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KEY PO INT S

l Natural IgM
antibodies in plasma
bind to circulating
MVs and modulate
coagulation.

l A monoclonal natural
IgM antibody specific
for malondialdehyde
epitopes inhibits MV-
induced coagulation
and thrombosis inmice
in vivo.

Thrombosis and its associated complications are a major cause of morbidity and mortality
worldwide. Microvesicles (MVs), a class of extracellular vesicles, are increasingly recog-
nized as mediators of coagulation and biomarkers of thrombotic risk. Thus, identifying
factors targeting MV-driven coagulation may help in the development of novel anti-
thrombotic treatments. We have previously identified a subset of circulating MVs that is
characterized by the presence of oxidation-specific epitopes and bound by natural
immunoglobulin M (IgM) antibodies targeting these structures. This study investigated
whether natural IgM antibodies, which are known to have important anti-inflammatory
housekeeping functions, inhibit the procoagulatory properties of MVs. We found that the
extent of plasma coagulation is inversely associated with the levels of both free and MV-
bound endogenous IgM. Moreover, the oxidation epitope-specific natural IgM antibody
LR04, which recognizes malondialdehyde adducts, reduced MV-dependent plasmatic co-
agulation and whole blood clotting without affecting thrombocyte aggregation. In-

travenous injection of LR04 protected mice from MV-induced pulmonary thrombosis. Of note, LR04 competed the
binding of coagulation factor X/Xa toMVs, providing amechanistic explanation for its anticoagulatory effect. Thus, our
data identify natural IgM antibodies as hitherto unknownmodulators ofMV-induced coagulation in vitro and in vivo and
their prognostic and therapeutic potential in the management of thrombosis. (Blood. 2021;137(10):1406-1415)

Introduction
Cardiovascular diseases remain the major cause of morbidity
and mortality worldwide.1 Most cardiovascular events such as
stroke, myocardial infarction, and pulmonary embolism are
caused by thrombotic vessel occlusion.2,3 Moreover, several
chronic conditions, such as diabetes4 and certain autoimmune5

and autoinflammatory6 disorders, as well as many types of
cancer,7 are associated with a high thrombotic risk. Current
strategies for the prevention and treatment of thrombosis are
based on targeting the coagulation cascade and/or platelet
reactivity and therefore increase the risk of bleeding.8-12 Further
insights into the pathophysiology of thrombosis and the de-
velopment of novel antithrombotic treatments are thus needed.

Inflammation and the cellular responses involved in it are in-
creasingly recognized as important modulators of thrombosis,
mainly by activating the procoagulant pathway.13-15 Increased
oxidative stress and the production of reactive oxygen species
are a hallmark of inflammatory processes. In turn, oxidative
damage of membrane lipids give rise to the formation of

oxidation-specific epitopes (OSEs)16 such as malondialdehyde
(MDA) and oxidized phosphatidylcholine. OSEs are considered a
class of danger-associated molecular patterns that trigger in-
flammatory responses in both acute and chronic settings.17 For
example, oxidized low-density lipoprotein (LDL), which carries
different OSEs, represents a key trigger of vascular inflammation,
in particular in the context of atherosclerosis.18 Moreover, oxi-
dized LDL has been shown to induce tissue factor (TF) expres-
sion in monocytes,19,20 neutrophil extracellular cellular trap
formation,21 and a prothrombotic phenotype in endothelial
cells.22-24 Thus, innate immune receptors that recognize OSEs
can mediate procoagulant and prothrombotic responses.18

However, whether recognition of OSEs could also directly
dampen coagulation has not yet been investigated, to the best
of our knowledge.

