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KEY PO INT S

l Ribosome biogenesis
arrests at the
transition between
early and late
basophilic
erythroblasts.

l p53 is activated in
immature erythroid
precursors and drives
an erythroid
transcriptional
program, implying an
interplay with GATA1.

The role of ribosome biogenesis in erythroid development is supported by the recognition
of erythroid defects in ribosomopathies in both Diamond-Blackfan anemia and 5q2 syn-
drome. Whether ribosome biogenesis exerts a regulatory function on normal erythroid
development is still unknown. In the present study, a detailed characterization of ribosome
biogenesis dynamics during human and murine erythropoiesis showed that ribosome
biogenesis is abruptly interrupted by the decline in ribosomal DNA transcription and the
collapse of ribosomal protein neosynthesis. Its premature arrest by the RNA Pol I inhibitor
CX-5461 targeted the proliferation of immature erythroblasts. p53 was activated spon-
taneously or in response to CX-5461, concomitant to ribosome biogenesis arrest, and
drove a transcriptional program in which genes involved in cell cycle–arrested, negative
regulation of apoptosis, and DNA damage response were upregulated. RNA Pol I tran-
scriptional stress resulted in nucleolar disruption and activation of the ATR-CHK1-p53
pathway. Our results imply that the timing of ribosome biogenesis extinction and p53
activation is crucial for erythroid development. In ribosomopathies in which ribosome

availability is altered by unbalanced production of ribosomal proteins, the threshold downregulation of ribosome
biogenesis could be prematurely reached and, together with pathological p53 activation, prevents a normal expansion
of erythroid progenitors. (Blood. 2021;137(1):89-102)

Introduction
Erythropoiesis originates from the commitment of hematopoi-
etic stem cells to erythroid progenitors. The terminal differen-
tiation starts with the appearance of immature proerythroblasts
(proEs) that divide to give rise, first to early basophilic eryth-
roblasts (baso1), then to late basophilic erythroblasts (baso2).
The next 2 cell divisions produce mature polychromatic (polyE)
and orthochromatic (orthoE) erythroblasts with reduction in cell
size and changes in cell surface marker expression.1-3 The
transition between proliferation and differentiation depends on
the evolutionary capacities of cells to respond to cytokines. Stem

cell factor (SCF) sustains renewal of progenitors and immature
precursors, whereas the extinction of the SCF receptor c-Kit from
basoEs is necessary for differentiation after erythropoietin (EPO)
exposure. Morphological changes are mediated by tran-
scriptome reprogramming,4-6 mainly involving activation or re-
pression of GATA1 target genes.7,8 At the translation regulation
level, the cellular ribosome concentrationmediates the effects of
messenger RNA (mRNA) amount and rate of translation initiation
on protein synthesis.9 Ribosome content depends on the rate of
ribosome biogenesis, which starts in the nucleolus with the
transcription of ribosomal DNA (rDNA) into a 45S ribosomal RNA
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Figure 1. Kinetics of ribosome neosynthesis during erythroid differentiation. Human primary erythroblasts were derived from CD341 progenitors cultured for 6 days in the
presence of SCF, IL-6, IL-3, and dexamethasone (1 mM); with SCF, IL-6, and IL-3 for 1 day; with SCF and EPO between days 7 and 11; and then with EPO alone. (A) Amplification
curve and cell size. Human erythroblast proliferation was expressed as the cumulative number of cells at each indicated time (closed symbols). Cell size was measured using
forward scatter (FSC) light expressed as the mean fluorescence intensity (MFI; open symbols). Means 6 SEM of 4 experiments. (B) Expression of the SCF receptor CD117 and
GlyA by flow cytometry during human erythroblast differentiation. (C) Proportion of progenitor, ProE, baso1, baso2, polyE, and orthoE cells at the indicated days, determined by
May-Grünwald-Giemsa–stained cytospins. Mean6 SEM of 4 independent experiments. (D) RNA quantification in ribosome fractions. Quantities of RNA in ribosomes of human
erythroblasts purified by ultracentrifugation on sucrose gradient were measured at OD 260 nm per 106 cells. Mean6 SEM of 6 experiments. (E) Quantification (top) of pre-rRNA
45S and b-globin (HBB) transcripts by qRT-PCR. Transcripts amounts were normalized to B2M and UBC transcript amounts, and normalized relative quantities (NRQs)
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(rRNA) precursor by RNA polymerase I (Pol I). This RNA precursor
gradually assembles with ribosomal proteins (RPs) and is con-
comitantly cleaved into rRNAs, first in the nucleolus, then in the
nucleoplasm and cytoplasm. This complex processing scheme
leads to formation of the 40S subunit by 18S rRNA and small
subunit RP (RPSs), whereas 28S and 5.8S rRNAs constitute the
60S subunit with 5S rRNA and large subunit RPs (RPLs).10,11

In pathological states that result in macrocytic anemia, such as
congenital Diamond-Blackfan anemia or acquired 5q2 syn-
drome, which are caused by point mutations or deletions in RP
genes,12-14 the ribosome pools in erythroid cells are diminished,
suggesting that ribosome levels regulate differentiation.15 In-
sufficient quantities of ribosomes account for a reduction of
GATA1 mRNA translation initiation rate,15-17 whereas the stress
caused by impaired ribosome biogenesis induces stabilization
and activation of p53 driving cell cycle arrest and apoptosis of
erythroblasts.18,19 Interestingly, the ribosome biogenesis ma-
chinery is the first downregulated cellular process when cells
enter the final stages of erythroid maturation in human and
mouse models.16,20,21 Thus, ribosome biogenesis, per se, may
have a regulatory role in normal erythroid differentiation by
controlling pathways that remain to be defined.

In the present study, the collapse of ribosome neosynthesis in
normal mature erythroblasts was concomitant with the activation
of a p53-dependent transcriptional program, leading to cell
cycle arrest.

Material and methods
Human and murine erythroblast cultures
Human CD341 progenitors were purified from cord blood units
on MidiMacs system (Miltenyi Biotech, Bergisch Gladbach,
Germany). Murine extensively self-renewing erythroblasts (ESREs)
were derived from fetal livers. Cell differentiation was followed by
cytological examination and by flow cytometry (supplemental
Material, available on the Blood Web site).

qRT-PCR and microarrays
RNA was extracted with the QIAamp RNA Blood kit (Qiagen,
Hilden, Germany). Quantitative reverse transcription-polymerase
chain reaction (qRT-PCR) was performedwith SYBRGreen IMaster
Mix on a LC480 PCR system (Roche). Primer sequences are
provided in supplemental Table 1. Gene expression data were

generated with HTA 2.0 microarrays (Affymetrix, Santa Clara, CA)
(supplemental Material).

