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KEY PO INT S

l Loss of miR-15a/16-1
induces widespread
alterations in GC
B cells and promotes
plasma and mature
B-cell neoplasms
in mice.

l Human primary EPs
are characterized by
low miR-15a/16
expression, frequent
del(13q), and rare
hyperdiploidy.

Chromosome 13q deletion [del(13q)], harboring the miR-15a/16-1 cluster, is one of the
most common genetic alterations in mature B-cell malignancies, which originate from
germinal center (GC) and post-GC B cells. Moreover, miR-15a/16 expression is frequently
reduced in lymphoma and multiple myeloma (MM) cells without del(13q), suggesting
important tumor-suppressor activity. However, the role ofmiR-15a/16-1 in B-cell activation
and initiation of mature B-cell neoplasms remains to be determined. We show that con-
ditional deletion of the miR-15a/16-1 cluster in murine GC B cells induces moderate but
widespread molecular and functional changes including an increased number of GC B cells,
percentage of dark zone B cells, and maturation into plasma cells. With time, this leads to
development of mature B-cell neoplasms resembling human extramedullary plasmacytoma
(EP) as well as follicular and diffuse large B-cell lymphomas. The indolent nature and lack of
bone marrow involvement of EP in our murine model resembles human primary EP rather
than MM that has progressed to extramedullary disease. We corroborate human primary
EP having low levels of miR-15a/16 expression, with del(13q) being the most common

genetic loss. Additionally, we show that, although the mutational profile of human EP is similar to MM, there are some
exceptions such as the low frequency of hyperdiploidy in EP, which could account for different disease presentation.
Taken together, our studies highlight the significant role of themiR-15a/16-1 cluster in the regulation of theGC reaction
and its fundamental context-dependent tumor-suppression function in plasma cell and B-cell malignancies. (Blood.
2021;137(14):1905-1919)

Introduction
MicroRNAs (miRs) are short noncoding RNAs that regulate gene
expression by repressing messenger RNA (mRNA) translation or
inducing its degradation.1 Each miR regulates expression of
many different target genes and simultaneously modulates
multiple pathways.2-4 Thereby, miRs play key roles in nearly all
normal cellular processes, and their aberrant expression is linked
to the pathogenesis of various human cancers.5

miRs are also implicated in normal and pathological processes
in B cells.6 Upon B-cell receptor (BCR) antigen stimulation,
follicular (Fo) B cells undergo T-cell–dependent (TD) activation,
whereas marginal zone (MZ) and B1 B cells undergo mainly

T-cell–independent (TI) activation.7,8 During TD activation, Fo
B cells form germinal centers (GCs) and undergo affinity
maturation during the GC reaction, a process regulated by
several miRs including miR-155, miR-125b, miR-28, and
miR-217.9-13 Although the GC reaction is essential for normal
acquired immunity and generation of plasma cells (PCs), it
substantially increases the risk of aberrant gene mutations
resulting in lymphomagenesis due to ongoing activation-
induced cytidine deaminase (AID)-driven somatic hyper-
mutation and class-switch recombination, associated with
tolerance for DNA damage and high proliferation.14,15 This is
evidenced by the GC or post-GC origin of most B-cell
lymphomas.14,16
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miR-15a andmiR-16 (encoded by themiR-15a/16-1 cluster) were
among the first miRs implicated in cancer pathogenesis.17 The
miR-15a/16-1 cluster resides within a minimal deleted region of
chromosome 13q14 [del(13)(q14)], which is a frequent somatic
deletion observed in B-cell malignancies, including chronic
lymphocytic lymphoma (CLL), MZ lymphoma, follicular lym-
phoma (FL), diffuse large B-cell lymphoma (DLBCL), andmultiple
myeloma (MM), a neoplasm of PCs that preferentially localize
within the bone marrow (BM).18-24 In MM, del(13q) is one of the
most common genetic abnormalities and occurs early in the
pathogenesis.25,26 Moreover, miR-15a/16 expression is reduced
even in MM cells without del(13q), suggesting a critical tumor-
suppressive role of miR-15a/16-1 in MM pathogenesis.27

CD19Cre-induced deletion of miR-15a/16-1 in mice promotes
the development of a pre-GC CLL-like spectrum of B-cell
malignancies.28 Moreover, it was recently documented that
germline loss of the miR-15a/16-1 cluster accelerates the onset
and promotesMMprogression in Vk-MYCmice, but is insufficient
by itself for malignant transformation.29 Although these models
provide biological insight into the tumor-suppression role of miR-
15a/16, its function during the GC reaction and how it promotes
initiation and lymphomagenesis in mature B cells on its own re-
mains unknown. Therefore, we induced somatic deletion of the
miR-15a/16-1 cluster during murine B-cell activation and showed
that it results in broad molecular and functional changes of GC
B cells, which in association with secondary mutations led to
development of mature B-cell neoplasms resembling human
extramedullary plasmacytoma (EP), FL, and DLBCL. We corrob-
orated the tumor-suppressing role of miR-15a/16 in human pri-
mary EPs and compared their genetic makeup with MM.