We and others have previously shown that low levels of
immunoglobulin M (IgM) antibodies binding OSEs are in-
versely associated with the risk of atherosclerotic cardiovascular
events and venous thrombosis.25-28 Most, if not all, of these
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immunoglobulins are germline encoded (so-called natural an-
tibodies), produced without prior exposure to pathogens.29 We
have previously shown that a large part of IgM antibodies rec-
ognize OSEs.16,30 The protective effects of these OSE IgM an-
tibodies have been largely attributed to their ability to neutralize
the proinflammatory effects of oxidized lipids and mediate the
clearance of apoptotic cells carrying OSEs.30-34

We recently reported that OSE IgM antibodies recognize a
subset of circulatingmicrovesicles (MVs),35 a class of extracellular
vesicles (EVs) that can be found in all biological fluids.36 Cellular
stress, in particular inflammatory activation, increases MV pro-
duction.37 Accordingly, the levels of circulatingMVs are elevated
in many pathologic settings and have therefore been suggested
as mediators and biomarkers in a variety of diseases,38

including metabolic39 and cardiovascular disease,40 cancer,41

and infections.42 Initially, MVs were discovered as mediators of
coagulation and have been studied for their contribution to
thrombosis43-45 by presenting negatively charged phospho-
lipids, which enable the assembly of the prothrombinase com-
plex,46 and initiating the extrinsic coagulation pathway by
exposing TF.47 Furthermore, MVs may also indirectly contribute
to a prothrombotic state by triggering inflammatory responses in
vascular cells. MVs are therefore considered important media-
tors of arterial48 and venous49 thrombosis. The current study
investigated whether natural IgM antibodies and OSE IgM an-
tibodies in particular could directly modulate the procoagulatory
potential of MVs and thereby limit thrombotic processes.

Methods
IgM antibodies recognizing OSEs
Monoclonal IgM antibodies with specificity for MDA adducts
(LR04 and NA17; kind gifts of J.L. Witztum, University of Cal-
ifornia, San Diego) and for phosphocholine (E06; Avanti Polar
Lipids) were used in this study. The cloning and characterization
of these antibodies have been described before.30,50,51 A mouse
IgM isotype (clone number MM30, 401604; BioLegend) was
used as a control. All antibodies were tested to be free of en-
dotoxin contamination.

Thrombin generation assay
Thrombin generation (TG) was performed by using a Ceveron
alpha analyzer (Technoclone). Isolated MVs were used to initiate
clotting as described in the figure legends. Plasma deficient in
factors V (5134004), VII (5144015), VIII (5154004), IX (5164003),
XI (5184004), and XII (5194008) and a control plasma (5020020)
(all from Technoclone) were used. OSE-specific antibodies (LR04,
NA17, and E06) or isotype control were used to inhibit coagulation
at concentrations of 25 and 50 mg/mL. For blocking of TF, an anti-
CD142 monoclonal antibody (clone number HTF-1, 16-1429-82;
eBioscience) was used (10mg/mL). AntibodiesweremixedwithMVs
in phosphate-buffered saline (125 mL) and incubated for 20 minutes
at room temperature before adding to 125 mL of plasma.

Pulmonary thrombosis model
A modified mouse model of pulmonary thrombosis was used.52

Eight- to 12-week-old C57BL6/J mice were anesthetized by
intraperitoneal injection of ketamine (AniMedica) (100 mg/g
body weight [bw]) and xylazine (Bayer) (10 mg/g bw), diluted in
sterile saline (injection volume, 100 mL). The mixture containing
epinephrine (60 ng/g bw), HPAF-II–derived MVs (0.1 mg/g bw),

or rat tail collagen (Corning) (3 mg/g bw), and LR04 or isotype
control IgM (25 mg/mL of estimated blood volume; corre-
sponding to 2.25 mg/g bw) in sterile phosphate-buffered saline
(total volume, 120 mL), was injected into the retro-orbital plexus
using 29 gauge insulin syringes. The antibody concentrations
were chosen according to the effective concentrations (25 mg/mL)
observed in plasma (TG) and whole blood (rotational throm-
boelastometry) coagulation assays. Terminal breath was counted
as time of death. Surviving animals were killed by cervical dis-
location after 30 minutes. Experiments were performed in a
blinded manner.

A detailed description of the methods is provided in the sup-
plemental Methods (available on the Blood Web site).

