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KEY PO INT S

l 14-3-3z synergizes
c-Src to b3-integrin,
and forms the 14-3-
3z–c-Src–integrin-b3
complex during
platelet activation.

l Interference with the
formation of the
complex abolishes
platelet outside-in
signaling and
suppresses
thrombosis without
causing bleeding.

Several adaptor molecules bind to cytoplasmic tails of b-integrins and facilitate bidirectional
signaling, which is critical in thrombosis and hemostasis. Interfering with integrin-adaptor
interactions spatially or temporally to inhibit thrombosis without affecting hemostasis is an
attractive strategy for the development of safe antithrombotic drugs. We show for the first
time that the 14-3-3z–c-Src–integrin-b3 complex is formed during platelet activation. 14-3-
3z–c-Src interaction is mediated by the -PIRLGLALNFSVFYYE- fragment (PE16) on the 14-3-
3z and SH2-domain on c-Src, whereas the 14-3-3z–integrin-b3 interaction is mediated by the
-ESKVFYLKMKGDYYRYL- fragment (EL17) on the 14-3-3z and -KEATSTF- fragment (KF7) on
theb3-integrin cytoplasmic tail. The EL17-motif inhibitor, or KF7 peptide, interfereswith the
formation of the 14-3-3z–c-Src–integrin-b3 complex and selectively inhibits b3 outside-in
signaling without affecting the integrin-fibrinogen interaction, which suppresses thrombosis
without causing significant bleeding. This study characterized a previously unidentified 14-3-
3z–c-Src–integrin-b3 complex in platelets andprovided a novel strategy for thedevelopment
of safe and effective antithrombotic treatments. (Blood. 2020;136(8):974-988)

Introduction
Bleeding is themajor risk associatedwith all antithrombotic drugs,
including anticoagulant and antiplatelet agents.1,2 Several integrins
have been identified in platelets that play key roles in platelet
functions, such as collagen receptor a2b1, fibronectin receptor
a5b1, laminin receptor a6b1, and vitronectin receptor avb3.3-5

However, aIIbb3 is the most abundant6 and is crucial to platelet
function, because it is required for stable platelet adhesion to the
vascular wall and for platelet aggregation.7-9 Through interactions
with its ligands (eg, fibrinogen, von Willebrand factor [VWF], fibro-
nectin, and vitronectin)10-13 and the integrin-b3 tail-binding adaptor
proteins (eg, talin, kindlin, 14-3-3z, and c-Src family kinase),14,15 aIIbb3
can transmit signals bidirectionally in a process known as outside-in
and inside-out signaling.16,17 Platelet activation orchestrated by these
complementary signaling pathways play critical roles in hemostasis
and thrombosis.15,18 Inside-out signaling, upon agonist stimulation,
activates integrins to mediate stable platelet adhesion and
aggregation.19,20 Upon integrin ligation, outside-in signaling
amplifies platelet activation and thrombus size.21,22 Accordingly,
selectively attenuating aIIbb3 outside-in signaling without interfering

with inside-out signaling and integrin ligation would interfere with
thrombus growth with minimal effects on hemostasis,18 making
this an ideal strategy for development of antithrombotic agents.
Modification of adaptor binding to integrin-b3, adaptor compo-
sition, and coadaptor-mediated binding are possible means of
disrupting outside-in signaling.

Several adaptors are now known to interact with the cytoplasmic
tails (CTs) of b-integrins, andmore are still being uncovered.14 The
adaptor molecules assemble into focal adhesions at the integrin-
b3 adhesome to regulate platelet signaling. In this study, we
investigate the scaffold of focal adhesion at the integrin-b3 tail
and identify novel interactions among the adaptor molecules with
the aim of developing strategies and novel agents against
thrombosis without causing significant bleeding.

Methods
Platelet preparation and aggregation
Platelets were prepared from human blood or from wild-type
(WT), GPIba-deficient (GPIba2/2), IL4Ra/GPIba-transgenic,23
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and b3-integrin–deficient (b32/2) mice. Aggregation exper-
iments were performed as previously described.24 In brief,
washed platelets were resuspended in Tyrode’s buffer, with
or without an addition of 100 mg/mL fibrinogen (F3879;
MilliporeSigma, Burlington MA). After a 5-minute incubation
with candidate compounds at 37°C, platelet aggregation was
initiated by addition of agonist andmeasured in an aggregometer
(LBY-NJ4; Techlink, Beijing, China). Detailed information is in the
supplemental Materials, available on the Blood Web site.

Platelet spreading, immunofluorescence staining,
and confocal microscopy
Washed platelets were added to 100 mg/mL fibrinogen-coated
coverslips and incubated for 40 minutes at 37°C. Platelets were
fixed, permeabilized, and blocked, followed by further staining
with anti-b3, -14-3-3z, and -c-Src antibodies and a related
fluorescence-conjugated secondary antibody. For the spreading
assay, platelets were stained with fluorescence isothiocyanate
(FITC)–labeled phalloidin (40735ES75; Yeasen) and visualized by
confocal microscope (A1 MP1; Nikon, Tokyo, Japan). Detailed
information is in the supplemental Materials.

Immunoprecipitation and western blot analysis
Platelets or transfected HEK293T cells were solubilized in cold NP-40
lysis buffer for immunoprecipitation or in RIPA lysis buffer (R0278;
MilliporeSigma) for western blot analysis. Protein A–conjugated
magnetic beads (10002D; Thermo Fisher Scientific, Waltham, MA)
were used for coimmunoprecipitation, per the manufacturer’s
instructions. Lysates from transfected HEK293T cells were
coimmunoprecipitated and immunoblotted with hemagglutinin
or Myc-tagged antibody. Platelet lysate was coimmunopreci-
pitated with integrin-b3 antibody or isotype-matched control
IgG and immunoblotted with integrin-b3, 14-3-3z, c-Src, or Src
pTyr416. Detailed information is in the supplemental Materials.

