transplantations of sorted
HSCs into lethally irradiated recipient mice (Figure 1C). To
monitor chimerism, we used donor mice that were crossed with
UBC-GFP mice that express GFP in all blood lineages.21 Re-
cipients of CD41lo HSCs from VF and E12 donors developed a PV
phenotype with splenomegaly, whereas recipients of CD41hi

Figure 1 (continued) of culture. We plated 48 single HSCs per mouse with 3 mice per genotype in 384-well plates (ie, a total of 144 single cells per genotype) and scored each
well separately after 10 days of culture. (C) Setup of transplantations with purified CD41hi and CD41lo HSC subsets into lethally irradiated recipients (n5 6 mice per cell type and
genotype). Data show peripheral blood counts in recipients of CD41hi or CD41lo HSCs (top row) and donor chimerism determined as a percentage of GFP1 cells in PB (bottom
row). Spleen weights of CD41hi and CD41lo HSC transplant-recipient mice at 24 weeks after transplantation are shown (top right graph). Group size: n5 6 mice per cell type and
genotype. (D) Analysis of donor chimerism (percentage of GFP1 cells) in progenitor and stem cells in BM and spleen in CD41hi and CD41lo HSC transplant recipients at 24 weeks
after transplantation (n5 6 mice per cell type and genotype). (E) Analysis of recipients of CD41lo HSC transplants. Stacked bar graph shows percentages of CD41lo and CD41hi

HSCs in the GFP1 subset of LT-HSCs. One- or 2-way analyses of variance followed by Tukey’s multiple-comparisons test were used for multiple-group comparisons. All data are
means 6 standard error of the mean. *P , .05; **P , .01; ***P , .001; ****P , .0001.
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Figure 2. Expression analyses and functional characterization of Epcrhi and Epcrlo HSCs revealed an inverse correlation with CD41 expressing HSC subsets. (A)
Frequencies (left) and percentages (right) of Epcrhi and Epcrlo HSCs within the phenotypic HSC compartment in BM and spleen of the indicated genotypes (n5 7-12 mice). (B)
Analysis of colonies grown from FACS-sorted single Epcrhi and Epcrlo HSCs in liquid culture showing the percentages of colonies containing Mk (CD411), myeloid (CD161), or
mixed (Mk and myeloid, CD411/CD161) cells after 10 days of culture (n5 128 cells per cell type/genotype and n5 3 mice). (C) Competitive BM transplantation. Hematopoietic
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HSCs showed normal blood counts without splenomegaly
(Figure 1C). Recipients of CD41lo HSCs showed higher GFP
chimerism than recipients of CD41hi HSCs in all lineages of PB
(Figure 1C) and also higher contribution to HSC and progenitor
compartments in BM and spleen (Figure 1D). In BM of recipients
transplanted with CD41lo HSCs, we found that most GFP1

(V617F-expressing) HSCs retained the original CD41lo pheno-
type, but;20% converted to CD41hi (Figure 1E), demonstrating
that CD41lo HSCs can convert to CD41hi HSCs. Because of the
lack of long-term engraftment, this analysis was not feasible in
recipients of CD41hi HSCs. Thus, Mk-biased (CD41hi) HSCs
preferentially contributed to megakaryopoiesis in vitro, and they
were impaired in their lineage output and long-term repopu-
lation capacity in vivo.

Expression of CD41 on subsets of HSCs inversely
correlated with expression of EPCR
Expression of Epcr (Procr1) was described as a marker of qui-
escent HSCs.9,10 We found that the expression of Epcr mRNA
and protein in HSCs inversely correlated with CD41 (supple-
mental Figure 2A). These data suggested that Epcrhi HSCs may
be phenotypically and functionally comparable with CD41lo

HSCs. Indeed, we found a decrease in the percentages of Epcrhi

HSCs in BM and spleen of JAK2 mutant mice (Figure 2A; sup-
plemental Figure 2B). We also found an ;20-fold increase of
circulating LSKs and HSCs in VF mice that were mostly Epcrlo