Methods
Engineered mice
Mouse strains bearing a loxP-flankedmiR-15a/16-1 cluster (miR-
15a/16-1fl)28 or Aicda promoter-driven Cre recombinase knock-
in allele (AIDCre)30 were crossed to generate cohorts of AIDCre/1

(wild-type [WT]) control and AIDCre/1;miR-15a/16-1fl/fl (knockout
[KO]) compound mice (C57BL/6). For B-cell studies, 3-month old
mice were immunized by intraperitoneal injection of 5 3 108

sheep red blood cells (SRBCs; Innovative Research) and analyzed
10 days later.31 All animal experiments were approved by the
Institutional Animal Care and Use Committee of the Dana-Farber
Cancer Institute (DFCI).

Human samples
Archival formalin-fixed paraffin-embedded (FFPE) lymph nodes
(LNs) from healthy individuals and EP samples were obtained from
the Pathology Department at Brigham and Women’s Hospital.
The use of humanmaterial was approved by theDFCI Institutional
Review Board, in compliance with the Helsinki Declaration.

Histopathology, IHC, miR ISH, and
immunofluorescence/ISH double stains, image
acquisition, and analyses
Mice were euthanized at specified time points or when clinical
signs of disease were evident; a full histologic examination was
performed on each animal to assess for tumor formation. Im-
munohistochemistry (IHC) was performed according to standard
protocols and manufacturers’ recommendations as described.32

Lymphoid organs and long bones of the leg were processed

likewise, except bones were additionally decalcified using Cal-
Ex (Fisher Scientific). For detailed in situ hybridization (ISH)
protocols, image acquisition, and analyses, see supplemental
Methods (available on the Blood Web site).

Flow cytometry, sorting, and immunoblotting
Single-cell suspensions from mouse spleens or LNs were pre-
pared and stained with Zombie Aqua (BioLegend) and primary
antibodies (supplemental Table 1) as described.32 Cells were
analyzed using LSRFortessa (BD Biosciences) or sorted using
FACSAria II (BD Biosciences).

Immunoblotting analyses were performed according to standard
protocols32 and manufacturers’ recommendations using anti-
bodies listed in supplemental Table 1.

PCR, clonality assessment, IgH variable region
mutation analysis, expression profiling, amplicon
and WES
DNA and RNA were isolated from sorted cells and tumor
samples with AllPrep DNA/RNA Micro and FFPE kits (Qiagen),
respectively. Cre-mediated excision of the miR-15a/16-1 con-
ditional allele was analyzed by polymerase chain reaction (PCR)
as described.28 RNA was used for reverse transcription quanti-
tative PCR (RT-qPCR) analysis of miR expression using TaqMan
miR assays (supplemental Table 2; Thermo Fisher Scientific).
Three animals per group were analyzed, and all experiments were
conducted in triplicates. Human and mouse miR-15a-5p and
miR-16-1-5p sequences were compared using Clustal Omega.33

Genomic DNA was isolated from tumors harvested from KO
mice using Gentra Puregene (Qiagen). Immunoglobulin heavy
chain (IgH) gene rearrangements were analyzed using Southern
blotting as described.34 For details on mutation analysis, see
supplemental Methods.

Expression of miR-15a, miR-15b, and miR-16 was compared in
primary MM subtypes from GSE1655835 using GEO2R.36 Vegfa
expression in murine GC B cells was evaluated in GSE11961 and
GSE38696.37,38

Whole-exome sequencing (WES) was performed on FFPE samples
from (i) 2 mouse tumors as well as 1 control spleen from a heathy
animal (PRJNA661046), and (ii) 11 human primary EP cases as well
as a control sample (CEPH-1408; PRJNA661244). For details on
WES and amplicon sequencing, see supplemental Methods.

Proteomics
Quantitative proteomic analysis of sorted GC B cells from WT
(n 5 5) and KO (n 5 5) mice (PXD021323) was performed using
tandem mass tag 10-plex labeling (Thermo Fisher) and liquid
chromatography coupled with tandem mass spectrometry (MS)
analysis. For details, see supplemental Methods.