14-3-3z Binding compound screening
The workflow for screening for the 14-3-3z binding compounds
in our in-house library (LR-NP1792; Mendeley Data doi:10.
17632/2kbjft8jd3.1) is illustrated in supplemental Figure 3A. In
brief, the 14-3-3z crystal structure (Protein Data Bank ID: 2V7D)
was obtained online (https://www.rcsb.org/structure/2V7D). For
virtual screening, the protein structure was subjected to a brief
molecular dynamics simulation (10 ps) for further refinement with
Studio software (version 3.1; Biovia, San Diego, CA). LR-NP1792
was docked to the structure of 14-3-3z in the site sphere (x:37.
594256, y:19.966698, z:23.903805, radius:6.7) by LibDock.25

The CHARMm minimization was performed to optimize the
docked poses. The binding capacity of the top 4% LibDock score
(supplemental Table 3) compounds to 14-3-3z was further ver-
ified by surface plasmon resonance (SPR) and the potential effect
of these candidates on 0.05-U/mL thrombin-induced platelet
aggregation was detected at the concentration of 30 mM.

Peptide precipitations
Binding of recombinant c-Src and 14-3-3z to synthetic biotin-
labeled integrin-b3 CT was performed with biotin-streptavidin.
Detailed information is in the supplemental Materials.

Platelet-fibrinogen binding and P-selectin
detection
Detection of fibrinogen binding26 and P-selectin expression27,28

were performed with modifications according published methods.
In brief, washed platelets were suspended in Tyrode’s buffer
B containing candidate compounds and 100 mg/mL FITC-
conjugated fibrinogen or anti-mouse P-selectin antibody (RB40.34,
BD Pharmingen), followed by incubation, with or without
agonists (200 mM PAR4AP or 1 mM anti-aIIb transmembrane
[TM] peptide) at 37°C in the dark for 40 minutes. FITC-conjugated
fibrinogen bound platelets, and P-selectin expression were
quantified with flow cytometry (LSR Fortessa; BD, Franklin
Lakes, NJ).

SPR analysis
SPR was performed as previously described, with modifica-
tions.29 In brief, recombinant 14-3-3z was immobilized on the
activated Sensor Chip CM-5 by amine coupling, candidate
compounds in HBS-EP1 running buffer were applied to the
immobilized ligand with a flow rate of 10 mL/min, and the real-
time binding signal was recorded with BIAcore 3000 software
(GE Healthcare, Milwaukee,WI). The 6xHis-tagged EL17 or PE16
immobilized Sensor Chip NTA was used to analyze binding with
KF7 and 39,49,79-trihydroxyisoflavone (THO). Detailed in-
formation is in the supplemental Materials.

Carrageenan-induced tail thrombosis in mice
Tail thrombosis in mice was induced by carrageenan according
to a modified reported method.24 In brief, 30 minutes after oral
gavage of candidate compounds in Swiss mice (Kunming mice) of
either sex (18-22 g), the mice were injected IP with 100 mL (0.8%
w/v) carrageenan (type I; MilliporeSigma) dissolved in saline to
induce thrombosis. The length of the thrombus in the tail was
measured 24 hours after treatment. All animal experimental
protocols were approved by the Animal Care and Use Committee
at Kunming Institute of Zoology, Chinese Academy of Sciences
(SMKX2017023).

FeCl3-induced thrombosis
C57BL/6J mice (male, 7-8 weeks old) were anesthetized by
isoflurane inhalation with and anesthesia respirator (R540IP;
RWD Life Science, Shenzhen, China) 2 hours after oral gavage of
100 mg/kg candidate compounds. Carotid arterial thrombosis
was inducedwith a filter paper disc (diameter5 2mm) soaked with
10% FeCl3, and blood flow was monitored with a laser-speckle
blood flow imaging system (RFLSI Pro; RWD Life Science).

Bleeding assays
C57BL/6J mice of either sex (7-8 weeks old) were gavaged orally
with the candidate compound and the control (100 mL normal
saline containing 2 mL dimethyl sulfoxide [DMSO]). A 5-mm tail-
tip transection was made to evaluate tail-bleeding times, or a
calibrated section (4.92 6 0.26 mg) was removed from the liver
lobe to evaluate liver bleeding. For cerebral bleeding, the skull
of anesthetized mice was drilled (diameter 5 2 mm) laterally to
the bregma and a 4-mm-deep injury was made with a needle.30

Detailed information is in the supplemental Materials.

Clot retraction
Platelets (500 3 109/L) were resuspended in platelet-depleted
human plasma and incubated with our candidate compound or
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control at 37°C for 5minutes. a-Thrombin (0.05 U/mL) and CaCl2
(10 mM) were added to initiate the coagulation. Images of clots
were acquired at various time points. The size of the retracted
clots was quantified using ImageJ 1.35h software (National In-
stitutes of Health, Bethesda, MD).

Statistical analysis
Statistical significance was assessed by Student t test. Analyses
were performed with Prism 6.1 software (GraphPad, La Jolla CA).
Results were reported as means 6 standard deviation (SD), with
significance set at P , .05.
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Figure 1. The 14-3-3z–c-Src–integrin-b3 complex in platelets. (A) Washed human platelets were plated on fibrinogen-coated coverslips at 37°C for 20 minutes. Confocal
microscopy of permeabilized platelets stained with antibodies against integrin-b3 (blue), 14-3-3z (green), and c-Src (red). Arrowheads indicate 14-3-3z1, c-Src1, and integrin-b31

deposits. Scale bar, 10mm. (B) Pull-down analysis of the interaction between 14-3-3z or the 14-3-3zmutant andWT c-Src. (C) Pull-down analysis of the interaction between c-Src or
the c-Src mutant andWT 14-3-3z. (D) Western blot analysis of recombinant c-Src or 14-3-3z protein precipitated by biotin-conjugatedWT b3CT, b3CT lacking amino acids 759 to
761 (b3CTD759) or b3CT lacking amino acids 749 to 753 (b3CTDEATST). (E) Western blot analysis of recombinant c-Src or 14-3-3z mutant proteins precipitated by biotin-
conjugated b3CT. D1, D2, and D3 refer to recombinant 14-3-3z proteins lacking amino acids 45 to 58, 112 to 128, and 165 to 180, respectively. Data are shown as means6 SD
(n 5 3). Statistical significance was determined by Student t test. *P , .05, **P , .01.
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Results
14-3-3z–c-Src–integrin-b3 forms a complex in
platelets during activation
Tyrosine kinase c-Src is known to bind to the cytoplasmic tail of the
integrin-b3 subunit via its SH3 domain.26,31 As a integrin scaffolding
adaptor, 14-3-3z also has been reported to bind to integrin-b2.32,33