(supplemental Figure 2C-D), consistent with earlier findings in
mice.10

Liquid cultures of single-cell–sorted Epcrlo HSCs from VF, Ki, and
WT (but not E12) mice produced higher percentages of Mk
colonies than sorted Epcrhi HSCs produced (Figure 2B). Overall,
the pattern of lineage output of Epcrlo and Epcrhi HSCs was
converse to that of CD41lo and CD41hi HSCs (Figure 1B; sup-
plemental Figure 2E). We also determined the reconstitution
potential of Epcrlo and Epcrhi HSC subsets in competitive
transplantations in vivo. We transplanted FACS-sorted HSCs
along with 1 3 106 total BM competitor cells into lethally irra-
diated recipient mice (Figure 2C). Recipients of Epcrhi HSCs from
JAK2 mutant donor mice showed high GFP-chimerism and also
developed MPN phenotype (Figure 2C). In contrast, Epcrlo HSC
could not sustain long-term hematopoiesis and were out-
competed by the WT competitor cells. Only recipients of Epcrhi

HSCs maintained GFP-chimerism at terminal workup 20 weeks
after transplantation (Figure 2D). We determined the ratio of
Epcrhi to Epcrlo in the GFP1 fraction of HSCs from BM (Figure 2E).
Although in recipients ofWT and E12HSCs more than half of the
originally Epcrhi HSCs converted to Epcrlo phenotype, in VF
recipients almost all HSCs retained the original Epcrhi pheno-
type, because of the lack of long-term engraftment, this analysis
was not feasible in recipients of Epcrlo HSCs. Thus, the CD41lo

and Epcrhi HSCs were functionally similar in having competitive
advantage and higher long-term repopulating activity.

Transcriptional profiling of CD41hi and CD41lo HSCs
To gain insights into the cellular and molecular identity and the
signaling pathways active in Mk-biased HSCs, we performed
RNA sequencing of total HSCs, CD41hi and CD41lo HSC subsets,
bipotent megakaryocyte erythroid progenitors (MEPs), and
committed megakaryocyte progenitors (MkPs; Figure 3A).
Principal component analysis (PCA) revealed that CD41hi and
CD41lo HSCs in WT mice clustered closer with unfractionated
total HSCs than with MEPs or MkPs (Figure 3B). In VF mice, the
unfractionated HSCs and the CD41hi and CD41lo subsets of
HSCs each clustered farther apart, but were clearly distinct from
MEPs and MkPs. CD41hi and CD41lo HSCs fromWT and VFmice
fell into 4 separate clusters (Figure 3C). The number of differ-
entially expressed genes between CD41hi vs CD41lo HSCs are
shown in Figure 3D. Gene Set Enrichment Analysis (GSEA) on
differentially regulated genes between CD41hi and CD41lo HSCs
revealed that E2F targets, G2/M checkpoint,Myc,mTORC1, and
oxidative phosphorylation pathways were among the top
upregulated gene pathways in CD41hi HSCs, whereas CD41lo

HSCs had higher gene expression of inflammatory signaling
pathways, such as IFNa, IFNg, IL-6 JAK/STAT, and TNFa/NFkB
(Figure 2E). Most of these differentially expressed gene path-
ways were found in both WT and VF genotypes.

Comparison of gene expression in CD41hi vs CD41lo HSCs, using
a selected set of genes thought to play a role in HSC mainte-
nance and Mk lineage regulation is shown in Figure 3F.2,4 As
expected, expression levels of Itga2b (CD41) was higher in
CD41hi HSCs and conversely, expression of Procr (Epcr) was
higher in CD41lo HSCs (Figure 3F, red). Consistent with previous
reports,2,4 CD41hi HSCs, irrespective of VF orWT genotype, also
displayed elevated expression of megakaryocyte/platelet line-
age regulators Clu, VWF, Gp1bb, Gp5, and Aurka than CD41lo

HSCs. CD41hi HSCs also expressed Pf4 (Cxcl4), a known Mk
lineage marker that was thought be exclusively expressed by
later MK lineages, but recently was also detected in HSCs.23

Expression levels of Mk/platelet lineage regulator genes nor-
malized to WT CD41lo HSCs (set as 1) are shown in Figure 3G.
Together with the in vitro and in vivo functional testing, the
molecular analysis suggests that CD41hi/Epcrlo HSCs are not
lineage-restricted progenitors, such as MEPs or MkPs, but rather
represent a subset of HSCs.