Results
miR-15a and miR-16 are highly expressed in GC
B cells and PCs, and are downregulated in MM cells
with del(13q)
Because the miR-15a/16-1 cluster functions as a tumor sup-
pressor in the pathogenesis of mature B-cell malignancies,39

we first investigated its expression during B-cell activation and
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differentiation into PCs in human LNs using immunofluores-
cence (IF)/ISH double staining. We found increased expres-
sion of miR-15a and miR-16 in CD1381 PCs as compared with
surrounding lymphoid non-PCs (Figure 1A). ISH analysis for
miR-15a/16 and IHC for CD138 on serial consecutive (5 mm
apart) sections from a different individual likewise showed
increased expression of miR-15a/16 in PCs (Figure 1B). miR-
15a/16 levels were also higher in GCs compared with Fo
B cells. We showed that most of the miR-15a andmiR-16 signal
comes from CD101 GC B cells and not T-follicular helper cells or
PCs also residing within GCs (supplemental Figure 1A-B).

We next investigated miR-15a/16 expression in MM patients in
relation to del(13q) in GSE16558.35 miR-15a levels were found to
be significantly lower in MM cells with del(13q) compared with
healthy PCs and MM cells without del(13q) (supplemental
Figure 1C-D). miR-16 expression followed a similar trend;
however, it did not reach statistical significance because the
miR-16-1-5p sequence is identical to miR-16-2-5p, which forms
a cluster with miR-15b that resides on chromosome 3 (human
and mouse).40 In agreement, miR-15b levels were comparable
between MM patients’ cells with and without del(13q) and
healthy PCs.
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Figure 1. miR-15a/16 expression in normal human lymphoid tissues and MM cells. (A) miR-15a or miR-16 colocalization with PC marker CD138 in human LNs. CD138
expression was assessed by IF (green), followed by ISH analysis for miR abundance (red) on the same frozen slide. 49,6-Diamidino-2-phenylindole (DAPI; blue) was used
for nuclear counterstaining. One representative example is shown. Note colocalization of miR-15a, miR-16 signal, and CD138 in PC-rich regions as well as in individual
PCs (insets, arrowheads). Scale bar, 800 mm. (B) miR-15a or miR-16 (ISH, purple) and CD138 (IHC, brown; counterstain, blue) expression in consecutive FFPE LN sections
from a healthy individual. Note higher miR-15a and miR-16 abundance in a PC cluster (inset) and germinal center (GC) compared with other lymphoid cells. Scale bar,
200 mm.
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AIDCre reducesmiR-15a/16 levels in activated B cells
bearing a conditional KO
Murine and human miR-15a-5p and miR-16-5p sequences are
identical (Figure 2A), and their pattern of expression is similar in
lymphoid organs with high GC abundance (supplemental
Figure 2A), indicating that mice are an adequate model in which
to study the miR-15a/16-1 cluster’s functions during and after
B-cell activation. Therefore, we generated cohorts of AIDCre/1;
miR-15a/16-1fl/fl compoundmice (referred to as KO) andAIDCre/1

control mice (referred to as WT) (Figure 2B). To investigate the
pattern and efficiency of AIDCre activity, deletion of themiR-15a/
16-1 cluster, and changes in their expression in mature murine
B cells, we sorted different lymphocyte subpopulations. miR-
15a/16-1 was efficiently deleted, leading to reduction of its
expression in GC B cells as well as in most PCs from KO vs WT
mice as assessed by PCR, RT-qPCR, and ISH (Figure 2C-E;
supplemental Figure 2B). Lesser change in miR-16 expression
results, at least in part, from the miR-16-2 presence.40 More-
over, the remaining undeleted band in PCs, at least partially,
represents contaminating cells and/or lower Aicda promoter
activity during TI responses (Figure 2C).41,42 Fo B cells, con-
sisting mainly of naive B cells, had an undeleted miR-15a/16-1
cluster, whereas a noticeable fraction ofMZ B cells showedmiR-
15a/16-1 deletion and reduction of their expression (Figure
2C-D), which is consistent with AID expression induced in MZ
B cells during TD and TI responses.8 Although some reports
show that T-cell subpopulations express AID,43 we did not
detect miR-15a/16-1 deletion in sorted T cells (Figure 2C). As
expected, miR-15b levels remained unchanged between
lymphocyte subpopulations isolated from KO and WT mice
(Figure 2D-E).