In this study, confocal immunofluorescence microscopy results
revealed that integrin-b3, c-Src, and 14-3-3z were highly colo-
calized in platelets adhering to immobilized fibrinogen (Figure 1A),
especially at the joint between the filopodia and platelet body,
suggesting that the 14-3-3z–c-Src–integrin-b3 complex forms
during platelet activation. Meanwhile, overlapping yellow regions

indicated a possible interaction of c-Src with 14-3-3z (merged
image; Figure 1A). The deletion of a conserved region
(-165PIRLGLALNFSVFYYE180-; PE16) on 14-3-3z (Figure 1B) and
residues 200 to 246 on c-Src (Figure 1C) abolished c-Src–14-3-
3z interaction.

In vitro interactions of 14-3-3z, c-Src, and integrin-b3 were
further characterized by peptide-bait experiments (Figure
1D-E) with biotinylated peptides, including b3CT (biotin-
NNPLYKEATSTFTNITYRGT, containing WT residues 743-762
of the b3CT), b3CTD759 (biotin-NNPLYKEATSTFTNITY, lacking
CT residues 760-762), b3CTDEATST (biotin-NNPLYKFTNITYRGT,
lacking CT residues 749-753), and b3CT scrambled peptide
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Figure 2. Interference with the 14-3-
3z–c-Src–integrin-b3 complex by KF7
and THO. (A-D) SPR analysis of the in-
teraction between KF7 or THO and 14-3-
3z immobilized on Sensor Chip CM-5
and EL17 immobilized on Sensor Chip
NTA. SPR sensorgrams of KF7 binding
to 14-3-3z (A) and EL17 (B) or THO
binding to 14-3-3z (C) and EL17 (D). (E)
Western blot analysis of recombinant
c-Src or 14-3-3z protein precipitated by
biotin-conjugated b3CT in the presence
of 0.1% DMSO, 30 mM KF7, 30 mM KF7
scrambled peptide (KF7scr), and 30 mM
THO. (F) Western blot analysis of
recombinant c-Src protein precipitated
by biotin-conjugated WT b3CT in the
presence of 100mMKF7, KF7scr, THOor
0.1% DMSO. Data are means 6 SD
(n 5 3). Statistical significance was de-
termined by Student t test. **P , .01.

14-3-3z-c–Src–INTEGRIN-b3 COMPLEX IN PLATELETS blood® 20 AUGUST 2020 | VOLUME 136, NUMBER 8 977

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/8/974/1755400/bloodbld2019002314.pdf by guest on 07 M

ay 2024



G
myr-KF7scr

SQ29548 Apyrase Eptifibatide

myr-KF7 DMSO THO

K

10 %

200 s

GPIB-/- platelets
PAP4AP 100 M

DMSO

THO

myrKF7scr

myr-KF7

L

5 %

200 s

GPIB-/- platelets
Collagen 10 g/mL

DMSO

THO

myrKF7scr

myr-KF7

I

Co
un

t

FITC

800
400

600

0

0

600

myr-KF7scr

Fibrinogen
(100 g/mL)

FITC-labeled
Fibrinogen
(100 g/mL)

myr-KF7

DMSO

THO

100 101 102 103 104

0

600
0

600
0

600

0

J
G

P
IB


-/
-  p

la
te

le
ts

M

G
P

IB


-/
-  p

la
te

le
ts

myr-KF7scr myr-KF7

DMSO THO

H
2.0 ***

***
***

***
***

1.5
1.0
0.5Ar

ea
 (f

ol
d)

0

***
***

*

Nu
m

be
r (

fo
ld

) 1.5

1.0

0.5

0

m
yr-

KF7
sc

r

m
yr-

KF7

DM
SOTH

O

SQ
29

54
8

Apyr
as

e

Eptifi
bat

id
e

A
Thrombin 0.03 U/mL

myr-KF7

myr-KF7scr10 %

200 s

50 M

10 M

2 M

Collagen 1 g/mL

myr-KF7

myr-KF7scr

50 M
10 M

2 M

B
anti-llb TM 1 M

myr-KF7

myr-KF7scr

20 M

4 M

0.8 M

C
Thrombin 0.03 U/mL

THO

DMSO

20 M

4 M

0.8 M

D
Collagen 1 g/mL

THO

DMSO

20 M

4 M

0.8 M

E
anti-llb TM 1 M

THO

DMSO

20 M

4 M

0.8 M

F

Eptifibatide

Figure 3. Effects of myr-KF7 and THO on platelet’s aggregation, binding, and spreading. (A-C) Aggregation of washed human platelets (300 3 109/L) stimulated with
thrombin (0.03 U/mL; A), collagen (1mg/mL; B), or anti-aIIb TM peptide (1 mM; C) in the presence of myr-KF7 and its scrambled peptidemyr-KF7scr (50mM). (D-F) Aggregation of
washed human platelets (3003 109/L) stimulated with thrombin (0.03 U/mL; D), collagen (1 mg/mL; E), or anti-aIIb TM peptide (1 mM; F) in the presence of THO and 0.1%DMSO.
(G) The effect of myr-KF7 and THO on platelet spreading. Washed human platelets (1003 109/L) were preincubated with myr-KF7, myr-KF7scr, and THO at 50 mM; SQ29548 at 4
mM; apyrase at 0.5 U/mL; or eptifibatide (10 mM). The platelets were allowed to spread on immobilized fibrinogen at 37°C for 40 minutes and stained with FITC-conjugated
phalloidin for immunofluorescencemicroscopy. The bar represents 10mm. (H) ImageJ software was used to quantify the platelets and area of spread. *P, .05; ***P, .001. (I) The