Fluorescence in situ hybridization
Cells were fixed with 4% paraformaldehyde and permeabilized
in 70% ethanol. Hybridization was performed at 37°C for$5 h in
10% formamide, 2.13 saline-sodium citrate, 0.5 mg/mL transfer
RNA, 10% dextran sulfate, 250 mg/mL bovine serum albumin,
10 mM ribonucleoside vanadyl complexes, and 0.5 ng/mL 59ETS
probe conjugated to Alexa 647 (59-AGACGAGAACGCCTGACA
CGCACGGCAC-39).22 Images were obtained with a DMI6000
confocal fluorescencemicroscope (Leica, Wetzlar, Germany) and
analyzed with ImageJ.

Ribosomal subunit profiling and rRNA
quantification
Erythroblasts (107) were harvested and disrupted in 50 mM Tris-
HCl (pH7.5) and 50 mM NaCl containing 1 mM dithiothreitol.
Lysates were loaded onto 11.4 mL of 15% to 50% linear sucrose
gradient and centrifuged at 39 000 rpm in a Beckman SW41Ti
rotor at 4°C for 3 hours. Gradient analyses were performed at
A260nm with an absorbance detector (Teledyne ISCO, Lincoln,
NE). RNA was quantified at optical density (OD)260nm on a 2100
Bioanalyzer (Agilent Scientific Instruments, Santa Clara, CA).

Stable isotope labeling by amino acids in cell culture
and riboproteomics
Metabolic labeling was performed in Iscove’s modified Dul-
becco’s medium (IMDM) minus L-lysine and L-arginine supple-
mented with 0.2 mg/mL 13C6 L-arginine-HCl, 0.2 mg/mL 13C6,
15N2 L-lysine-2 HCl (Pierce, Rockford, IL), 80 mg/mL proline, and
15% serum substitute with bovine serum albumin insulin
transferrin during 24 hours for human erythroblasts and 14 hours
for murine ESREs. In some experiments, cells were preincubated
with 50 nM CX-5461 for 24 hours before starting pulse and then
processed for riboproteomics (supplemental Material).

Absolute quantification of ribosomal and
erythroid-specific proteins
Label-free protein quantification was performed as described.21

Mass spectrometry data were processed by MaxQuant, version
1.5.2.8, using human sequences from the Uniprot-Swiss-Prot
database with a false-discovery rate below 1% for both peptides
and proteins.23 Results from MaxQuant were imported into
Perseus software (version 1.5.1.6). The protein copy number per
cell was then calculated with the Protein Ruler plugin of Perseus

Figure 1 (continued)were calculated. Mean NRQ6 SEM of 3 experiments. Fluorescence in situ hybridization (bottom) for pre-rRNA 45S in human erythroblasts at the indicated
culture times. Slides were stained using a 5’ETS probe conjugated to Alexa 647. Images were obtained on a Leica DMI6000 inverted microscope with spinning disk and analyzed
with ImageJ. *P , .05. (F) Absolute quantification of RPs by MS/MS plotted from publicly available data from Gautier et al.20 Results are expressed as the median protein copy
number of 4 independent experiments. **P, .01; ***P, .001, by Student t test. (G) Schematic experimental design of SILAC labeling. Human erythroblasts were metabolically
labeled for 24 hours, and ribosomes were purified by differential centrifugation and analyzed by LC-MS/MS. IMDM, Iscove’s modified Dulbecco’s medium. (H) Kinetics of
ribosome neosynthesis. In each experiment, the percentage of each neosynthesized RP was calculated as (H/H1L)3100. Ribosome neosynthesis was defined as the median of
neosynthesized RP percentages. Mean6 SEM of 4 experiments. (I) Concomitant decrease in RPL and RPS neosynthesis. The percentage of neosynthesis (calculated as in panel
H) of each protein was plotted in 2-dimensional scatterplots to compare the value at each time point with the reference value at day 7. RPL: purple dots; RPS: pink dots. Results
are representative of 4 independent experiments. (J) Comparison of the rate of neosynthesis of each RP at different time points of the human erythroid differentiation. The H/L
ratio was normalized to the median of the H/L ratios of all RPs of the same subunit and transformed to log2 values. RPs in red are those with the highest rate of neosynthesis and
incorporation into the ribosome. The heat maps are representative of 4 independent experiments. (K) Ribosome neosynthesis by pulse SILAC in human erythroblasts at day 10
(proE/baso1). Cells were cytokine-starved for 4 hours before incubation in SILACmediumwith 10 UI/mL EPO, 100 ng/mL SCF, or EPO1SCF, in the presence or absence of 2 mM
of the c-Kit inhibitor masitinib for 24 hours. For each experiment, the median of neosynthesized RP percentages was determined. Results are shown as means 6 SEM of
3 independent experiments. **P, .01, by Student t test. (L) Cytology of sorted human proEs/baso1 (GlyAlow/Band32) and baso2 (GlyAhigh/Band31) after May-Grünwald-Giemsa
staining. Original magnification 3100. (M) Ribosome neosynthesis by pulse SILAC of sorted human erythroblasts GlyAlow/Band32 and GlyAhigh/Band31 incubated in SILAC
medium with EPO1SCF for 24 hours. Results representative of 1 experiment and expressed as the median of neosynthesized RP percentages are shown.
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Figure 2. Inhibition of RNA Pol I by CX-5461 decreases the proliferation of immature erythroblasts. Human primary erythroblasts were derived from CD341 progenitors
cultured for 6 days with SCF, IL-6, IL-3, and dexamethasone; for 1 day with SCF, IL-6, and IL-3; for 4 days between days 7 and 11 with SCF and EPO; and then with EPO alone. CX-
5461 (50 nM) was added to erythroblast cultures at day 9. (A) Quantification by qRT-PCR of pre-rRNA 45S transcript after 48 hours of treatment with CX-5461. Transcripts amounts
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by standardization to the total histone mass spectrometry (MS)
signal.24

Short hairpin RNA and cell transduction
pH1 short hairpin RNA (shRNA) p53 cloned into the pRRL-PGK-
GFP lentiviral vector and control sh scrambled (SCR) RNA were
kindly provided by I. Plo (Gustave Roussy, Villejuif, France).25 In
brief, CD341 cells were cultured for 6 days with interleukin-3
(IL-3), IL-6, SCF, with dexamethasone added on day 1; SCF and
EPO on day 7; and then EPO alone on day 12. Erythroblasts were
transduced twice, at day 8 and 9, with 2mL lentiviral supernatant.
Forty-eight hours after the first transduction, GFP expression, as
analyzed by flow cytometry, was .95%.