Furthermore, we investigated whether miR-15a/16-1 deletion
results in upregulation of its validated oncogenic targets in GC
B cells.44,45 Although BCL2 apoptosis regulator (BCL2) ex-
pression is suppressed in GC B cells in a BCL6-dependent
mechanism46 and was undetectable using IHC (Figure 2F), we
observed prominent upregulation of this antiapoptotic protein
in fluorescence-activated cell sorted (FACS) GC B cells with
miR-15a/16-1 deletion by immunoblotting (Figure 2G; sup-
plemental Figure 2C), indicating a complementary miR-15a/
16–mediated mechanism responsible for BCL2 suppression
during the GC reaction. We also observed a modest upregu-
lation of cyclin D2 and checkpoint kinase 1 (CHEK1), and
a minor increase of cyclin E1 expression (supplemental
Figure 2C). Although vascular endothelial growth factor A
(VEGF-A) abundance was higher within the light zone (LZ) of
GCs from KO compared with WT mice as assessed by IHC
(supplemental Figure 2D), it was most likely a secondary
change related to other LZ constituents such as follicular
dendritic cells or T-follicular helper cells,15 given low Vegfa
mRNA expression in GC B cells as well as no significant
difference in Vegfa mRNA expression between LZ and dark
zone (DZ) GC B cells.37,38 Moreover, no significant differ-
ence in VEGF-A concentration between plasma samples
from WT and KO mice was detected using enzyme-linked
immunosorbent assay (ELISA) (supplemental Figure 2E).
Overall, these results demonstrate that KO mice are a
representative model for studying the biological conse-
quences of miR-15a/16-1 deletion during and after B-cell
activation.

Loss of the miR-15a/16-1 cluster induces moderate
but widespread molecular, functional, and
developmental changes in activated B cells
Given the miR characteristics1,47,48 that make their studies
challenging, we performed proteomic analysis of sorted GC
B cells in immunized WT and KO mice (n 5 5 per group)
(Figure 3A) to uncover the functional consequences of miR-15a/
16-1 deletion in activated B cells. Although GC B cells comprise
a fraction of all B cells, which limits the amount of protein
available for analysis, we quantified expression of 3880 proteins
(false discovery rate [FDR], 0.01). In line with previous reports,4

we observed broad but relatively mild changes in protein ex-
pression between GC B cells from WT vs KO mice, with 710
differentially expressed proteins (330 upregulated and 380
downregulated, FDR , 0.1) (Figure 3B; supplemental Figure
3A-B; supplemental Table 3). The miR-15a/16 seed sequence,
AGCAGCA, was the most significantly enriched seed in mRNAs
encoding proteins overexpressed in KO compared with WT
cells, confirming the on-target activity of the model (Figure 3C).
The large fraction of differentially expressed proteins that are not
conventional miR-15a/16 targets may represent secondary
changes, targets regulated through binding to mRNA regions
other than the 39 untranslated region, and/or noncanonical
“seedless” targets.49 Functional enrichment analysis of the dif-
ferentially expressed proteins revealed changes in cell cycle and
BCR signaling, protein stabilization and synthesis, and nucleo-
tide and RNA metabolism among others (Figure 3D). Gene-set
enrichment analysis (GSEA) of the MSigDB “Hallmark” database
showed enrichment in proteins involved in interferon, interleukin
2 (IL2)/STAT5, and KRAS signaling, apoptosis, and hypoxia in KO
cells and oxidative phosphorylation in WT cells (Figure 3E;
supplemental Figure 3C). Because BCR, interferon, IL2/STAT5,
and KRAS signaling activates downstream extracellular signal-
regulated kinase (ERK),50-53 we assessed its phosphorylation in
GC B cells and found higher levels in KO compared with WT
mice (Figure 4A), corroborating the in silico analyses.

We next investigated whether molecular alterations in these
proproliferative and prosurvival pathways and proteins induce
changes at the cellular level. In agreement with the BCL2 up-
regulation, a decrease was noted in the percentage of apoptotic
cells within splenic GCs of immunized KO mice (Figure 4B). We
consistently observed increased area and percentage of GC
B cells in the spleens of littermate immunized KO vs WT mice
(Figure 4C-D).