978 blood® 20 AUGUST 2020 | VOLUME 136, NUMBER 8 SHEN et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/8/974/1755400/bloodbld2019002314.pdf by guest on 07 M

ay 2024



(biotin-TNTNGPRLYSYTKIETNAFT; CTscr), recombinant 14-3-3z,
and c-Src. Recombinant 14-3-3z showed a direct interaction with
recombinant c-Src (supplemental Figure 1). 14-3-3z (lane 2; Figure
1D) or c-Src (lane 3; Figure 1D) alone was pulled down by b3CT
to form 14-3-3z–b3CT or c-Src–b3CT complexes. Interestingly,
when both 14-3-3z and c-Src were present, more 14-3-3z and
c-Src were pulled down by b3CT (lane 4, Figure 1D), which likely
resulted, not only from 14-3-3z–b3CT or c-Src–b3CT, but also
from 14-3-3z–b3CT–c-Src complex formation. Meanwhile,
b3CTD759, which lacks binding sites for c-Src,34 pulled down
only 14-3-3z (lane 5, Figure 1D). However, b3CTDEATST, which
lacks -749EATST753- on b3CT, did not bind to 14-3-3z (lane 8;
Figure 1D) but retained thec-Src-b3CT interaction (lane9; Figure1D),
suggesting that -749EATST753- is essential for 14-3-3 z–integrin-b3
interaction. Deletion of EL17 (D2, -112ESKVFYLKMKGDYYRYL128-)
from 14-3-3z inhibited the 14-3-3z–integrin-b3 interaction, sug-
gesting that EL17 on 14-3-3z mediates binding to integrin-b3
(lane 6; Figure 1E). Consistent with the data highlighting the
importance of PE16 in c-Src–14-3-3z coimmunoprecipitation (lane
5; Figure 1B), deletion of PE16 (D3) inhibited 14-3-3z binding to
c-Src (lane 7; Figure 1E). Notably, 14-3-3z dimerizationmay not be
essential for 14-3-3z–c-Src–integrin-b3 complex formation, given
that complex formation was normal with 14-3-3z lacking the
critical residues 45 to 58 for 14-3-3z dimerization35 (D1, lane 5;
Figure 1E).

The 14-3-3z–integrin-b3 interaction is mediated by
the EL17 fragment on 14-3-3z and the KF7
fragment on integrin-b3
14-3-3z has been reported to bind to the phosphorylated TTT
motif of integrin-b2.32 It is also capable of interacting with
nonphosphorylated ligands.36 Because our findings implied a
critical role for -749EATST753- on integrin-b3 for 14-3-3z binding
(Figure 1D), we synthesized a TST motif containing the b3
peptide KEATSTF (KF7) to characterize the site on b3 that
mediates 14-3-3z–integrin-b3 interactions. SPR measure-
ments indicated that the association (Ka) and dissociation (Kd)
rate constants, as well as the Rmax and equilibrium dissociation
constant (KD) of the interaction between KF7 and recombinant
14-3-3z was 8.6 3 102 M21s21, 1.8 3 1022 s21, 581 resonance
units (RU), and 2.13 1025 M, respectively (Figure 2A). KF7pT1
(KEApTSTF) and KF7pT2 (KEATSpTF) also bound to 14-3-3z.
The estimated Ka, Kd, Rmax, and KD for KF7pT1–14-3-3z interaction
was 1.1 3 103 M21s21, 9.6 3 1023 s21, 681 RU, and 8.7 3 1026 M,
whereas the parameter for KF7pT2 was 3.7 3 103 M21s21),
1.3 3 1022 s21, 629 RU, and 3.4 3 1026 M, respectively (supple-
mental Figure 2A-B). Further investigation found that KF7
interacted with the fragment EL17 on 14-3-3z, with an esti-
mated Ka, Kd, Rmax, and KD of 8.23 102 M21s21, 9.83 1023 s21,
314 RU, and 1.23 1025 M (Figure 2B). Scrambled KF7 peptide
(TKSETFA, KF7scr) did not bind to immobilized 14-3-3z or
EL17 (supplemental Figure 2C-D).

In the experimental screening from the library (Mendeley Data
doi:10.17632/2kbjft8jd3.1) of ;2000 small molecules (supple-
mental Figure 3; supplemental Table 3), we found that THO

interacted with 14-3-3z with an estimated Ka, Kd, Rmax, and KD of
8.1 3 102 M21s21, 2.2 3 1022 s21, 123 RU, and 2.7 3 1025 M,
respectively, whereas that for THO-EL17 interaction was 4.3 3
102 M21s21, 3.5 3 1022 s21, 490 RU, and 8.2 3 1025 M, re-
spectively (Figure 2C-D). Neither KF7 nor THO directly inter-
acted with immobilized Ga13, talin-1, PE16 peptide, integrin
aIIb, or b3 cytoplasmic peptide (supplemental Figure 2E-H). We
next tested the effects of KF7 and THO on the interaction of
integrin b3CT with 14-3-3z or c-Src. In vitro peptide precipitation
experiments showed that both KF7 and THO inhibited binding
of 14-3-3z to integrin-b3CT at a concentration of 30 mM
(Figure 2E). Baseline c-Src-b3CT interaction, which reflects the
weak binding of c-Src with b3CT in unstimulated platelets,37 was
not affected by KF7 or THO (Figure 2F).

Interference with the 14-3-3z–c-Src–integrin-b3
complex inhibits platelet aggregation and
spreading without affecting fibrinogen binding
c-Src is primed for activation by direct interaction with an integrin-
b tail,31 and upon activation of integrin, C-terminal–associated
c-Src is critical for early outside-in signaling transduction and
platelet aggregation.15 Because both KF7 and THO inhibited
14-3-3z–integrin-b3 interaction (Figure 2E), we next examined the
effect of myristoylated-KF7 (myr-KF7) and THO on platelet ag-
gregation and spreading. Both myr-KF7 (Figure 3A-C) and THO
(Figure 3D-F), as well as myr-KF7pT1 and myr-KF7pT2 (supple-
mental Figure 4), dose dependently inhibited the platelet
aggregation induced by 0.03 U/mL thrombin, 1 mg/mL collagen,
and 1 mM anti-aIIb TM peptide (in the presence of 100 mg/mL
fibrinogen). The anti-aIIb TM designer peptide directly targets the
TM region of integrin aIIb, switches aIIbb3 to its high-affinity state,
and initiates aIIbb3-mediated outside-in signaling.38,39 Anti-aIIb
TM–induced platelet aggregation was suppressed by myr-KF7
and THO, but was not affected by the TXA2 receptor antagonist
SQ29548 and the adenosine diphosphatase apyrase in the pres-
ence of fibrinogen. However, SQ29548 and apyrase suppressed
anti-aIIb TM–induced platelet aggregation in the absence of fi-
brinogen (supplemental Figure 5). These results indicate that the
TXA2 receptor and ADP-P2Y12 signaling are responsible for platelet
secretion, whereas myr-KF7 and THOmay act on aIIbb3 outside-in
signaling. Furthermore, THO and myr-KF7 did not significantly
affect P-selectin expression on b32/2 platelets, although they sig-
nificantly reduced P-selectin expression on WT platelets (supple-
mental Figure 6). This finding suggests that the observed myr-KF7
andTHO inhibitory effects onplateleta-granule release are induced
by aIIbb3 outside-in signaling.27