Tp53-deficient mice
Mice carrying the p53-knockout allele were obtained from The
Jackson Laboratory (Ellsworth, ME) (supplemental Material).26 At
6 to 8 weeks old, FVB/N Tp532/2 mice were treated with CX-
5461 (40 mg/kg) by oral gavage. After 24 hours, blood counts
were measured, the mice were euthanized, and bone marrow
cells were harvested for analysis.

Western blot and immunofluorescence
Antibodies used are listed in supplemental Table 2 and the
supplemental Material.

Chromatin immunoprecipitation-sequencing
bioinformatics analysis
p53 chromatin immunoprecipitation-sequencing (ChIP-seq) was
performed as previously described27,28 (supplemental Material).
Sequence reads weremapped by using Bowtie (v2.3.4.3) against
the human genome hg19 assembly (Genome Reference Con-
sortium Human Build 37) downloaded from the University of
California Santa Cruz (UCSC) Genome Browser (http://genome.
ucsc.edu). Alignment files were converted into bam files by using
Samtools (v1.9). Mapped reads (sequences) were transformed
into a genome-wide read density (coverage) by bamCoverage
(v3.3.0) from the deepTools suite using the parameter "nor-
malize using RPKM" to normalize the number of reads per bin to
the number per kilobase per million mapped reads. Peak calling
was performed with Homer (v4.10, 16 May 2018), with default
parameters. Published data sets used in this study (GATA1,
H3K27Ac, H3K27me3, H3K4me3, and RNAPII) were down-
loaded from the Gene Expression Omnibus public database
(accession codes: GSE36985 and GSE70660).

Statistical analysis
For quantitative variables, values are expressed as means and
standard error of the mean (SEM) and compared by Student
t test. Correlations were determined by the Pearson test. P, .05
indicates statistical significance (Prism 7.0; GraphPad, San
Diego, CA).

Results
Dynamic changes of ribosome biogenesis during
erythroid differentiation
Ribosome clearance associated with erythroid maturation has
been estimated by establishing the ribosome quantities at each
developmental stage.15,20,21 Here, we investigated the dynamics
of ribosome renewal by following the kinetics of rRNA expres-
sion and the incorporation of RPs into the ribosome during both
human and murine erythroid differentiation. Primary erythro-
blasts were expanded from CD341 progenitors isolated from
human cord blood. Cells proliferated until day 19, their ex-
pression of c-Kit/CD117 decreased, and their number was re-
duced from day 13 as they differentiated into mature polyEs and
orthoEs (Figures 1A-C). In vitro differentiation of murine eryth-
roblasts was obtained by expanding ESREs from fetal liver.
Within 3 days, the proliferation rate increased by ninefold.
From day 2, the cells lost c-Kit expression, adopted polyE and
then orthoEmorphology, and expressed b-globin (supplemental
Figures 1A-D). We evaluated the cellular ribosome content by
measuring RNA quantities, mainly composed of 28S and 18S
rRNA. Ribosomal fractions were purified from human erythro-
blasts or murine ESREs. In human erythroblast cultures, RNA
quantities strongly decreased (Figure 1D) in correlation with the
disappearace of immature erythroblasts (Spearman’s test; r 5 1;
P , .0001). By qRT-PCR, we showed that the quantities of rRNA
precursor 45S were significantly downregulated at day 16 of
culture concomitantly with the upregulation of b-globin mRNA
(Figure 1E; top). The 45S rRNA revealed by fluorescence in situ
hybridization was no longer detected in the nucleus of orthoEs
at day 19, suggesting that ribosome biogenesis stopped after
the baso2 stage (Figure 1E, bottom). In murine ESREs, rRNA
quantities normalized to cell number decreased at day 2 after
induction of maturation (supplemental Figure 1E).

We then reanalyzed the expression of RPs in our published
proteomic data obtained from human primary erythroblasts.20

Absolute quantification of RPs normalized to histones on total

Figure 2 (continued)were normalized to B2M, UBC, andACTB and expressed as the normalized relative quantity (NRQ). MeanNRQ6 SEM of 3 experiments. (B) Percentage of
RP neosynthesis after SILAC labeling of human erythroblasts for 48 hours in the presence or absence of CX-5461. Results are expressed as the mean6 SEM of 3 experiments. (C)
Comparison of the ratios of non-RP, RPS, and RPL neosynthesis after SILAC between CX-5461-treated and untreated cells. Results are expressed as means 6 SEM of
3 independent experiments. (D) Polysome profiling. Ribosomes from human erythroblasts, treated or not with CX-5461 for 48 hours, were purified on sucrose gradient, and the
relative abundance of free-RNP complexes; the 40S, 60S, and 80S subunits; and polysomes were measured by absorbance at OD 260 nm. (E) Label-free proteomic for absolute
quantification of RPs by mass spectrometry after 48 hours of incubation, with or without CX-5461. Results are expressed as the mean copy number 6 SEM of 5 independent
experiments. (F) Proliferation rate of human erythroblasts expressed as the cumulative number of cells at each time point. Mean 6 SEM of 4 experiments. (G) Percentages of
GlyA1 cells were quantified by flow cytometry and are shown as the mean6 SEM of 4 experiments. (H) Proportions of erythroid precursor populations at day 13 by cytological
examination of May-Grünwald-Giemsa–stained cytospins. Mean percentages6 SEM of 4 experiments. (I) Flow cytometry of a4 integrin/CD49d and Band3 expression in GlyA1