CD41hi /Epcrlo HSC subset display increased cell
cycle activity and augmented oxidative
phosphorylation
Weused single-cell tracking of sorted HSCs and found that HSCs
from VF mice entered the first and second cell divisions earlier
than WT controls or E12 mice (Figure 4A). Because RNA se-
quencing showed prominent differences between CD41hi/Epcrlo

and CD41lo/Epcrhi HSC subsets in expression of cell cycle reg-
ulators, we compared their cell cycle status by flow cytometry. In
WT mice, a lower percentage of CD41hi/Epcrlo HSCs were

Figure 2 (continued) lineage contributions of GFP1 Epcrhi and Epcrlo HSCs in the PB of recipients. Peripheral blood counts (top row) and donor derived (percentage of GFP1)
cells (bottom row; n5 6mice per genotype). Spleen weights of Epcrhi and Epcrlo HSC transplant recipients at 24 weeks after transplantation are shown (top right; n5 6-8mice per
cell type and genotype). (D) In vivo lineage contribution of Epcrhi and Epcrlo HSCs to HSPCs in transplant-recipient mouse BM and spleen at 24 weeks after transplantation
(n5 4-6 mice cell type and genotype). (E) Percentages of Epcrhi and Epcrlo HSCs within the GFP1 subset of BM cells in transplant recipients at 24 weeks after transplantation.
Note that only recipients of Epcrhi HSC transplantswere analyzed, because, at 24weeks, recipients of Epcrlo HSCsdid not showGFP1engraftment. All data aremeans6 standarderror
of the mean. *P , .05; **P , .01; ***P , .001.
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quiescent in the G0 phase, and a higher percentage of cells
were in the G1/S phases compared with CD41lo/Epcrhi HSCs.
These differences were even more pronounced in mutant
JAK2-expressing mice (Figures 4B-C). Consistently, CD41hi

HSC subset showed higher expression of cell cycle activators
Cdk1, Cdk2, Cdk4, Cdk6, and cyclin E1, and lower expres-
sion of cell cycle inhibitors Cdkn1c (p57) compared with
the CD41lo HSC subset (supplemental Figure 3), suggesting
that CD41hi HSCs represent an activated subset of phe-
notypic HSCs.

In addition, we noted that CD41hi/Epcrlo HSCs were larger than
CD41lo/Epcrhi HSCs, as indicated by higher forward scatter (size)
values (Figure 4D). Interestingly, the CD41 and Epcr antibody
labeling appeared to be polarized and forming caps in CD41lo/
Epcrhi HSCs (Figure 4E). Furthermore, as a consequence of
augmented oxidative phosphorylation we found that CD41hi/
Epcrlo HSCs harbored higher levels of reactive oxygen species
(ROS) compared with CD41lo/Epcrhi HSCs (Figure 4F). Using the
dye Mitotracker Green, we detected increased mitochondria
mass in Epcrlo HSCs compared with the Epcrhi subset (Figure 4G),
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consistent with CD41hi/Epcrlo HSCs being the metabolically
more active HSC subset. Increased cell size, enhanced activation
of HSCs fromquiescence, and activemetabolism are some of the
hallmark signatures of active mTOR signaling.24 Indeed, GSEA
analysis highlighted Raptor (mTORC1), an essential component
of mTOR signaling, as one of the upregulated pathways in
CD41hi HSC subset (Figure 4H). Collectively, these data confirm
the differences derived from RNA sequencing analysis.