Myr-KF7 and THO also significantly inhibited platelet spreading
on immobilized fibrinogen (Figure 3G-H), suggesting that the
14-3-3z–c-Src–integrin-b3 complex plays a vital role in platelet
lamellipodia formation and spreading. However, the number of
platelets attached to the coverslips was not altered by myr-KF7
and THO, whereas SQ29548 and apyrase reduced the attach-
ment significantly (Figure 3G-H). To investigate whether in-
terference with the 14-3-3z–c-Src–integrin-b3 complex affects
integrin inside-out signaling, we examined the effects of

Figure 3 (continued) effect of myr-KF7 and THOon soluble fibrinogen binding to platelets. Washed human platelets (3003 109/L) were preincubated withmyr-KF7, myr-KF7scr,
and THO at 50 mM. Binding of FITC-conjugated fibrinogen (100mg/mL) to platelets was measured by flow cytometry. (J-L) The effect of 100 mMmyr-KF7 and THO on 100 mM for
both PAR4AP- and collagen-induced aggregation of GPIba2/2 platelets. (M) Effect of 100 mM myr-KF7 and THO on GPIba2/2 spreading of platelets on immobilized
fibrinogen.Scale bar, 10 mm.
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myr-KF7 and THO on soluble fibrinogen binding to platelets.
Flow cytometry results showed no significant inhibitory effect of
myr-KF7 and THO on soluble fibrinogen binding, with or without
added agonists (Figure 3I; supplemental Figure 7).

It has beenwidely accepted that 14-3-3z associates with theGPIb-
IX complex40,41 and plays an important role in VWF-mediated
GPIb-IX signaling transduction.42-44 Indeed, we found that a high
dose of THO (200 mM) inhibited 1.25 mg/mL ristocetin-induced
platelet agglutination/aggregation in human platelet-rich plasma,
and this inhibitory effect was further enhanced in the presence of
1 mM eptifibatide (supplemental Figure 8). However, myr-KF7 or
THO also exhibited an inhibitory effect on both GPIba2/2 (Figure
3J-L) and IL4Ra/GPIba-transgenic (N-terminal domain of GPIba
replaced with interleukin-4 receptor-a) platelet aggregation
(supplemental Figure 9). Furthermore, myr-KF7 and THO sup-
pressed GPIba2/2 platelet spreading on immobilized fibrinogen
(Figure 3M), indicating that these inhibitors affect aIIbb3 outside-
in signaling, independent of GPIb-IX.

Myr-KF7 and THO alters the platelet integrin-b3
outside-in signaling pathway
c-Src activation is critical for early outside-in signaling trans-
duction. To assess whether the 14-3-3z–c-Src–integrin-b3 com-
plex mediates integrin-induced activation of c-Src, we measured
thephosphorylation of c-Src at Tyr416. The expected elevated Tyr
phosphorylation of c-Src after platelet attachment to fibrinogen
was attenuated when the platelets were treated withmyr-KF7 and
THO (Figure 4A-B), suggesting inhibition of integrin-dependent
c-Src activation. Myr-KF7 and THO also inhibited the c-Src acti-
vation induced by anti-aIIb TM in the presence of shear forces,
which was unaffected by SQ29548 and apyrase (supplemental
Figure 10A-B). These findings indicate that 14-3-3z plays im-
portant roles in regulating integrin-dependent c-Src activation.
The r family of small GTPases, such as RhoA and Rac1, are critical
in regulating integrin-induced cytoskeletal reorganization.45 Be-
cause c-Src activation negatively regulates RhoA activation in
platelets,15 we examined activation of RhoA and Rac1 during
platelet spreading on immobilized fibrinogen in the presence or
absence of myr-KF7 and THO. Myr-KF7 and THO significantly
accelerated platelet RhoA (Figure 4C-D) and Rac1 (supplemental
Figure 11) activation during spreading. Akt phosphorylation, an
important downstream effector of platelet integrin outside-in
signaling transduction,46 was also inhibited dose dependently
by myr-KF7 and THO (Figure 4E-J). Thus, 14-3-3z–integrin-b3
interaction appears to be critical for mediating integrin signaling
to c-Src, RhoA, and Rac1, sequentially regulating Akt phos-
phorylation and platelet activation and aggregation.