Statistics
GraphPad Prism 8.3 for Windows (GraphPad Software) software
was used for statistical analyses. The Mann-Whitney U test was
used for comparing data from 2 unpaired groups, and the
Wilcoxon matched-pairs signed-rank test was used for data from
2 paired groups. The log-rank (Mantel-Cox) test was used for the
comparison of survival curves. One-way analysis of variance test
with subsequent Bonferroni’s multiple comparison tests were
used for multiple group data analysis. Data are presented as
mean 6 SEM.

Ethics
Human blood and plasma samples were collected under the
approval by the Ethics Committee of the Medical University of
Vienna (EK2051/2013 and EK1845/2015). All in vivo experiments
were conducted in accordance with the approval of the animal
ethics committee of the Medical University of Vienna (BMBWF-
66.009/0017-V/3b/2018).

Results
Endogenous IgM antibodies affect
MV-dependent TG
To investigate whether IgM antibodies can influence MV-induced
plasma coagulation, we selectively depleted circulating IgM an-
tibodies (Figure 1A; supplemental Figure 1A) from pooled, EV-
depleted (supplemental Figure 1B) human plasma. Blood drawing
leads to plasma preactivation via the contact pathway53 and
therefore does not require TF as a trigger. Gradual depletion of
endogenous IgM antibodies led to a concurrent increase in
propagation of TG triggered by platelet-derived MVs (TF–),
reflected by a peak height increase (Figure 1B; supplemental
Figure 1C) and by TF1 MVs (supplemental Figure 1D). Activated
partial thromboplastin time (aPTT), which in contrast to TG54 is not
sensitive to the presence of MVs,55 was not affected by IgM
depletion (supplemental Figure 1E).

To investigate whether endogenous IgM antibodies bound to MVs
affect their coagulatory potential, we assessed the presence of IgM
on circulating annexin V–positiveMVs of healthy volunteers (n522)
using flow cytometry (supplemental Figure 1F). MVs were isolated
and divided into IgMlow and IgMhigh based on themean percentage
of IgM-positiveMVs (Figure 1C).MVswere used to induce TG in the
equivalent volume of pooled MV-free plasma. Although the total
amount of MVs did not significantly differ between the 2 groups
(supplemental Figure 1G), IgMhighMVs induced TG to a significantly
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lower degree compared with IgMlow MVs (Figure 1D; supplemental
Figure 1H). Similar results were obtained when MVs were di-
chotomized into IgMhigh and IgMlow MVs within the subset of
CD41a1 platelet MVs that are considered to represent the majority
of circulating MVs (supplemental Figure 1I).

To further characterize the capacity of endogenous IgM anti-
bodies to modulate coagulation, we characterized circulating
MVs from mice lacking sialic acid-binding immunoglobulin-like

lectin G (SiglecG2/2), which possess elevated levels of total and
OSE-specific IgM.31 SiglecG2/2 mice exhibited a significantly
higher percentage of IgM1 MVs compared with wild-type
(WT) mice (Figure 1E), whereas the total number of MVs was
not different between the 2 groups of mice (supplemental
Figure 1J). Platelet-poor plasma of SiglecG2/2 mice still con-
taining endogenous MVs exhibited significantly reduced TG
compared with plasma of WT mice (Figure 1F; supplemental
Figure 1K).

C
0

50

100

150

200 *

1:4 1:2 1:1

Ratio lgM agarose : plasma

Pe
ak

he
ig

ht
 [n

M
]

C
0

2500

5000

7500

10000

12500
A

1:4 1:2 1:1

Ratio lgM agarose : plasma

Ig
M

 p
la

sm
a l

ev
el

s [
RL

U/
10

0m
s]

****

****

****

0

0

50

100

150 1:1

1:2

1:4

C

B

10 20 30 40 50

Minutes

Th
ro

m
bi

n 
[n

M
]

100
IgMlow IgMhigh

150

200

250

300

Pe
ak

he
ig

ht
 [n

M
]

**

0

20

40

60

80

100 IgMhigh

IgMlow

C

Ig
M

+
M

Vs
 o

f t
ot

al
 [%

]