Increased percentages of CD41hi of hematopoietic
stem and progenitor cells in the BM of patients
with MPN
To determine whether the markers for Mk-biased HSCs can also
be used in human MPN, we assessed the percentages of CD41hi

hematopoietic stem and progenitor cells (HSPCs) in the BM of
patients with MPN and healthy controls (Figure 5A; supple-
mental Figure 4). Similar to our findings in mice, the human
CD41hi HSPCs also displayed increased size (supplemental
Figure 5A). The percentage of CD41hi HSCs in BM from healthy
controls (n5 7) was very low (1.4%6 0.45% standard error of the
mean [SEM]; Figure 5A, left). Of note, HSCs derived from cord
blood (n 5 8) showed a substantially higher percentage of
CD41hi HSCs (11.2% 6 9.5% SEM) than did BM from healthy
adult controls (supplemental Figure 5B), illustrating differences
between HSPCs from cord blood and BM. The percentages of
CD41hi HSCs in BM of patients with MPN (n 5 29) was signifi-
cantly increased 20.4% 6 4.0% SEM (P 5 .001; Figure 5A, left).
The percentages of CD41hi cells were also elevated in common
myeloid progenitors (CMP), granulocyte macrophage progeni-
tors (GMP), and MEP, and this increase was again greater in
patients with MPN (35% to 40%) than in healthy controls (;12%;
Figure 5A).

Within the MPN subgroups, PV patients had the highest per-
centage of CD41hi HSPCs, followed by PMF and essential
thrombocythemia. We found a correlation between the per-
centages of CD41hi HSPCs in the BM of patients with MPN and
the corresponding JAK2-V617F allele burden in PB granulocytes
(Figure 5B). These results suggest that expression of JAK2-
V617F may be primarily responsible for the expansion of CD41hi

HSCs. Increased percentages of CD41hi HSPCs in the BM of
patients with MPN did not correlate with increasing age (sup-
plemental Figure 5C-D), contrary to a previous report that found
an age-dependent increase in CD41hi HSCs in older WT mice.3

We performed single-cell liquid cultures of FACS-sorted CD41hi

and CD41lo HSCs and CMPs from 4 patients with MPN. Ap-
proximately 50% of HSC- and CMP-derived colonies were JAK2-
V617F1 by allele-specific polymerase chain reaction (PCR;
Figure 5C). The JAK2-V617F1 CD41hi HSCs gave rise to a sig-
nificantly higher percentage of pureMk colonies (all CD411 cells)
compared with CD41lo HSCs, but this difference was not ob-
served in WT CD41hi vs CD41lo HSCs (Figure 5C). Colonies
derived from CD41hi CMPs were predominantly of pure Mk
phenotype irrespective of the genotype. (Figure 5C, right).
Overall, the Mk output of JAK2-mutant HSCs in vitro was similar
as observed in the experiments using sorted mouse VF and Ki
HSCs (Figure 1B). Collectively, these data indicate that changes
induced by expression of mutant JAK2 cause expansion of Mk-
biased HSCs in MPNmouse models and patients with MPN, and
their frequency was significantly associated with the JAK2-V617F
mutant allele burden.

We also examined the expression of EPCR on human BM cells.
However, HSCs from healthy controls were almost exclusively
EPCRlo (supplemental Figure 6). Thus, in contrast to mice, the
expression of EPCR in humans did not inversely correlate with
the expression of CD41 and we therefore used CD41 as amarker
to further characterize human Mk-biased HSCs.