cells identifying proE (I), baso1 (II), baso2 (III), polyE (IV), and orthoE (V) cells according to Hu et al.3 Absolute number of each precursor is shown as the mean 6 SEM of
3 experiments. (J) Timeline of sorting of GlyA2 (progenitor) and GlyA1 immature precursors (proE) at day 8. CX-5461 (50 nM) was added at day 9 for 48 hours, and the cells were
analyzed at day 11. (K) Absolute number (means 6 SEM of 3 experiments) of unsorted cells (left), progenitors (progs; middle), and proEs (right). (L) Flow cytometry histograms
(side scatter [SSC]/forward scatter [FSC]) for percentages of viable cells (means6 SEM of 3 experiments). (M) Flow cytometry histograms of GlyA expression (left) expressed as
mean percentages6 SEM of GlyA1 cells (right). (L-M) Control: red bars; CX-5461: blue bars. (N) Colony assays. Cord blood–derived CD341 progenitors were seeded for 14 days
in methylcellulose with increasing concentrations of CX-5461 (left). Colony area and counts were determined and are represented as means 6 SEM of 3 independent
experiments (right). For all panels: *P , .05; **P , .01; ***P , .001; ****P , .0001, by Student t test.
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cell lysates indicated that themean protein copy number per cell
of RPSs or RPLs underwent a threefold decrease in baso2 and a
10-fold decrease in orthoEs compared with proEs and baso1
(Figure 1F). The ribosome content was therefore lower in mature
compared with immature erythroblasts. To investigate whether
the changes in ribosome content were governed by variations in
ribosome biogenesis, we next measured the dynamics of ribo-
some neosynthesis using the pulsed stable isotope labeling
by amino acids in cell culture (SILAC) method on different days
of culture.29 After metabolic labeling, the ribosomes were
purified and trypsin-digested peptides were analyzed by liq-
uid chromatography-tandem mass spectrometry (LC-MS/MS;
Figure 1G). We identified 34 and 33 RPSs and 43 and 46 RPLs in
human and murine cells, respectively, with more than 2 peptides
and 15% of sequence coverage (supplemental Figure 2A;
supplemental Tables 3-4). In human cells, the proportion of
neosynthesized RP incorporated in the ribosome calculated as
the ratio of newly synthesized heavy (H) RPs to the sum of heavy
plus preexisting light (L) RPs ([H/H1L]3 100) was maximal (54%)
at day 10, when 90% of erythroblasts were immature, started to
decrease at day 16, and collapsed down to 11% at day 19 when
.70% of erythroblasts were mature (Figure 1H). In murine
ESREs, the proportion of neosynthesized RPs declined sharply
after 2 days of terminal differentiation (supplemental Figure 1F).
The renewal of each RPL or RPS decreased similarly during the
differentiation from day 16 of culture (Figure 1I). To obtain a
more detailed understanding, we quantified the rate of in-
corporation of each newly synthesized RP in the ribosome by
normalizing the H/L ratio to the median of H/L ratios of all RPs in
a given subunit. Representative heat maps show that the in-
corporation rate of neosynthesized RP could vary depending on
the protein (Figure 1J; supplemental Figure 1G).

Ribosome neosynthesis correlated very well with the proportion
of proEs (Spearman’s test; r 5 0.894; P 5 .038) and its decrease
was concomitant with the diminution of c-Kit/CD117 expression
in human erythroblasts at day 16 and in murine ESREs at day 2
(Figure 1B; supplemental Figure 1D). Thus, we hypothesized that
the variations of ribosome biogenesis between immature (proEs/
baso1s) and mature (baso2s/polyEs) erythroblasts could be
under the extrinsic control of SCF. To support this thesis, SILAC
was performed in human immature erythroblasts incubated with
EPO 1 UI/mL, SCF 100 ng/mL, or both cytokines. The proportion
of neosynthesized ribosome was 50% with SCF and EPO, but
was reduced by half when the cytokines were added individually,

demonstrating a significant additive effect of SCF and EPO
(Student t test; P , .01). Ribosome neosynthesis was .20% in
the presence of masitinib (2 mM), a potent inhibitor of c-Kit
tyrosine kinase, and was reduced in sorted mature glycophorin A
(GlyA)highBand31 (baso2) cells compared with immature
GlyAlowBand32 cells (proEs/baso1; Figures 1K-M). Taken to-
gether, the results show that a decrease in ribosome content in
mature erythroblasts is initiated by a balanced inhibition of RP
neosynthesis and incorporation into the ribosome, which cor-
relates, with the loss of response to SCF of mature erythroblasts.

Inhibition of ribosome biogenesis by CX-5461
restrains immature erythroblast proliferation
To investigate the consequences of inhibiting RP neosynthesis
during erythroid differentiation, we prematurely arrested ribo-
some biogenesis in proEs and baso1s using CX-5461, a specific
RNA Pol I inhibitor.30 CX-5461 (50 nM) decreased the expression
of 45S rRNA precursor (Figure 2A), whereas the expression of RP
mRNA was not affected (supplemental Figure 2B). A 30% re-
duction of ribosome neosynthesis was noted after a 24-hour
SILAC pulse (Figure 2B), and RP neosynthesis was specifically
affected compared with that of other proteins that purified
with the ribosome and represented the ribointeractome
(Figure 2C).29 The ribosome profile showed that the distribution
of ribosomal subunits among the free ribosomal subunits 40S
and 60S, assembled 80S, and polysomes was mostly unchanged
after 48 hours of treatment (Figure 2D), and consistently, the
ratio of mean copy number per cell of each RP normalized to
histone signal remained stable after 48 (Figure 2E) or 96 hours of
treatment with CX-5461 (supplemental Figure 2C). Importantly,
the quantity of RPs in the free protein fraction expressed as a
ratio of intensities in CX-5461-treated relative to control con-
ditions did not increase. These findings imply that the extinction
of ribosome biogenesis by CX-5461 did not lead to accumu-
lation of free RPs (supplemental Figure 2D).