Many of the observed molecular alterations are implicated in the
regulation of internal GC B-cell polarization and differentiation
into PCs.54-63 Therefore, we further investigated the abnormal-
ities in the GC reaction induced by the miR-15a/16-1 cluster
deletion and noted enrichment of the DZGCB-cell signature38 in
KO compared with WT cells (Figure 4E). Consistently, a signif-
icant increase in the percentage of DZ GC B cells coupled with a
decrease in the percentage of LZ GC B cells was detected by
flow cytometry (Figure 4F). We also observed significant en-
richment of the signature upregulated in PCs when compared
with GC B cells37 in GC B cells from KO vs WT mice (Figure 4E).
To validate the abnormal rate of PC commitment and differ-
entiation, we quantified PCs in the spleens of KO and WT mice
using IHC and flow cytometry and found higher percentages of
PCs in KO mice (Figure 4G-H). Moreover, we detected more
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Figure 2. AIDCre-mediated deletion of the miR-15a/16-1 cluster in murine lymphoid cells. (A) Alignment of human and mouse miR-15a-5p and miR-16-5p sequences. (B)
Schematic of the strategy used to generatemice withmiR-15a/16-1 deletion during B-cell activation. (C)miR-15a/16-1 cluster deletion assessed by PCR in indicated FACS-sorted
lymphocyte subpopulations fromWT (n5 4) and KO (n5 4) mice.WT locus, 558 bp (bottom band); loxP flankedmiR-15a/16-1 cluster, 650 bp (middle band); deletedmiR-15a/16-
1 cluster, 850 bp (top band). (D) miR-15a, miR-15b, andmiR-16 expression in FACS-sorted lymphocyte subpopulations fromWT and KOmice, determined by RT-qPCR relative to
snoRNA234. Error bars represent standard deviations of 3 independent replicates in a representative experiment. P values were calculated by using the unpaired Student t test.
(E) Cre (IHC, brown; counterstain, blue) and miR-15a, miR-15b, and miR-16 expression (ISH, dark purple) in spleen sections of 12-week-oldWT and KOmice. One representative
example of secondary follicle for each genotype is shown. GCs are highlighted by dotted lines; scale bar, 100mm. ISH sections were not counterstained to facilitate interpretation
(see also supplemental Figure 3A-B). (F) IHC (brown; counterstain, blue) analysis of BCL2 and Ki-67 expression in splenic GCs from mice with indicated genotypes. The BCL2
staining of spleen section from a WT mouse is shown at lower magnification to depict the general pattern of BCL2 expression in murine lymphoid tissue. Note high BCL2
abundance in T cells surrounding periarteriolar sheaths (PS), MZ B cells, and Fo B cells in white pulp (WP) areas, as well as considerably lower BCL2 expression within GCs and red
pulp (RP) areas. Scale bar, 50 mm. (G) BCL2 expression in indicated lymphocyte subpopulations from WT and KO mice immunized with SRBCs assessed by immunoblotting.
Quantitative differences in protein expression level based on densitometric analysis were normalized to actin and are shown below the blots. Apostrophe indicates longer times
of film exposure to exhibit relative differences in protein abundance. Unrelated bands were cut from the immunoblots (dotted line).
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CD1381 cells within the GCs of KOmice, suggesting an increase
in differentiation with subsequent accumulation in the inter-
follicular areas (Figure 4G,I). Of note, no significant changes in
the percentages of Fo and MZ B cells as well as T cells in young
KO and WT mice were observed (supplemental Figure 4A).

Mice with loss of the miR-15a/16-1 cluster during
B-cell activation develop PC neoplasms and B-cell
lymphomas of GC origin
Given themolecular and cellular alterations induced bymiR-15a/
16-1 deletion, we evaluated cohorts of KO and WT mice over a
2-year aging period. No evidence for monoclonal gammopathy
was observed in young mice (supplemental Figure 4B). After
54 weeks and at variable times thereafter, 16 of 36 KO but not
WT mice developed progressive disease with enlarged cervical
LNs and had to be euthanized (Figure 5A). Gross pathologic
examination of euthanized KO mice revealed enlarged spleens
and LNs (Figure 5B-C), particularly in the neck and mesenteric
areas. These internal changes were also present in 5 of 16 KO
mice that were not moribund at 2 years.

Detailed histological and IHC analysis of enlarged spleens and
LNs from KOmice revealed different types of clonal, GC-derived
lymphoid malignancies (Figure 5D; supplemental Figure 5A;
supplemental Table 4). The first type (38%), presented as a low-

grade lymphoid infiltrate of atypical B2201BCL22CD1382 cells
with cleaved nuclei within the CD211 follicular dendritic struc-
ture (Figure 5E), resembling human FL.64 The second type
(29%) revealed high-grade diffuse proliferation of GC-derived
B2201BCL21CD1382 large cells disrupting the follicular den-
dritic meshwork and resembling human DLBCL (Figure 5E).64 In
the third group (33%), the interfollicular areas of spleens and LNs
were expanded by large aggregates and sheets of indolent
(small size, lack of nucleoli, binucleation, and lowmitotic activity)
CD1381B2202BCL21/2 clonal PCs (Figure 5E). These PC tumors
had mutated variable gene segments (supplemental Table 4),
excluding the diagnosis of nodal MZ lymphoma and suggesting
a PC neoplasm because mouse MZ B cells do not undergo
somatic hypermutation.8