Interferon signaling induces expansion of CD41hi

HSCs in mice
Type 1 interferons (IFN-a, IFN-b) and type 2 interferons (IFN-g)
were shown to promote cell cycle entry and induce differenti-
ation of quiescent HSCs.17,25 RNA sequencing showed increased
expression of IFN pathway genes in CD41lo HSCs (Figure 3E;
supplemental Figure 7A-B), suggesting that CD41lo HSC subsets
may bemore responsive to IFN stimuli. To examine the effects of
IFN on CD41 subsets of HSCs in vivo, we treated VF and WT
mice with pIpC, an IFN-inducing agent.17,25,26 Injection of a
single dose of pIpC significantly increased the percentage of
CD41hi HSCs within 24 hours in both VF mice and WT mice
(Figure 6A; supplemental Figure 8).19,27 This response to pIpC
was completely abolished in VF and WT mice genetically de-
ficient in the IFN receptor (Ifnr1; Figure 6A).22 Interestingly, loss
of Ifnr1 also lowered the baseline percentages of CD41hi cells in
VF;Ifnr12/2 mice to the levels found in WT mice, indicating that
the increased baseline in VF mice also requires IFN signaling.
Indeed, IFN-b levels were elevated in BM lavage of VF and Ki
mice compared with WT (supplemental Figure 7C), suggesting
that the observed JAK2-V617F-induced IFN response is indirect
and mediated by increased levels of type 1 IFN family members.

Similarly, pIpC treatment also decreased the percentages of
Epcrhi HSC subsets in both VF and WT mice (Figure 6B). Loss of
Ifnr1 reduced the effect of pIpC, although a trend toward lower
percentages of Epcrhi HSC remained, suggesting that pIpC can
induce Ifnr1 independent signaling events. Thus, short-term IFN
signaling in JAK2 mutant mice increased the fraction of CD41hi/
Epcrlo Mk-biased HSCs. A single dose of Tpo increased the
percentage of CD41hi HSCs in WT and VF mice (supplemental
Figure 8C), indicating that the phenotypic shift to CD41hi is not
specific to themutant JAK2. Contrary to expectations, Tpo in the
same experiment did not reduce the percentages of Epcrhi HSCs
in WT or VF mice, demonstrating that CD41 and Epcr sub-
populations of HSCs do not always behave reciprocally. This
result was not related to alterations in the expression of IFN-
dependent cell surface markers such as Sca-1,28 as demon-
strated by expression of another HSC marker, Esam-1,29,30 on
nearly all CD41lo and CD41hi HSC subsets (supplemental
Figure 9).

Long-term IFN treatment increases the fraction of
CD41hi HSCs and leads to exhaustion of HSCs
We expected that augmenting the CD41hi HSCs fraction by
IFN-a will eventually lead to a decrease in the JAK2 mutant
clone size. We tested this hypothesis in mice by competitive BM
transplantations of BM cells from VFmice that coexpress theGFP
reporter mixed with WT BM cells in a 1:1 ratio (Figure 6C).
Recipient mice were allowed to engraft and reconstitute for
6 weeks and were then treated with pegylated IFN-a (pegIFN-a),
which has a longer half-life in the circulation than native IFN-a31

or vehicle only (Figure 6C). Consistent with its known therapeutic
effects in patients with MPN, pegIFN-a treatment significantly
reduced hemoglobin levels, platelet counts, and spleen size.
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At terminal workup after 22 weeks, mice treated with pegIFN-a
also showed decreased JAK2-V617F mutant allele burden in
HSCs, as indicated by reduced frequencies and percentages of
GFP1 HSCs in BM and spleen (Figure 6D). The total frequencies
of HSCs increased in the pegIFN-a–treated mice, but this was
because of an increase in GFP2 (WT) HSCs. In the GFP1 (JAK2-
mutant) fraction of HSCs, the pegIFN-a–treated mice showed an
increase in the percentages of CD41hi HSCs. Interestingly, in the

BM of vehicle-treated mice, the GFP2 HSCs (but not in the
spleen) were almost 100% CD41hi, suggesting that the presence
of the JAK2-V617F (GFP1) cells had an influence on the CD41
phenotype of theWT HSCs. The JAK2-WT HSPCs responded to
pegIFN-a by increasing in total frequencies and the percentages
of the CD41lo subsets, suggesting that they recover from the
damaging presence of the JAK2-V617F expressing cells. This
notion is supported by the histological findings of improved BM
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morphology in the pegIFN-a–treated group (supplemental
Figure 10). These results suggest that IFN-a preferentially re-
duces JAK2-V617F (GFP1) HSCs by increasing the proportion of
CD41hi subset of HSCs (Figure 6D). The converse changes were
observed when Epcr expression was analyzed instead of CD41
(supplemental Figure 11). Similar effects of pegIFN-a as in LT-
HSCs were also observed in ST-HSCs and MPPs (supplemental
Figure 11D-E).