Myr-EL17 inhibits the destabilizing effect of
myr-KF7 and THO on the 14-3-3z–c-Src–integrin-b3
complex
The EL17 fragment on 14-3-3z mediated the 14-3-3z–integrin-
b3 interaction and was the cognate target of KF7 and
THO (Figure 2B,D). Blocking EL17 interfered with the 14-3-
3z–c-Src–integrin-b3 complex and was shown to be an effective
method of preventing integrin outside-in signaling and platelet
aggregation (Figures 3 and 4). We further investigated whether
the 14-3-3z–c-Src–integrin-b3 complex destabilized by KF7 or
THO could be restored by EL17. Myristoylated-EL17 (myr-EL17),
but not the myristoylated-scrambled peptide (myr-EL17scr),
dose dependently interfered with the inhibitory effect of myr-

KF7 (Figure 5A-C) and THO (Figure 5D-F) on platelet ag-
gregation. In addition, pretreatment of platelets with myr-KF7
or THO restored spreading on immobilized fibrinogen in the
presence of myr-EL17 (Figure 5G-H). The agonist-induced
phosphorylation of c-Src Tyr416 was reduced in the pres-
ence of myr-KF7 and THO but was rescued when myr-EL17
was added simultaneously (Figure 5I). In vitro peptide pre-
cipitation results also showed that binding of 14-3-3z or c-Src
to integrin-b3CT returned to levels comparable with those in
the control groups in the presence of EL17 (Figure 5J). However,
myr-EL17 itself had no effect on agonist-induced platelet
aggregation (supplemental Figure 12A) or 14-3-3z and c-Src
binding to integrin-b3CT in vitro (supplemental Figure 13),
whereas myristoylated-PE16 (myr-PE16) inhibited platelet ag-
gregation at high concentrations (supplemental Figure 12B).
Immunoprecipitation demonstrated that the 14-3-3z–c-Src–integrin-
b3 complex, destabilized in platelets by myr-KF7 and THO, was
restored by myr-EL17 (supplemental Figure 14).

Dynamics of c-Src and 14-3-3z binding to platelet
integrin-b3
It has been reported that binding of c-Src to integrin-b3 increases
progressively after aIIbb3 activation.37 However, the underlying
mechanism remains unknown. We performed platelet lysate
coimmunoprecipitation to investigate the temporal progression
of 14-3-3z–c-Src–integrin-b3 complex formation during platelet
aggregation. We found that c-Src and 14-3-3z coimmunopreci-
pitated with integrin-b3 by the b3 antibody but not by control IgG
(Figure 6A). Binding of c-Src and 14-3-3z to integrin-b3 in anti-aIIb
TM–activated platelets increased significantly compared with
resting platelets, suggesting that constitutive binding of c-Src with
integrin-b3 is not sufficient to trigger integrin outside-in signaling
and initiate platelet activation and aggregation. Similar to in vitro
experiments, myr-KF7 and THO interfered with the formation of
the 14-3-3z–c-Src–integrin-b3 complex in human platelets (Figure
6A-B) and the 14-3-3z–integrin-b3 complex in GPIba2/2 platelets
(supplemental Figure 15). We also found that, during platelet
aggregation, binding of both c-Src and activated c-Src to integrin-
b3 initially increased, then subsequently decreased, with con-
tinuous stimulation. The binding of 14-3-3z to integrin-b3 showed
a similar trend. However, the addition of THO significantly de-
creased the binding of both 14-3-3z and c-Src to integrin-b3
(Figure 6C-D). Kindlin-3 is essential for integrin activation and
platelet aggregation, andmutations of themembrane-distal NxxY
motif of the integrin-b3 tails (Y759A) and ST752/753AA abolished
kindlin-3 but not talin binding.47 THO (supplemental Figure 16A)
and myr-KF7 (supplemental Figure 16B) did not affect kindlin-3
binding to integrin-b3 during platelet activation.

Interference with the formation of the
14-3-3z–c-Src–integrin-b3 complex inhibits
thrombus growth without impairing hemostasis
To investigate the antithrombotic potential and bleeding risk of
THO, mice were orally administered THO 2 hours before the
experiments that followed. THO gavage (100 mg/kg) signifi-
cantly prolonged FeCl3-induced carotid artery thrombus oc-
clusion time from 3226 25 to 6536 46 seconds (Figure 7A). Tail
thrombi induced by 40 mg/kg IP-injected carrageenan were
markedly reduced by THO. Compared with the thrombus length
in the control (3.626 0.37 cm), the thrombus length in the THO-
treated mice was significantly reduced, with 33 mg/kg THO
(2.37 6 0.33 cm), 100 mg/kg THO (1.14 6 0.39 cm), and
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Figure 4. Effects of myr-KF7 and THO on platelet c-Src, RhoA, and AKT activation. (A-B) Washed human platelets pretreated with 50 mM myr-KF7, myr-KF7scr, THO, and
0.1% DMSO were allowed to adhere to immobilized fibrinogen and then solubilized at the indicated time points. Proteins from lysates were immunoblotted with antibodies to
Src pY416 and c-Src. (C-D) GTP-bound RhoA was measured by association with the RhoA-binding domain of Rhotekin (GST-RBD). Washed human platelets (500 3 109/L)
pretreated with myr-KF7 (E-F) or THO (G-H) were activated by 0.03 U/mL thrombin or 1mg/mL collagen, and the lysates were immunoblotted with AKT1 pS473 or AKT1 antibody.
(I-J) Platelets pretreated with myr-KF7 or THO were activated by anti-aIIb TM peptide (1 mM), and the lysates were immunoblotted with AKT1 pS473 or AKT1 antibody. All data
are expressed as means 6 SD (n 5 3). Statistical significance was determined by Student t test. *P , .05; **P , .01.
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100 mg/kg clopidogrel (1.42 6 0.44 cm; Figure 7B). Three, 6,
and 12 hours after the gavage, tail-bleeding time in the THO
group (;100 seconds) was not affected compared with that in the
control group (Figure 7C), whereas clopidogrel administration
at 100 mg/kg increased time to ;800, 600, and 500 seconds,
respectively. We further explored the effect of THO on liver
(Figure 7D) and brain bleeding (Figure 7E-F). The number of
red blood cells (RBCs) in the peritoneal lavage of the mice did
not change significantly, compared with the counts in the THO

and control groups (;13 105/mL; n5 8). Whereas the amount
of RBCs increased to;1.23106/mL, 1.13106/mL, and 1.03106/mL
after administration of 10 mg/kg clopidogrel for 3, 6, and 12 hours,
respectively (Figure 7D). To investigate the effect on brain
hemostasis, we used a model of needle-induced intracerebral
hemorrhage.30 Compared with vehicle-treated mice, the cerebral
hematoma area was significantly increased (by 4.5-fold) in the mice
that received 10 mg/kg clopidogrel, whereas the mice
that received 100 mg/kg THO exhibited no significant

Figure 5 (continued) immobilized fibrinogen at 37°C, the platelets were stained with FITC-conjugated phalloidin for immunofluorescence microscopy. myr-EL17 and myr-
EL17scr (both 100mM) and 10mMeptifibatide were used as the controls. The bar represents 10mm. (H) Image J software was used to quantify the number of platelets and area of
spread. (I) Platelets preincubatedwith 30mMmyr-KF7 and THO in the presence of 90mMmyr-EL17 or myr-EL17scr were activated by thrombin (0.03 U/mL), collagen (1mg/mL), or
anti-aIIb TM peptide (1 mM), and the cell lysates were immunoblotted with Src pY416 and c-Src antibodies. (J) Western blot analysis of the recombinant c-Src and 14-3-3z
precipitated by biotin-conjugated b3CT in the presence of 30 mM KF7 or THO, with or without 90 mM EL17. All data are expressed as means6 SD (n5 3). *P , .05; **P , .01;
***P , .001.