We next investigated immunophenotypic differences between
KO and previously published models.28,29 We detected in-
creased populations of B220/PAX51CD51BCL62CD32 CLL cells
at the edge of the T-cell areas inCD19Cre/1;miR-15a/16-1fl/flmice
(supplemental Figure 5B-C), which were absent in the pre-
malignant and FL KO mice. The latter were characterized by
a monotonous population of B220/PAX51CD52BCL61CD32

B cells (supplemental Figure 5B). Contrary to Vk-MYC MM cells
that all express MYC protein,65 moderate, low, or almost noMYC
expression was observed in the KO FL, DLBCL, and PC tumors,
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respectively (supplemental Figure 5D). These studies demon-
strate that deletion of miR-15a/16-1 at different stages of B-cell
development and with different cooperative alterations pro-
motes distinct subtypes of mature B-cell lymphomas.

The relatively long latency of lymphoma development in KO
mice suggested that loss of the miR-15a/16-1 might re-
quire secondary cooperating genetic mutations to induce
lymphomagenesis. Indeed, WES analysis revealed 146 single-
nucleotide variants (SNVs) and indels in a murine PC tumor.

Consistent with the high mutation burden in human DLBCL,
589 SNVs and indels were also identified in murine DLBCL
(Figure 5F; supplemental Figure 6). Somatic variants involved
genes that are frequently mutated in human mature B-cell
malignancies, including histones (PC neoplasm and DLBCL),
Gna13,Nfkbia, Bcl6, Bcl7a, Klhl6, and Pim1 (DLBCL) (Figure 5G).
We next investigated whether some of these genes (Gna13,
Hist1h1c, Hist1h1e, and Pim1) were mutated in GC B cells from
young KO mice (n 5 3) or spleens from KO mice that did not
develop neoplasms (n 5 3). We detected mutations in Gna13
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(1 GC B-cell and 1 spleen sample) and Pim1 (3 spleen samples),
but not Hist1h1c and Hist1h1e; however, these variants were
present in very low fractions, suggesting low clonal involvement
(supplemental Table 5). Taken together, these findings indicate
that the deletion of miR-15a/16-1 cluster alters the GC reaction,
which with time predispose to expansion and malignant trans-
formation of clones harboring secondary mutations at different
stages of development after antigenic activation.

Decreased miR-15a/16 expression in human EPs is
associated with MM-related genetic alterations
To better specify the diagnosis of the PC neoplasm in KO mice,
we performed detailed examination and found excessive ex-
pression of IgG relative to IgM heavy chain, and of k over L light
chains or vice versa in LNs (Figure 6A). Because scattered in-
terstitial PC infiltrate was detected in the BM of KOmice with PC
neoplasms (Figure 6B), we next evaluated associated bone ra-
diographs. However, no lytic lesions (round, well-circumscribed,
small radiolucent lesions)66 or fractures were observed (Figure
6B-C). An M spike was detected in 1 of 5 specimens analyzed by
serum protein electrophoresis (Figure 6D). Moreover, no major
increase in total IgM and IgG levels in plasma samples was
detected by ELISA (Figure 6E). Altogether, these findings are
consistent with the diagnosis of EP, an MM-related neoplasm
that grows outside BM.64 We next investigated whether miR-
15a/16 may be implicated in the pathogenesis of human EPs by
interrogating human EP tissue array and found that 10 of 11
cases had decreased or almost undetectable miR-15a/16 ex-
pression when compared with healthy nodal PCs (Figure 6F-G).