We also compared HSC numbers and CD41hi vs CD41lo phe-
notypes in PB of 13 patients with MPN treated by pegIFN-a with
33 patients with MPN receiving best available therapy. We
observed lower frequencies of phenotypic HSCs in the pegIFN-
a–treated group (Figure 6E).

Based on the data, we propose a model (Figure 7), in which
short-term exposure of HSCs to IFN induces cell cycle entry and
conversion from CD41lo to CD41hi Mk-biased HSCs. Prolonged
chronic exposure to pegIFN-a results in depletion of JAK2-
mutant HSCs via continuous conversion of CD41lo to the
CD41hi HSC subset.

Discussion
Our study provides insights into the functional properties of Mk-
biased HSCs in the context of JAK2-mutated MPN. We found
that expression of mutant JAK2 increased the frequency and
percentage of the CD41hi subset of HSCs in mouse models of
MPN. CD41hi HSCs displayed reduced competitiveness for long-
term reconstitution in competitive transplantation assays. CD41
was also a valid marker for Mk-biased HSCs in patients with
JAK2-mutated MPN. In addition, we found that expression of
Epcr, a marker for quiescent HSCs was inversely correlated with
the CD41 expression on HSCs in mice, but not in patients with

MPN. The basis for the differences in EPCR expression patterns
between mice and humans is currently unknown.

CD41hi HSCs are actively proliferating, lineage-primed cells and
could represent a fraction of the previously reported VWF1

HSCs,2 or G (Alert) state HSCs.24 CD41hi HSCs displayed higher
ROS levels and higher mitochondrial content, in agreement with
a previous report that WT HSCs with high mitochondrial activity
exhibited megakaryocytic lineage differentiation in vitro32 and is
consistent with our previous report on altered metabolic activity
in mutant JAK2-expressing HSCs.33,34 There is no consensus in
the field as to whether these cells should be called HSCs.1,4 A
recent study challenged the existence and relationship of Mk-
biased HSCs with phenotypic HSCs.35 Using in vitro single-cell
assays the results in study indicated that Mk progenitors are
not directly derived from HSCs, but rather share a similar surface
marker phenotype and may represent merely an impurity of
myeloid progenitors among HSCs. Our RNA sequencing data of
the CD41hi subset showed features typical of HSCs and in
our in vivo functional assays, the CD41hi subset gave rise to
multilineage contribution, but did not sustain long-term
hematopoiesis.

IFN-a treatment is the only therapy known to induce molecular
remission in a subset of patients with MPN,16 but the mechanism
of IFN action in MPN remains unclear. In mice, IFN-a treatment
was shown to reduce the number of HSCs, suggesting that IFN-a
acts by exhausting the JAK2 mutant HSCs.19,27,36,37 Our study
provides further insight into the possible mechanism by showing
that long-term treatment with pegIFN-a preferentially increased
the frequency and percentage of CD41hi HSCs in JAK2-V617F-
expressing HSCs. This leads to a model of how IFN-a, in
combination with JAK2-V617F, induces HSC cycling,15 could
selectively reduce the JAK2 mutant clone (Figure 7). Our study
does not exclude other cellular targets by which IFN-a could
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mediate disease-modifying activity. It has been shown that IFN
treatment can disrupt canonical TGF-b signaling and also re-
models the BM microvasculature.38,39

In summary, our study showed that expression of mutant JAK2
increases the proportion of CD41hi HSCs that are less robust in
maintaining long-term hematopoiesis. IFN-a further accentu-
ated this shift toward CD41hi HSCs, suggesting that continuous
conversion of CD41lo to the CD41hi HSC subset may be a
mechanism of how IFN-a preferentially targets and exhausts the
JAK2 mutant clone.
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