0

0

50

100

200

150

250

D

10 20 30 40 50

Minutes

Th
ro

m
bi

n 
[n

M
]

IgMhigh

IgMlow

0
WT Siglec-G-/-

10

20

30

40

Pe
ak

he
ig

ht
 [n

M
]

**

0
WT Siglec-G-/-

20

40

60

80

100

Ig
M

+
M

Vs
 o

f t
ot

al
 (%

)

E
***

0

0

5

15

10

20
F

10 20 30 40 50

Minutes

Th
ro

m
bi

n 
[n

M
]

Siglec-G-/-

WT

Figure 1. Endogenous IgM antibodies decreaseMV-dependent TG. (A) Chemiluminescent enzyme-linked immunosorbent assay of plasma IgM levels after depletion of free
IgM from pooled EV-free human plasma with increasing amounts of anti–human IgM/agarose beads. (B) TG curves and peak heights of IgM-depletedMV-free plasma triggered
by addition of platelet-derived MVs. Plots depict representative experiment of n 5 4. Bars represent mean 6 SEM of each group. *P , .05, ****P , .001, two-way analysis of
variancewith Bonferroni’smultiple comparisons test. (C) Percentages of IgM1MVswithin annexin V–positive events isolated fromplasma of healthy volunteers (n5 22)measured
by using flow cytometry. Groups were divided into MV IgMlow andMV IgMhigh based on the mean percentage (horizontal bar). (D) Comparison of the procoagulatory potential of
IgMlow and IgMhigh MV average TG curves and peak heights of pooledMV-depleted plasma reconstituted with isolated IgMlow (n5 9) and IgMhigh (n5 13) MVs. Columns and error
bars or solid lines and light-colored areas represent the mean6 SEM of each group. (E) Percentages of IgM1 MVs of WT (n5 15) and Siglec-G2/2 (n5 18) mice within annexin
V–positive events measured by flow cytometry. Bars represent mean6 SEM. (F) Spontaneous TG of platelet-poor plasma fromWT and Siglec-G2/2mice. Average TG curves and
peak heights of pooled platelet-poor plasma ofWT vs Siglec-G2/2mice. Columns and error bars or solid lines and light-colored areas represent themean6 SEM of each group.
(D-F) **P , .01, ***P , .005, Mann-Whitney U test. RLU, relative light units.
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OSE-specific natural IgM LR04 inhibitsMV-sensitive
plasma coagulation and factor X binding to MVs
We have previously shown that the majority of endogenous IgM
antibodies bound to circulating MVs have specificity for OSEs;
OSE-specific natural IgM antibodies, in particular with specificity
for MDA epitopes, bind circulating MVs.35

To address whether OSE-specific natural IgM antibodies mod-
ulate coagulation similarly to endogenous IgM, we investigated
the effects of LR04, a previously characterizedmonoclonal MDA-
specific IgM antibody50,56 on coagulation. LR04 has been shown
to bind circulating and in vitro generated MVs,35 which we
confirmed for the platelet-derived MVs (PMV) used (supple-
mental Figure 2A). To test the effect of LR04 on TG, PMVs were
preincubated with increasing concentrations of either LR04 or an
isotype control antibody and added to MV-free plasma. LR04
significantly inhibited initiation (lag time) and propagation (peak
height) of PMV-triggered TG (Figure 2A; supplemental
Figure 2B).

Preincubation with a previously described peptide mimotope
(P2) of MDA that is specifically bound by LR0450 led to a
significant inhibition of LR04 binding to PMVs (Figure 2B).
Consistent with that action, preincubation with increasing con-
centrations of P2 led to a dose-dependent inhibition of the
anticoagulatory effects of LR04 in PMV-triggered TG (Figure 2C;
supplemental Figure 2C). Similarly to LR04, different monoclonal
IgM antibodies with specificity for MDA (NA17) or the phos-
phocholine headgroup of oxidized phospholipids (E06) also
inhibited TG (Figure 2D; supplemental Figure 2D). This finding is
consistent with the previously reported presence of both types
of OSEs on MVs.