Because loss of the miR-15a/16-1 cluster is associated with
additional genetic alterations during murine EP development,
we analyzed the genetic alterations in human primary EPs of a
secondary cohort of FFPE samples by WES (n 5 11; Figure 7A;
supplemental Figure 7A-C) and compared them with MM to
uncover potential pathogenetic determinants for different dis-
ease presentation. Cases were classified according to the In-
ternational MyelomaWorking Group (IMWG)67 criteria as solitary
plasmacytoma with (n5 6) and without (n5 5) BM involvement.
The most frequent somatic variant involved KRAS, followed by
TRAF3, BRAF, NFKBIA, TET2, and TP53 (Figure 7B). Their lo-
cation and impact closely mirrored mutations documented
in MM (Figure 7C). Despite a small sample size for EP, TRAF3,
NFKBIA, TET2, and TP53 mutations seemed more common in
EP than in MM; however, the mutational profile of EP resembled
MM. Of note, 2 of 3 cases with TRAF3 mutations had clonal
del(14q) (supplemental Figure 7D), which points to a biallelic
mechanism of inactivation also resembling MM.68 In contrast,
copy number variation analysis revealed that all chromosomal
arm-level gains were less frequent in EP than in MM, whereas
losses in EPmirroredMM, with del(13q) being themost common
deletion (Figure 7D-E). We did not detect any intragenic
translocations using WES, but fluorescence ISH (FISH) data
(available for 6 cases) revealed 4 translocations including t(11;14)
in 2 cases, t(14;20), t(14;16), and an IGH gene rearrangement
with noncommon partner (Figure 7F). Similar to previous ISH
findings, miR-15a and miR-16 expression was higher in 3 and 2
of 11 cases, respectively (Figure 7G). Taken together, human EP
is characterized by decreased expression of miR-15a/16, sug-
gesting a pathogenic role recapitulated in our murine model.
Moreover, themutational profile of human primary EP resembles

MM, except for the frequency of hyperdiploid cases and certain
mutations.

Discussion
Here, we have demonstrated thatmiR-15a/16-1 cluster deletion
during B-cell activation induces widespread molecular and
functional changes in GC B cells. With time, this leads to de-
velopment of mature B-cell malignancies such as DLBCL, FL, and
EP. Additionally, we corroborate the tumor-suppressing role of
miR-15a/16 in primary human EP and identify similarities and
differences in the genetic makeup between EP and MM.

miRs play crucial roles in the regulation of immune cell functions,
including the GC reaction and postactivation maturation.69-74

Thus far, specific functions of only a few miRs in B-cell activation
have been described, at least in part due to characteristics of
miRs that encumber their study, especially in vivo.4,75 Because (i)
apart from inducingmRNA degradation miRs inhibit translation,1

(ii) physiological miR alterations induce mild but widespread
protein changes,4 and (iii) correlation between mRNA and pro-
tein expression is limited, especially for regulatory proteins,47,48

we used proteomic analysis, instead of conventional RNA se-
quencing, to investigate the role of miR-15a/16-1 in B-cell ac-
tivation and lymphomagenesis. The broad but mild molecular
changes induced by miR-15a/16-1 deletion are consistent with
the “fine-tuning” model of miR action with a “key”/high fold
change in expression of the validated BCL2 target.2,3 Our pro-
teomic analyses indicate that miR-15a/16 modulates oxygen
metabolism, apoptosis, and interferon, IL2, BCR, and KRAS
signaling, which were all previously shown to be critical in the
regulation of GC B-cell fate and function.54-63 Differentiation of
GC B cells into PCs is a complex process involving LZ and DZ
signaling. It begins among high-affinity LZ B cells, which sub-
sequently transition into DZ, mature in the PC phenotype, and
migrate out of the GC.76 Consequently, DZ cells display an
enriched PC signature when compared with LZ cells.76,77

Therefore, an increase in the percentage of DZ cells inmiR-15a/
16-1–deficient murine GC B cells may be functionally related to
elevated number of PCs. Overall, our studies indicate that the
miR-15a/16-1 cluster regulates multiple aspects of the GC re-
action, altogether ensuring elimination of faulty cells and
governing excessive expansion.

Somatic mutations accumulate in B cells with age; however, their
contribution to lymphomagenesis is not fully understood.78 Per-
turbing the strict control of B-cell activation and maturation by
deletion of the miR-15a/16-1 cluster leads to expansion of mu-
tated clones and development of mature B-cell neoplasms in KO
mice. The relatively long latency of tumor development observed
in mice with AIDCre-induced deletion of miR-15a/16-1 recapitu-
lates the human setting because median time of diagnosis for FL,
DLBCL, and PC neoplasms is the sixth, seventh, and sixth/seventh
decade, respectively, and is related to a combination of factors,
including time-dependent accumulation of mutations.64,79,80

Previously, CD19Cre-mediated deletion of miR-15a/16-1 was
shown to promote development of CLL and, at lower frequency,
non-Hodgkin lymphomas. CLL cells in this model expressed
unmutated IgV genes, indicating non-GC origin.28 It has also
been previously documented that constitutive monoallelic and
biallelic deletion of the miR-15a/16-1 cluster accelerated onset
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of MM and secondary extramedullary dissemination in Vk-MYC
mice. However, germline loss ofmiR-15a/16-1 was not sufficient
to induce malignant transformation: instead it only promoted
increased levels of monoclonal immunoglobulin in the serum.29