−
−

−
−
−
−

−

− − − − −
− − − −
− − −
− −
− −

−
−

−
−

− − − − −
− − − −

− − −
− −

−

+
+ +

+
+

+
+

+

+

+ + + + +Anti- llb-TM
myr-KF7scr

DMSO
myr-KF7

THO
SQ29548
Apryase

14−3−3

c−Src

c−Src pY416

Line

IP: IgG

1 2 3 4 5 6 7 8 kDa

110

70

70
55

55

25

3

Anti−integrin- 3
A

4
3

** **
**

2
1
0c−

Sr
c p

Y4
16

(fo
ld

)

2.5
2.0
1.5

** **
**

1.0
0.5

0

c−
Sr

c
(fo

ld
)

5
4
3

** **
**

2
1
0

anti- llb-TM
myr-KF7scr

DMSO
myr-KF7

THO
SQ29548
Apryase

14
–3

–3
(fo

ld
)

−
− − − − −

−

−
−
−

−
−

−
−

−
−
−

−
−

−
−
−

−
−

− − −
−

−
−

− −
−

−

−
−

+
++

+

+

+

+

+

+

+

+

+

+

B

14−3−3

Lysate 3

c−Src

c−Src pY416

Thrombin

Time (min)

− − −+ + + + + + + + + +

0 0 01 2 3
DMSO THO

5 10 1 2 3 5 10

Integrin 3

kDa

110

110

55

55

25

IP: IgG Anti−integrin- 3
C

5

4

3

2

1

0
0 1 2 3 5 10 0 1 2 3 5 10 0 1 2 3 5 10

Fo
ld

 ch
an

ge

Time (min)

DMSO

THO

DMSO

THO

DMSO

THO

c−Src pY416 c−Src 14−3−3
D
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antibodies. All data are expressed as means 6 SD (n 5 3). Statistical significance was determined by Student t test. *P , .05; **P , .01.
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difference (Figure 7E-F). Phosphorylation of c-Src at Tyr416 rep-
resents the early stage of integrin outside-in signaling, which
mediates platelet spreading.15 Interference with the formation of
the 14-3-3z–c-Src–integrin-b3 complex by myr-KF7 and THO
inhibited integrin-dependent activation of c-Src (Figure 4A-B)
and increased activation of RhoA (Figure 4C-D) and Rac1
(supplemental Figure 11). As this small-GTPase–mediated signaling
is important for cell retraction and primary hemostasis,34,45,48,49 we
next investigated whether myr-KF7 and THO can affect platelet
clot retraction. Interestingly, myr-KF7 and THO did not inhibit,
but slightly accelerated thrombin (Figure 7G-H), and U46619
(supplemental Figure 17) induced clot retraction within
30 minutes. The results suggest that interference with for-
mation of the 14-3-3z–c-Src–integrin-b3 complex by THO
suppresses thrombosis but has no significant bleeding side
effects.

Discussion
In this study, we identified a direct interaction between 2 adaptor
molecules (14-3-3z and c-Src) and a direct interaction between 14-
3-3z and integrin-b3. We demonstrated that 14-3-3z plays a critical
role in regulating integrin-dependent c-Src activation and that the
14-3-3z–c-Src–integrin-b3 complex is critical in platelet outside-in
signaling. Notably, through compound library screening, we
identified THO as a novel inhibitor of 14-3-3z that interferes with
the formation of the 14-3-3z–c-Src–integrin-b3 complex and in-
hibits thrombosis without causing bleeding. Thus, interference with
the formation of the 14-3-3z–c-Src–integrin-b3 complex may be a
promising antithrombotic strategy.

The integrin adhesome comprises a group of proteins that form
focal adhesions, inwhich protein components directly or indirectly
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Figure 7. Interference in the formation of the 14-3-
3z–c-Src–integrin-b3 complex in thrombosis without
affecting hemostasis. (A) Oral administration of THO
(100 mg/kg) alleviated 10% of the FeCl3-induced occlusive
carotid artery thrombosis inmice. (B) Oral administration of
THO (100 mg/kg) reduced the mouse tail thrombus in-
duced by 40 mg/kg carrageenan. (C) Tail transection
bleeding times ofmice orally receiving THO (100mg/kg) or
clopidogrel (100 mg/kg) at 3, 6, and 12 hours after ad-
ministration. (D) The number of RBCs in peritoneal lavage
after a calibrated injury of the liver in mice treated with
THO (100 mg/kg) or clopidogrel (10 mg/kg) at 3, 6, and
12 hours after administration. (E-F) Effect of oral admin-
istration of THO (100mg/kg) or clopidogrel (100mg/kg) on
bleeding in the mouse brain. Photographs (E) and relative
quantification (F) of the areas of brain bleeding. (G-H) In
vitro effects of 100 mM THO, myr-KF7, and their relative
controls on clot retraction of human platelet-rich plasma in
the presence of 0.03 U/mL thrombin. Data are expressed
as means 6 SD (n 5 3). *P , .05; **P , .01.
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interact with b-integrin tails.50 At least 28 adaptor proteins, in-
cluding 6 structural adaptors, 14 scaffolding adaptors, and
8 catalytic adaptors, have been identified to bind to integrin-
b3CT.14 The adaptor-adaptor interactions are interconnected to
regulate the assembly of the complex structural and signaling
platform of the focal adhesion. Previous reports have demon-
strated that 14-3-3z binds to integrin-b2.32,33,51 We found that
14-3-3z also bound to integrin-b3 via the interaction mediated
by the -112ESKVFYLKMKGDYYRYL128- fragment on 14-3-3z and
the -749EATST753- fragment on integrin-b3. Unexpectedly, 14-3-3z
was found to interact directly with c-Src, a catalytic adaptor
of integrin, and the interaction was mediated by both
the -165PIRLGLALNFSVFYYE180- fragment on 14-3-3z and the
SH2 domain on c-Src. c-Src is known to bind to integrin-b3CT
via the interaction mediated by both the SH3 domain on
c-Src and the -759YRGT762- fragment on integrin-b3.32,52 The
interconnectedness of 14-3-3z–integrin-b3, integrin-b3–c-Src, and
c-Src–14-3-3z interactions forms the scaffold for the 14-3-3z–c-Src–
integrin-b3 complex, as reported herein (Figure 1). Previous reports
have shown that adaptor molecules assemble into focal adhesion
sites in a sequential manner.53-56 It appears that 14-3-3z synergizes
with c-Src to bind integrin-b3 (Figures 1D-E and 2E) and promote
c-Src activation (Figure 6). It is possible that 14-3-3z forms a bridge
fromc-Src to integrin-b3 to allow continued platelet spreading and
inhibit clot retraction, despite calpain-mediated integrin-b3
C-terminal cleavage (at Tyr759).34,57