To test whether LR04 inhibits TG in the presence of exogenous
MV-associated TF, we used TF1 MVs generated from activated
THP-1 cells, which are also bound by LR04 (supplemental
Figure 2E), as a trigger. LR04 resulted in a dose-dependent
reduction of THP1-MV triggered peak TG without affecting
initiation (lag time), whereas a TF-blocking antibody (HTF-1)
significantly delayed lag time (Figure 2E; supplemental Figure 2F),
indicating that MDA-specific IgM antibodies limit the propa-
gation of MV-dependent coagulation, irrespective of the pres-
ence of TF.

We next investigated whether LR04 also has an effect on clotting
tests that is not dependent on the presence of MVs.55 We used
aPTT and prothrombin time (PT) tests, which rely on the addition
of exogenous phospholipids. Preincubation of pooled platelet-
poor plasma with LR04 had no effect on aPTT or PT (Figure 2F).
This outcome suggests that LR04 exerts its anticoagulatory
effects by interacting with MVs, rather than by directly inhib-
iting the activity of certain coagulation factors. To further test
this hypothesis, we evaluated the effect of LR04 on THP-1/
MV–induced coagulation in plasmas with selective deficiency
of individual coagulation factors of the extrinsic or intrinsic
pathway (FV, FVII, FVIII, FIX, FXI, and FXII). A reduction of TG
(peak height) by LR04 was observed in all deficient plasmas
tested (Figure 2G), suggesting that LR04 does not selectively
affect either the intrinsic or extrinsic arm of the coagulation
cascade.

To investigate whether the anticoagulatory effect is caused by
promoting aggregation of MVs, and thereby reducing the
procoagulant surface, we assessed the size profile of MVs after
incubation with LR04 or concanavalin A, which has been pre-
viously described as causing MV aggregation.57 Although
concanavalin A caused a significant shift in the size profile of
MVs, no measurable shift occurred after incubation with LR04
(Figure 2H; supplemental Figure 2G). We next tested whether
LR04 affects the interaction between MVs and components of
the common coagulation pathway. Because the binding of factor
X/Xa to phospholipid surfaces (eg, MVs) is a crucial step in the
formation of the prothrombinase complex, we tested whether
LR04 could directly inhibit factor Xa binding to the phospho-
lipids of MVs. To address this theory, we established an enzyme-
linked immunosorbent assay for the detection of factor Xa
binding to immobilized MVs. Purified factor Xa bound to
immobilized MVs in a concentration-dependent manner. In
contrast to LR04,35 no binding of factor Xa to MDA-modified
bovine serum albumin was observed (supplemental Figure 2H).
Furthermore, we reported the binding of LR04 to immobilized
MVs (supplemental Figure 2I), which could be inhibited with the
MDA peptide mimotope P2 (supplemental Figure 2J). To assess
whether LR04 can compete with plasma-derived factor X/Xa
binding to MVs, we established a competition enzyme-linked
immunosorbent assay in which plasma was added to immobi-
lized MVs (supplemental Figure 2K). Preincubation of immobi-
lized MVs with LR04 but not an isotype control antibody
significantly reduced binding of plasma-derived factor X/Xa to
MVs in a concentration-dependent manner (Figure 2I).

LR04 delays initiation and propagation in whole
blood clotting without affecting platelet
aggregation
Activation of blood cells during coagulation results in the pro-
duction of MVs, which in turn contributes to the propagation of
blood clotting. Indeed, we observed dramatically higher num-
bers of MVs in serum compared with plasma of the same donor
(supplemental Figure 3A). Using rotational thromboelastometry,
we therefore tested the effect of LR04 on whole blood co-
agulation during which MVs are continuously released. Addition
of LR04 but not an isotype control antibody significantly in-
creased clotting time, clot formation time, and time of maximum
clot firmness while significantly decreasing maximum clot firm-
ness (Figure 3A-D). The strongest effect was observed in clot
formation time, a measure of clotting propagation, which is
consistent with the effects seen in TG. This effect could depend
on the circulating MVs present, as well as affecting MVs that are
generated during the clotting process.