Cell proliferation decreased significantly at 3 days after treat-
ment with CX-5461 with .20% of apoptotic cells, even after
4 days (Figures 2F; supplemental Figure 3A). In the presence of
CX-5461, cultures were at a later stage of development, with
enrichment of mature erythroblasts as monitored by increased
percentage of GlyA1 cells from day 11, 48 hours after addition
of CX-5461 (Student t test; P , .001; Figure 2G). Cytological
examination confirmed the enrichment in polyEs and orthoEs
and quantitative proteomics showed a 1.5- to 4-fold increase

Figure 3. p53 is activated during erythroid differentiation. (A) Human primary erythroblasts were derived from CD341 progenitors cultured with SCF, IL-6, and IL-3 for 6 days
(with the addition of dexamethasone at day 1); with SCF and EPO between days 7 and 11; and then with EPO alone. (B) Proportion of progenitors, ProEs, baso1s, baso2s, polyEs,
and orthoEs by cytological examination of May-Grünwald-Giemsa–stained cytospins. Mean 6 SEM of 3 independent experiments. (C) Expression of the SCF receptor CD117
and GlyA by flow cytometry during human erythroblast differentiation. p53 expression in human primary erythroblasts at different days in culture by immunofluorescence
imaging of p53 and 49,6-diamidino-2-phenylindole (DAPI) staining, with merged images of the 2 stains. Images were obtained on a Leica DMI6000 inverted microscope with
spinning disk and analyzed with ImageJ. Original magnification 3100. (D) Western blot analysis of phospho-p53 serine 15 (pp53ser15), p53, and p53 target p21/Cdkn1A during
normal erythroblast differentiation. Hsc70 was used as the loading control. (E) Western blot analysis of p53 in nuclear and cytosolic fractions. GATA1 was used as the loading
control for the nuclear fraction (n), and the p85 subunit of phosphatidylinositol 3 kinase was used as the loading control for the cytosolic fraction (c). (F) Quantification of nuclear
and cytoplasmic expression of p53 is expressed as the nuclear/cytoplasmic ratio. (G) Timeline of GFP-shRNA lentivirus transduction at days 8 and 9 and control of GFP expression
at day 10. Cells were analyzed during the 4 days after the last transduction (day 13). (H) Western blot analysis of TP53 knockdown by shRNA at day 13. An SCR shRNA was the
control. pp53ser15, p53, and p21/Cdkn1A protein expression are shown. Actin was used as the loading control. (H) Erythroid differentiation was assessed by the quantification of
GlyA expression by flow cytometry. Results are expressed as mean percentages6 SEMof 3 experiments. (I) qRT-PCRmeasurement of p53 target genes quantities in shTP53 and
shSCR erythroblasts. Transcript levels were normalized to B2M, UBC, and ACTB levels. Results are expressed as mean NRQs6 SEM of 3 experiments. (J) Proliferation curve of
shTP53 and shSCR erythroblasts in a cumulative number of cells. (K) GlyA expression in shTP53 and shSCR erythroblasts. Mean percentages 6 SEM of 3 experiments. (L)
Proportions of erythroblasts by cytological examination of May-Grünwald Giemsa–stained cytospins at day 13. Mean percentage 6 SEM of 3 experiments. (M) Apoptosis
measured as themean percentage6 SEMof annexin V1 cells in 3 experiments. (N) Design ofmouse experiments. FVB/N Tp532/2 or Tp53wt mice were treated with 40mg/kg CX-
5461 for 24 hours. (O-P) Bone marrows were collected and the percentage of erythroid nucleated cells (O) and the absolute number of proE, baso, poly, ortho, and reticulocytes
(P) were determined by flow cytometry. *P , .05; **P , .01; ***P, .001, by Student t test.
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of the major erythroid protein copy number after CX-5461
treatment (Figure 2H; supplemental Figures 3B-C). To dis-
criminate between induction of differentiation or selection of
mature cell populations, we used flow cytometry to identify
erythroid precursor subpopulations among GlyA1 cells.3 The
results clearly indicated decreased absolute numbers of
GlyAlowCD49dhiBand3neg (proEs) and GlyAlowCD49dhiBand3low

(baso1) after 4 days of treatment with CX-5461 (day 13), whereas
the absolute number of GlyAhiCD49dhiBand3med (baso2),
GlyAhiCD49dmedBand3hi (polyEs), and GlyAhiCD49dlow Band3hi

(orthoEs) remained unchanged (Figure 2I; supplemental Figures
3D-E). GATA1 mRNA and protein expression remained stable,
whereas gene set enrichment analysis (GSEA) from tran-
scriptomic data demonstrated a significant upregulation of
GATA1 targets when mature erythroblasts were enriched after
2 days of CX-5461 treatment (supplemental Figures 3F-H;
supplemental Table 5). Thus, the inhibition of ribosome bio-
genesis by CX-5461 could restrain the proliferation of immature
erythroblasts but spare mature erythroblasts. To confirm this
observation, we sorted GlyA1 and GlyA2 cells in culture at day 8
and treated them from days 9 to 11 with CX-5461 (50 nM;
Figure 2J). The number and percentage of viable cells were
significantly decreased in unsorted and GlyA2 progenitors but
not significantly in GlyA1 sorted cells (Figures 2K-L). The per-
centage of GlyA1 cells was not affected after 2 days in cultures
derived from GlyA2 or GlyA1 sorted fractions (Figure 2M). Fi-
nally, we evaluated the effect of increasing concentrations of
CX-5461 on the growth of erythroid progenitors (BFU-E) as
compared with that of colony forming unit-granulomonocyte
(CFU-GM) progenitors. The size of all types of colonies was
diminished at day 14 in the presence of 50 nMCX-5461 or higher
concentrations. In addition, the number of BFU-E colonies de-
creased in a dose-dependent manner, with a plateau value
reached at 25 nM of CX-5461, whereas the number of CFU-GM
progenitors remained unchanged at all concentrations used
(Figure 2N). These findings confirm that CX-5461 preferentially
targets erythroid progenitors and immature precursors that re-
quire active ribosome biogenesis for their proliferation.

p53 activation coincides with a decrease in
ribosome biogenesis
The haploinsufficiency of specific ribosomal protein genes and
unbalanced ribosome biogenesis perturbed ribosome homeo-
stasis and resulted in p53 activation that drove cell cycle arrest
and apoptosis of erythroblasts. Whether the disruption of ri-
bosome biogenesis during normal erythroid differentiation is
also associated with p53 activation was investigated. Using a
culture system with only 1 day of dexamethasone, which slightly
accelerates differentiation (Figures 3A-B), we studied the ex-
pression and localization of p53 in human erythroblasts by im-
munofluorescence microscopy. p53 was expressed in the
nucleus and cytoplasm of erythroblasts at different de-
velopmental stages and was more abundant in the nucleus
on days 10 and 13 (Figure 3C). By western blot analysis, p53 was
shown to be transiently phosphorylated on serine 15 at day 10
(Figure 3D), whereas its global expression remained unchanged.
The expression of its transcriptional target p21/Cdkn1A over-
lapped with that of p53 but not of pp53 expression, suggesting
that there is an alternative mechanism of p21 regulation. Be-
cause the phosphorylation signal was faint, we performed cell
fractionation to study p53 expression in the nuclear fractions. As

shown in Figure 3E-F, p53 was expressed in the nucleus at days
10 and 13 with a nucleocytoplasmic ratio .1.