Of note, IL-6 and v-ABL transgenic models that are both as-
sociated with Myc translocations develop aggressive extra-
medullary plasmacytomas resembling late-stage MM disease, in
contrast to an indolent course of human primary EP reflected in
our KO model.81-83 Although the precise molecular mechanisms
accounting for multiple types of B-cell lymphomas induced by
miR-15a/16-1 loss remains to be determined, such mechanisms
would need to consider: (i) the type and temporal sequence of
cooperating genetic alterations; (ii) the co-occurrence of specific
predisposing processes within the targeted B cells (eg, high
proliferation rate and tolerance for genotoxic stress of GC
B cells)15; (iii) the cellular context, especially given the cell type/
differentiation stage-specific miR functions resulting from rela-
tive differences in mRNA-miR expression ratios (eg, BCL2 and
VEGF-A), coexpression of other miRs competing for binding
sites, and alternative splicing84; and (IV) feedback mechanisms
compensating for loss/activation of specific genes.85-88 The va-
riety of murine hematologic malignancies induced by loss of
the miR-15a/16-1 cluster underscores the importance of its
tumor-suppression roles in B cells. This notion is supported by
the exceptionally high prevalence of del(13q)44,64 and down-
regulation of miR-15a/16 in cells without del(13q)27,89 in human
lymphoid malignancies.

del(13q) is an early event in the pathogenesis of MM, also ob-
served in the precursor disease monoclonal gammopathy of
undetermined significance.25,26 MM is a neoplasm characterized
by proliferation of long-lived PCs within the BM, and associated
bone lytic lesions.24,64 Although loss of BM homing and growth
of MM cells at extramedullary sites is generally related to MM
progression and advanced stage, there are rare cases in which clonal
PCs initially and primarily develop in LNs and other soft tissues as
primary “extramedullary plasmacytomas,” which can secondarily
home to the BM.64,67 Notably, the latter phenotype is observed in
KO mice, suggesting that other genetic alterations apart from miR-
15a/16-1 deletion are involved in BM homing of MM cells.

Given the low number of cases, genetic bases of primary EPs
were unclear. In our correlative studies, we found that, like MM,
primary EPs have low levels of miR-15a/16 expression, with
del(13q) being the most common deletion. Although the so-
matic mutational profile is also similar, there are some excep-
tions, such as the higher frequency of TRAF3 and NFKBIA (both
regulating the NF-kB pathway) mutations in EP.90,91 In addition,
although the frequencies of chromosomal losses were compa-
rable in both PC neoplasms, only 18% of primary EP samples
(2 of 11) were hyperdiploid compared with 40% to 50% in
MM.26 Although a bigger sample size is necessary for significant
comparisons and definitive conclusions, our studies indicate
that MM and primary EP are slightly different molecular and
clinicopathological entities and should be classified separately
as proposed by World Health Organization (WHO) and IMWG
guidelines.64,67 Because (i) comparison of MM cells from BMwith
extramedullary tumor PCs revealed a lower incidence of
hyperdiploidy in the latter,25 (ii) del(13q) is a risk factor for
extramedullary relapse in human and mouse MM,29,92-94 and (iii)
miR-15a/16-1 was recently shown to be an essential MM-related
tumor-suppressor gene located on chromosome 13q,29 the

proextramedullary signaling related to del(13q)/miR-15a/16-1
downregulation combined with the lower frequency of pro-BM
hyperdiploidy may induce the growth of malignant PCs primarily
outside of the BM. In line with this, hyperdiploid MM is asso-
ciated with MYC rearrangements and Vk-MYC mice develop
BM disease.29,95 Accordingly, the AIDCre/1;miR-15a/16-1fl/fl (KO)
model could help in the study of the role of otherMM-associated
genetic alterations in BM homing of neoplastic PCs by gener-
ating new crosses.

Overall, our findings identify miR-15a/miR-16 as important
regulators of the GC reaction and as tumor suppressors in
mature B-cell malignancies including EP in vivo. Current ther-
apies for MM and EP are different.96 Considering today’s rapidly
advancing development of novel methods for in vivo miR
delivery,97,98 these results point to miR-15a/miR-16 as promising
agents for replacement therapy in EP as well as other hema-
tologic malignancies associated with del(13q).64
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