Thrombocyte aggregation assays were performed to test the
effect of LR04 on platelet function. Neither LR04 nor an iso-
type control antibody affected the aggregation of platelets
isolated from healthy volunteers (Figure 3E-G; supplemental
Figure 3B-C).

LR04 protects mice from MV-induced pulmonary
thrombosis but does not affect hemostasis
We next tested whether LR04 could modulate hemostasis and
MV-driven thrombosis in vivo. To assess the potential influence
of LR04 on hemostasis, a murine tail bleeding assay was per-
formed.58 After anesthesia, mice received injections with either
LR04 or an isotype control antibody, and bleeding time was
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assessed after tail tip amputation. We observed no differences
in bleeding time (Figure 4A) between the groups injected with
either LR04 or the isotype. However, hemostasis is mediated
largely by platelet aggregation and extravascular TF, whereas
the contribution of circulating MVs is debated.44

To assess the effect on MV-driven coagulatory processes in vivo,
we adapted an established model of MV-induced murine pul-
monary thrombosis,52 using epinephrine together with MVs
released by the pancreatic cancer cell line HPAF-II as a trigger,
which possess a strong procoagulatory activity.59 The rapid
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Figure 2. Natural IgM antibodies inhibitMV-sensitive plasma coagulation and factorXa (FXa) binding toMVs. (A) Effect of theMDA-specific natural IgM antibody (ab) LR04
on TG. TG curves of MV-depleted plasma, triggered by platelet-derivedMVs (2 mg/mL), which were preincubated with 2 concentrations of LR04 or an isotype control ab (0, 25, or
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occurrence of thrombotic events in this model allows assessment
of the direct anticoagulatory properties of IgM antibodies, in-
dependent of their known anti-inflammatory effects. The iso-
lated HPAF-MVs displayed high TF positivity (supplemental
Figure 4A) as well as LR04 binding (supplemental Figure 4B), and
induced TG in MV-free plasma already after the addition of low
concentrations. Preincubation with LR04 led to a strong in-
hibition of TG peak height (supplemental Figure 4C).

We next tested the prothrombotic effect of HPAF-MVs in vivo.
Coinjection of HPAF-MVs and epinephrine, but not epinephrine
alone, led to death within 10 minutes (supplemental Figure 4D).
Microscopic evaluation of the lungs of these animals revealed
the presence of thrombi, as indicated by deposition of fibrin
(supplemental Figure 4E) and platelets (supplemental Figure
4F-G). Importantly, we observed the presence of injected
fluorescently labeled HPAF-MVs within thrombi (Figure 4B).
Coinjection of HPAF-MVs with LR04 but not an isotype con-
trol significantly rescued mice from death due to pulmonary
thrombosis (Figure 4C). However, LR04 had no effect when
collagen was used as a prothrombotic trigger (Figure 4D), further
illustrating the MV-dependent mode of action of these anti-
bodies. Importantly, the number of thrombi was significantly
lower in lung sections of animals that were coinjected with MVs
and LR04 compared with MVs and isotype control (Figure 4E-F).

Discussion
Circulating MVs are considered to be critical mediators of co-
agulation, and their increased levels and procoagulatory po-
tential have been reported in cardiovascular disease and other
pathologic states associated with increased risk for thrombotic
events.38,45,48 The current study identified natural IgM anti-
bodies, and in particular IgM antibodies that bind to OSEs, as

important modulators of the procoagulatory properties of MVs
(Figure 4G). We found that depletion of IgM antibodies from
plasma increases its coagulatory capacity and that the presence
of IgM on circulating MVs is associated with a lower coagulatory
potential. These findings identify IgM antibodies as a protective
factor with a direct anticoagulatory function.