To investigate the role of p53 in erythroid differentiation, we
transduced primary erythroblasts with a lentiviral vector
encoding an shRNA to TP53 at days 8 and 9 of culture and
monitored their differentiation (Figure 3G). This shRNA effi-
ciently reduced p53 expression and p21 expression and
abrogated the detection of phospho-p53 (Figure 3H). p53
transcriptional targets were significantly downregulated
(Figure 3I). The proliferation capacities of shTP53 erythroblasts
were significantly increased (Figure 3J), whereas their capacity to
differentiate was altered, with a reduced percentage of GlyA1

cells at days 12 and 13 and an accumulation of baso1 at day 16
(Figures 3K-L). No sign of apoptosis was evidenced (Figure 3M).
These results imply that p53 is essential, either to restrain im-
mature erythroblast proliferation or to induce their differentia-
tion. To discriminate between those 2 hypotheses, we studied
erythropoiesis of Tp532/2 mice (Figure 3N). Hemogram pa-
rameters such as number of red cells, hemoglobin level, he-
matocrit, mean corpuscular volume, and spleen weight were
similar between Tp532/2 and Tp53wt mice (supplemental
Figure 4A). Flow cytometry revealed that, in the bone marrow,
the absolute numbers of nucleated erythroblasts, proEs, basoEs,
polyEs, orthoEs, and reticulocytes were similar in these ho-
meostatic steady-state conditions (supplemental Figure 4B;
Figures 3O-P). We then explored the in vivo effects of CX-5461
on erythropoiesis in Tp532/2 and Tp53wt mice. CX-5461 was
administered orally at a dose of 40 mg/kg, and hematopoiesis
was studied 24 hours later, to ensure completion of murine
erythroid differentiation. Within this period, no stress erythro-
poiesis was induced in the spleen. CX-5461 potently decreased
the number of bone marrow erythroid precursors of Tp53wt but
not of Tp532/2mice. Thus, CX-5461 inhibited the proliferation of
erythroblasts in a p53-dependent manner. Altogether, these
results indicate that p53 could be necessary to restrain the
proliferation of immature erythroblasts and thereby facilitate
their entry into the final steps of maturation.

A p53-dependent transcriptional program is
activated during erythroid differentiation
To better understand the consequences of p53 activation during
erythroid precursor maturation, we analyzed p53 direct targets
by immunoprecipitating p53 on the chromatin followed by se-
quencing (ChIP-seq). Erythroblasts were collected at day 11, and
those immature erythroblasts were compared with mature
erythroblasts enriched by a 2-day treatment with CX-5461
at days 9 and 10. As already shown in Myc-driven lymphoma,30

addition of CX-5461 at a concentration of 50 nM induced p53
phosphorylation and upregulation of p21 expression, although
the quantity of p53 protein remained constant (Figure 4A). GSEA
of the transcriptome showed an enrichment of the TP53 pathway
gene set (normalized enrichment score, 2.39; P 5 .001;
Figure 4B; supplemental Table 6). Positive regulation of cell
cycle arrest, negative regulation of apoptotic process, and DNA
damage response (DDR) were among the most significantly
upregulated Gene Ontology (GO) terms with a 1.2-fold change
(Figure 4C). By ChIP-seq experiments, 8108 p53-bound regions
were detected, corresponding to 4257 genes in erythroblasts
without CX-5461, whereas only 3095 peaks (corresponding to
1203 genes) were detected in treated conditions, including 1888
peaks shared by the 2 conditions, corresponding to 692 genes.
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Figure 4. Activation of a p53-dependent transcriptional program during erythroid differentiation. Human primary erythroblasts were cultured with SCF, IL-6, and IL-3 for
6 days (with the addition of dexamethasone at day 1) and then with SCF and EPObetween days 7 and 11. CX-5461 (50 nM) was added at day 9 for 48 hours, and control or treated
cells were collected at day 11. (A) Western blot showing p53 activation by CX-5461. Actin was used as the loading control. Representative results of 3 independent experiments.
(B) GSEA of p53 pathway genes in erythroblasts treated by CX-5461 or vehicle. NES, normalized enrichment score. (C) GO term enrichment analysis of differentially expressed
genes between treated and untreated erythroblasts with CX-5461 for 48 hours. (D) Venn diagram of the repartition of p53 direct target genes identified by ChIP-seq in CX-treated
and control erythroblasts. Lost, control; shared, control or CX-5461; gained, CX-5461. (E) ChIP-seq density heat maps showing the landscape of p53 target genes in control and
CX-5461 treatment conditions. (F) GO analysis of the 70 upregulated p53 direct target genes after CX-5461 treatment. (G) Volcano plot representing p53 targets identified by
ChIP-seq, either shared by control and CX-5461 treatment conditions (green) or detected in control conditions (yellow), the expression of which in log2 (FC) is upregulated by CX-
5461. FC, fold change. (H) Heat map visualization of the most representative p53 direct target genes upregulated after CX-5461 treatment. (I) Quantification of p53 direct target
gene expression after 48 and 96 hours of CX-5461 treatment by qRT-PCR. *P, .05, **P, .01, by Student t test. (J) Combined analysis of p53 peaks in selected genes in control
and CX-5461 treatment conditions and GATA1, H3K27me3, H3K27, H3K4me3, and RNA Pol II (RNAPII) peaks identified in human proEs by Xu et al31 and Huang et al.32
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Figure 5. RNA Pol I complex disruption andATR-CHK1-p53 pathway activation.Human primary erythroblasts were derived from CD341 progenitors cultured with SCF, IL-6,
and IL-3 for 6 days (with the addition of dexamethasone at day 1); SCF and EPO between days 7 and 11; and then EPO alone. (A) TEM analysis of nucleolus structure in human
erythroblasts during in vitro differentiation. Original magnification 34000 (top); 324 000 (bottom). (B) Representative immunofluorescence images of nucleolar compartments
during erythroid differentiation. NPM1, FBL, and UBF were used as markers of the granular component, dense fibrillar component, and fibrillar center, respectively. (C)
Representative immunofluorescence images of DDX21 nucleolar delocalization in differentiating erythroblasts, and CX-5461 (50 nM for 48 hours)-treated erythroblasts. (B-C)
Micrographs were obtained on a Leica DMI6000 inverted microscope with spinning disk and analyzed with ImageJ. Original magnification3100. (D) TEM analysis of nucleolus
structure in human pro-erythroblasts untreated or treated with CX-5461 (50 nM) for 48 hours. Original magnification36000 (top);324 000 (bottom). (E) Proportion of active, ring-
shaped, and micronucleolar cells in control and CX-5461 treatment conditions. More than 100 nucleoli were analyzed in 3 separate experiments. Mean percentages 6 SD.
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These results suggest that p53 binding to the chromatin could
decrease at a stage where mature erythroblasts are enriched in
the presence of CX-5461 (Figures 4D-E). A GO term enrichment
analysis revealed that p53-bound regions belong to genes in-
volved in distinct cellular pathways in control cells, CX-5461-
treated cells, or both (Figure 4F). Combining ChIP-seq and
transcriptomic data showed that genes that were significantly
upregulated after CX-5461 treatment belonged to the set of
p53-bound genes shared by control and CX-5461 treatment
conditions and were implicated in cell cycle regulation, negative
regulation of cell death, and DDR (Figures 4G-H). Using qRT-
PCR, we confirmed that the expression of the p53 target genes
B-cell translocation gene antiproliferative factor 2 (BTG2) and
cytoplasmic polyadenylation element binding factor 4 (CPEB4)
increased with time in differentiating erythroblasts and further
increased in CX-5461-treated conditions, together with the p21/
CDKN1A, PLK2, GADD45A, and MDM2 genes (Figure 4I).

Finally, integration of published epigenetic and GATA1 ChIP-
seq data from Xu et al31 and Huang et al 32 showed that p53
target genes may be GATA1 targets and present with an open
chromatin mark (Figure 4J; supplemental Figure 5A). Among the
p53 targets upregulated during erythroid differentiation, some
presented strongGATA1 binding sites close to such p53 binding
sites as BTG2, CPEB4, and XPC. The distance between p53 and
GATA1 peak summits was 250 bp at the BTG2 locus, 500 bp at
the CPEB4 locus, and 81 bp at the XPC locus. Others, such as
XPC or MDM2, appeared to be more p53-specific targets with
minimal GATA1 signals close to p53 sites (supplemental Figure 5B).
This result indicates that p53-bound regions, although not directly
overlapping with GATA1, were frequently located in the vicinity of
GATA1 sites. To better estimate the direct overlap of p53 and
GATA1peaks, we consideredp53peaks extending from the summit
63 kb, with GATA1 peaks with at least a 1-bp overlap between the
coveredDNA regions (supplemental Figures 5C). Using thismethod,
we found 3917 (56%) overlapping peaks among 7004 p53 peaks
detected without CX-5461 (lost), 1009 (49%) overlapping peaks
among 2069 p53 peaks detected both in the absence and presence
ofCX-5461 (shared), and796 (58%)overlappingpeaksamong1365p53
peaks detected at a stage wheremature erythroblasts were enriched in
the presence of CX-5461 (gained; supplemental Figure 5D). Mea-
surement of the distance between p53 andGATA1 peaks showed that
most of them were separated by .1 kb (supplemental Figures 5E-F).

These data suggest that erythroid differentiation could result
from the combined action of p53 and GATA1 regulatory
pathways in some erythroid genes.

Erythroid differentiation recapitulates nucleolar
stress, leading to ATR-CHK1-p53 pathway
activation
Transmission electron microscopy (TEM) imaging of primary
human erythroblasts collected by sternal aspiration demon-
strated that the cells underwent nuclear condensation and nu-
cleolar disruption during maturation (supplemental Figure 6A).

In vitro differentiation of erythroblasts recapitulated these nu-
cleolar changes, showing active nucleoli in 100% of proEs and
82% of baso1, ring-shaped nucleoli in 31% of polyEs, and
micronucleoli or no nucleoli in orthoEs (Figure 5A; supplemental
Table 7). Active nucleoli are composed of a fibrillar center (FC)
labeled by upstream binding transcription factor (UBF), a dense
fibrillar component (DFC) labeled by fibrillarin (FBL), and a
granular component (GC) labeled by nucleophosmin (NPM1).
The border between FC and DFC, which changes in volume and
number during erythropoiesis, is the site of rRNA transcription
and early processing.33 Immunofluorescence detection of
NPM1, UBF, and FBL showed a reduction of signal intensities in
polyEs compared with immature erythroblasts and an extinction
of FBL and UBF in orthoE corresponding to the exclusion of FC
and DFC (Figure 5B).

The nucleolar DEAD-box RNA helicase DDX21 has been shown
to be involved in the regulation of rRNA synthesis, and pro-
cessing and its depletion from the nucleolus coincides with arrest
of RNA Pol I machinery and is a marker of nucleolar stress.34

Immunofluorescence experiments revealed that DDX21 relo-
calized to the nucleoplasm at day 13 corresponding to a stage
were basophilic erythroblasts were enriched. DDX21 also exited
from the nucleolus upon acute inhibition of RNA Pol I by CX-
5461 (Figure 5C). As shown by TEM imaging, CX-5461 strongly
affected the morphological features of nucleoli (Figure 5D),
resembling those induced by actinomycin D, which inhibited
RNA Pol I transcription at the level of elongation (supplemental
Figure 6B). We quantified the proportion of each nucleolus type
and found that multiple active nucleoli decreased in favor of
single or ring-shaped nucleoli or micronucleoli, consistent with a
nucleolar disruption mimicking that of differentiated erythro-
blasts, even if the chromatin was not condensed (Figures 5E).

Concomitant to this nucleolar stress, we noted phosphorylation
of checkpoint kinase-1 (CHK1) suggesting that the Ataxia tel-
angiectasia and Rad3 (ATR)-CHK1 pathway was activated
(Figure 5F). Its phosphorylation was also triggered after CX-5461
treatment. To further investigate this pathway, we treated
erythroblasts with the ATR inhibitor (ATRi) VE-821,35 and noted
that VE-821 inhibited the phosphorylation of CHK1 on serine
345 and p53 on serine 15, suggesting that this pathway could be
responsible, at least in part, for p53 activation in this context
(Figure 5G). Finally, the ATRi reduced the proportion of mature
erythroblasts, whereas it maintained a normal rate of pro-
liferation without any sign of apoptosis (Figures 5H-J). Our re-
sults imply a role for the ATR-CHK1 pathway in the activation
of p53.