Interestingly, splenectomy has been shown to lead to an elevated
long-term risk of venous thrombosis60 and an increased rate of
myocardial infarctions.61 However, the mechanisms behind these
observations have been elusive. Notably, splenectomy results in
decreased IgM levels,62 whichmight explain the prothrombotic state
of these patients. In line with this, we and others have recently shown
that low levels of OSE IgM antibodies are associated with an in-
creased risk of venous thrombosis.27,63 Thus, our findings offer an
explanation for the high thrombotic risk associated with low IgM
levels. Moreover, elevated numbers of circulating MVs in splenec-
tomized individuals have been suggested to contribute to a pro-
thrombotic state.64

High levels of IgM antibodies, and IgM antibodies with a
specificity for OSEs in particular, have also been shown to
be inversely associated with atherosclerotic cardiovascular
events.25,26,28 The protective effect of OSE-specific IgM anti-
bodies in atherosclerotic cardiovascular disease has largely been
attributed to their capacity to inhibit atherogenesis by neutral-
izing the proinflammatory effects of oxidized phospholipids,
blocking the scavenger receptor–mediated uptake of oxidized
LDL, and promoting the clearance of apoptotic cells.16,29,65 Of
note, we have shown that MDA-specific IgM antibodies inhibit
the ability of MVs to induce interleukin-8 production by
monocytes.35 The anticoagulatory effect of OSE-specific IgM
antibodies that we describe here identifies a novel function that
is not directly linked to the antibodies’ ability to neutralize the
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Figure 3. LR04 delays whole blood clotting without
affecting platelet aggregation. (A-D) Effect of LR04 on
whole blood clotting using rotational thromboelas-
tometry. Freshly drawn blood of healthy individuals (n5

11) was incubated for 20minutes with 25mg/mL of either
LR04 or an isotype (iso) control antibody before initi-
ating rotational thromboelastometry in the non-
activated method mode. (A) Clotting time, (B) clot
formation time, (C) time of maximum clot firmness, and
(D) maximum clot firmness. Bars represent the mean of
each group. **P , .01, ***P , .005, Wilcoxon matched-
pairs signed-rank test. (E-G) Effect of LR04 on platelet
aggregation. Washed platelets isolated from healthy
volunteers (n5 11-15) were preincubated for 20 minutes
with LR04 or an IgM control antibody (25 mg/mL) before
activation with thrombin (E), collagen (F), or adenosine
59-diphosphate (ADP) (G). Shown are representative
aggregation curves. au, arbitrary units.
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proinflammatory effects of lipid peroxidation products. Oxidized
phospholipids, such as phosphatidylethanolamine and phos-
phatidylcholine, have been shown to increase the phosphati-
dylserine accessibility of membranes to coagulation factors by
changing the size and curvature of liposomes.66 Similar effects
may occur on the surface of MVs, which are a major source of
procoagulant phospholipids in vivo.38 Therefore, the recognition

of lipid oxidation products present on the surface of MVs may
modulate their procoagulant potential. Indeed, we found that
MV-dependent TG is delayed by the addition of different OSE-
specific IgM antibodies binding either MDA (LR04 and NA17) or
the phosphocholine headgroup of oxidized phospholipids (E06)
but not a control IgM antibody. Notably, we previously showed
that one-third of the natural IgM in plasma has specificity for OSE
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(G) Summary cartoon (details are provided in
the text). n.s., not significant.
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and that most MV-associated IgM binds to MDA- or copper-
oxidized LDL, the cognate antigens of NA17, LR04, or E06,
respectively.30,35 Because IgM antibodies with specificity for
different OSEs mediate a similar anticoagulatory function, their
combined effects may be even more potent.

Importantly, LR04 delayed TG (in particular, its propagation) trig-
gered by both TF1 and TF– MV, showing that the effect occurs after
initiation by both the extrinsic and intrinsic pathways. This scenario
indicates that LR04 interfereswithMVs interactingwith the common
pathway of the coagulation cascade. A key event in the common
pathway is factor X binding to negatively charged phospholipids as
found on MVs, leading to the assembly of the prothrombinase
complex.67 This explanation is supported by our finding that LR04
competes binding of factor X/Xa to immobilized MVs, whereas it
does not cause MV aggregation. The fact that factor Xa itself does
not directly bind to MDA epitopes, which are recognized by LR04,
indicates that binding of LR04 to MVs indirectly interferes with the
phosphatidylserine accessibility for factor Xa on MV surfaces and
therefore decreases their procoagulatory capacity.