Discussion
Our findings provide a comprehensive characterization of ri-
bosome biogenesis dynamics during erythropoiesis, by showing
that (1) ribosome biogenesis participates in the control of
transition between proliferation and differentiation; (2) p53

Figure 5 (continued) (F) Western blot of phospho-CHK1 serine 345 (pCHK1) and CHK1 during normal erythroid differentiation. (G) The ATR inhibitor (ATRi) VE-821 (1 mM), CX-
5461 (50 nM), or both were added to erythroblasts at day 9 for 48 hours. pCHK1 expression by western blot (top) and pp53ser15 expression (bottom). Actin was the loading
control. Representative immunoblots of 3 independent experiments. (H) ATRi VE-821 was added to erythroblasts at day 9 for 4 days. GlyA expression was quantified by flow
cytometry. Mean percentage6 SEM of 3 experiments. (I) Number of annexin V1 cells. Mean percentage6 SEM of 3 experiments. (J) Proliferation curves. Mean cumulative
number of cells 6 SEM of 3 experiments.
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activation is involved in the control of immature erythroblast
proliferation; and (3) activation of ATR-CHK1-p53 pathway re-
sults from a RNA Pol I transcriptional stress.

We further documented that c-Kit signaling is critical for optimal
ribosome neosynthesis, suggesting that the maintenance of cell
proliferation by SCF is dependent on the stimulation of ribosome
biogenesis. We also showed that ribosome biogenesis is
abruptly interrupted by the decrease in rDNA transcription, a
rate-limiting factor for ribosome biogenesis. Although RP tran-
script expression remains stable until the polyE stage,6 the
absolute quantities of ribosomal proteins significantly decreased
between the baso1 and baso2 stages concomitant with decrease
in cell size. This effect resulted from the decrease in neosynthesis
and possibly an increase in degradation, which we cannot ex-
clude. Furthermore, the pool of preexisting ribosomes was di-
vided between 2 daughter cells, resulting in reduction by half of
RP protein copy number per cell between baso2 and polyE and
between polyE and orthoE. Thus, the decrease in ribosome
content was caused by both biogenesis arrest and cell division.
In ribosomopathies, the production of RPs is unbalanced,
leading to free RPL11 and RPL5 accumulation36-38 and finally
to p53 stabilization and activation, cell cycle arrest, and
apoptosis.18,19,39-41 In normal or CX-5461-treated erythroblasts,
we did not detect accumulation of free RPs, making inhibition of
MDM2 and stabilization of p53 unlikely.

Nevertheless, p53 was activated through its phosphorylation in
immature erythroblasts or CX-5461-treated erythroblasts. Al-
though p53 appears to be dispensable for homeostatic eryth-
ropoiesis in mice, in conditions of stress erythropoiesis induced
by dexamethasone on fetal liver cells or by phenylhydrazine-
induced hemolytic anemia, the absence of p53 increases the
proliferation of erythroid progenitors and immature precursors.42

Our experiments further suggest a role for p53 in the control of
progenitor and immature erythroid precursor proliferation.
Similar to nonapoptotic activation of caspases, which is neces-
sary for normal erythroid differentiation,43 a p53-dependent
program associating cell cycle arrest (CDKN1A, PLK2), nega-
tive regulation of apoptosis (FAS, IER3), and DNA damage
response (XPC, DDB2) could be involved in erythroid differen-
tiation. Notably, 2 proapoptotic effectors of the DDR, PUMA/
BBC3 and NOXA/PMAIP1, which are p53 targets, were not
upregulated, suggesting that p53 activation is selective.44 In-
terestingly, some genes, such as p21/CDKN1A, are common
targets of p53 and GATA1.45 Others, such as BTG2 and CPEB4,
present with open chromatin marks in p53-bound regions and
usually with a GATA1 binding site in proximity, suggesting that a
coregulation of gene expression implicating both transcription
factors could occur.46 Therefore, we do not exclude that the
erythroid transcriptional program is remodeled as the result of
p53 and GATA1 interaction. Previous work has shown that
GATA1 has an inhibitory interaction with p53.47

Changes in ribosome biogenesis are concomitant with the loss
of Myc, Spi-1/PU.1, and Fli-1, known as direct transcriptional
activators of both rDNA and RP gene transcription and/or the
loss of FBL and UBF genes that play a role in the extinction of
nucleolus activity.33,48,49 In addition, we showed that ribosome
biogenesis arrest coincides with the delocalization of nucleolar
DDX21, suggesting that the RNA Pol I complex could be
destabilized.34 DDX21 eviction is concomitant to rDNA damage

in genetic models mimicking congenital ribosomopathies such
as Treacher-Collins syndrome, which is caused by mutations in
RNA Pol I complex subunits, Diamond-Blackfan anemia, or
Schwachman-Diamond syndrome, or after treatment with high
concentrations of CX-5461.50,51 Whether DDX21 eviction in
maturing erythroblasts means the loss of RNA Pol I complex
recruitment or a more complex chromatin structural remodeling
similar to rDNA damage remains to be defined.

p53 has been shown to inhibit RNA Pol I transcription by pre-
venting the RNA Pol I complex assembly on rDNA promoter.52 The
use of a direct activator of p53 (NSC146109) induced DDX21 nu-
cleolar extrusion and the arrest of eU incorporation into rRNA,
showing that p53 overactivation induces a ribosomal stress.50 Also,
ribosome biogenesis is overactivated in cancer cells, notably by a loss
of function of RNA Pol I repressors, such as p53,30,52 which suggests
that p53 activation could amplify the inhibition of rDNA transcription
and restrain ribosome biogenesis and subsequently cell proliferation.

In summary, our findings regarding the role of ribosomebiogenesis
in erythroid development are supported by the recognition of
erythroid defects in ribosomopathies. The timing of ribosome
biogenesis extinction and p53 activation is crucial for erythroid
differentiation. In ribosomopathies in which ribosome availability is
altered by unbalanced production, the threshold of ribosome
biogenesis downregulation could be prematurely reached, thus
preventing a normal expansion of erythroid progenitors.
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