LR04 also delayed clot formation,most prominently clot formation
time (ie, propagation), in the dynamic situation of constant MV
production that occurs during whole blood clotting, which de-
pends on both plasmatic and cellular components of coagulation.
Of note, LR04 did not affect aggregation of isolated platelets,
providing further support for the notion that the effect of LR04
relies on the interaction between MVs and plasmatic coagulation
components. Importantly, the antithrombotic effect of LR04 was
also observed in vivo, when MVs were used to induce pulmonary
thrombosis in mice but not when collagen was used. These data
further illustrate the specificity of the anticoagulatory effect of
LR04 for MV-driven coagulation in contrast to collagen-induced
clot formation that primarily depends on platelets.

Notably, OSE-specific IgM antibodies had no effect on clotting
assays that depend on the addition of exogenous phospholipids
and are not sensitive to MVs (aPTT). This finding is in contrast to
antiphospholipid syndrome antibodies that recognize the phos-
pholipid cardiolipin and/or b2-glycoprotein 1, and are associated
with an increased risk of thrombosis but prolong phospholipid-
dependent clotting times in vitro.68 Furthermore, epidemiologically,
OSE-specific IgM antibodies are associated with lower risk of
arterial25,26,28 and venous27,63 thrombotic events. Thus, these natural
IgMantibodies represent a different group of antibodies that confer
MV-dependent anticoagulatory effects both in vitro and in vivo.

Our findings have several clinical implications. First, assessing
OSE-specific IgM levels could improve patient stratification
within at-risk populations to decide on the necessity or intensity
of anticoagulatory therapies. This might be particularly impor-
tant in thrombotic pathologies in which MVs are considered to

contribute to the thrombotic burden, such as cancer-associated
thrombosis49 and acute coronary syndrome.69 Second, the
therapeutic potential of OSE-specific IgM antibodies could be
explored by both developing therapeutic monoclonal anti-
bodies and identifying factors that stimulate production of OSE-
specific natural IgM antibodies.
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63. Wennerås C, Goldblatt D, Zancolli M, et al.
Natural IgM antibodies in the immune de-
fence against neoehrlichiosis. Infect Dis
(Lond). 2017;49(11-12):809-816.

64. Kimmig LM, Palevsky HI. Review of the as-
sociation between splenectomy and chronic

thromboembolic pulmonary hypertension.
Ann Am Thorac Soc. 2016;13(6):945-954.

65. Que X, Hung MY, Yeang C, et al. Oxidized
phospholipids are proinflammatory and
proatherogenic in hypercholesterolaemic
mice [published correction appears in Nature.
2018;561(7724):E43]. Nature. 2018;
558(7709):301-306.

66. Slatter DA, Percy CL, Allen-Redpath K, et al.
Enzymatically oxidized phospholipids restore
thrombin generation in coagulation factor
deficiencies. JCI Insight. 2018;3(6):98459.

67. Krishnaswamy S, Jones KC, Mann KG.
Prothrombinase complex assembly. Kinetic
mechanism of enzyme assembly on phos-
pholipid vesicles. J Biol Chem. 1988;263(8):
3823-3834.

68. Schreiber K, Sciascia S, de Groot PG, et al.
Antiphospholipid syndrome [published cor-
rection appears in Nat Rev Dis Primers. 2018;
4:18005]. Nat Rev Dis Primers. 2018;4(1):
17103.

69. Mallat Z, Benamer H, Hugel B, et al. Elevated
levels of shed membrane microparticles with
procoagulant potential in the peripheral cir-
culating blood of patients with acute coronary
syndromes. Circulation. 2000;101(8):841-843.

NATURAL IgM INHIBITS MV-DRIVEN COAGULATION blood® 11 MARCH 2021 | VOLUME 137, NUMBER 10 1415

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/137/10/1406/1802575/bloodbld2020007155.pdf by guest on 07 M

ay 2024