The 14-3-3 family of 27- to 32-kDa conserved acidic proteins has
7 isotypes (a/b, g, t/u, e, h, s, and z/d) that are expressed in the
cytoplasm of eukaryotic cells.36,58 They are crucial regulators of
intracellular signaling pathways.43 Platelets contain high levels of
the z,b, and g isoforms and lower levels of the e andh isoforms.59,60

14-3-3z has been reported to bind GPIb and regulate GPIb-IX
signaling.42,44 The sequestration of 14-3-3z by GPIb-IX may affect
integrin-induced cytoskeletal reorganization.60 In our experiments,
GPIb-IX–mediated platelet aggregation was attenuated by 14-3-3z
EL17 motif-based inhibitor (THO; supplemental Figure 8), sug-
gesting that 14-3-3z mediated GPIb-IX signaling was affected.
However, KF7 or THO also suppressed the aggregation (Figure 3J-L)
and integrin-dependent spreading (Figure 3M) of GPIb-deficient
platelets. This finding establishes the direct and integral role of
14-3-3z in platelet integrin biology. Disruption of 14-3-3z–integrin-
b3 interaction, by either KF7 or THO, inhibited formation of the 14-
3-3z–c-Src–integrin-b3 complex, thus attenuating outside-in signaling
transduction and platelet aggregation (Figures 3, 4, and 6).
The EL17 fragment in 14-3-3z is highly conserved among all
the 14-3-3 isotypes in platelets, and therefore 14-3-3 or its EL17
fragment may be a promising target for antiplatelet drugs and
thrombotic therapy.

c-Src family kinases (SFKs) play a central role in mediating the
response of platelets to vascular injury by transmitting activation
signals from platelet surface receptors, which is crucial for
thrombus growth and stability.61 The most abundant SFK in
human platelets is c-Src,62 which is an important positive reg-
ulator of b3-integrin signaling.63 c-Src binds to the C-terminal
region of b3-integrin and is thought to be important in integrin
outside-in signaling.34,52,64 The SFK inhibitor dasatinib sup-
presses platelet activation and causes ubiquitous bleeding in
both rodent models and humans.61,65-68 In unstimulated platelets,
c-Src may weakly bind to integrin-b3 and exist in a moderately
activated state37 (Figure 6), potentially priming the platelet to

respond to vascular injury. However, after platelet activation, c-Src is
rapidlymobilized to the integrin-b337 (Figure 6A-D). Themechanism
behind this phenomenon remains unclear, but further elucidation of
this process may lead to novel agents that block specific platelet
functions that are essential for thrombus growth but cause few
adverse bleeding effects.61 Herein, we identified 14-3-3z as a novel
interaction partner of c-Src. Importantly, 14-3-3z synergizes c-Src to
integrin-b3CT and thus regulates c-Src activation (Figure 1). Con-
sidering that c-Src initiates and propagates signals from integrin-
b3 to play a central role in platelet functions, interference with
the interaction of 14-3-3z–integrin-b3, thus inhibiting the for-
mation and stabilization of the 14-3-3z–c-Src–integrin-b3 com-
plex, may provide a unique opportunity to specifically suppress
outside-in signaling without affecting integrin ligation and
without impairing hemostasis. Indeed, disruption of the 14-
3-3z–integrin-b3 interaction, by either the KF7 or EL17 competitor
compound (THO) selectively suppressed outside-in signaling
to inhibit platelet spreading, aggregation, and thrombus for-
mation without affecting integrin ligation, clot retraction, and
bleeding.

VWF deficiency may lead to a bleeding disorder.69,70 However, in
certain concentrations, inhibitors that block the interaction be-
tween VWF and GPIb-IX may inhibit thrombus formation without
significantly prolonging bleeding time.71-73 According to previous
studies, bioavailability of isoflavones in the blood after oral ad-
ministration is low,74,75 a single dose of 20mg/kg isoflavone (similar
structure with THO) showed an apparent peak plasma concen-
tration of 5 to 11 mM.76 It is conceivable that the peak plasma
concentration of THO after oral administration (100 mg/kg) would
also be relatively low. The plasma concentration of THO may
therefore be sufficient to inhibit thrombosis but not to reach the
threshold that causes significant bleeding disorders. This concept is
also consistent with an early study that showed that an antith-
rombotic effect could be achieved before bleeding occurs.77 In-
terfering with aIIbb3 early outside-in signaling may exert an
antithrombotic effect without causing a significant bleeding side
effect.18 The r family of small GTPases, such as RhoA and Rac1,
which is activated in late aIIbb3 outside-in signaling, plays an
important role in thrombosis and hemostasis.49,78 However, in our
experiments, clot retraction was slightly accelerated in the pres-
ence of THO (Figure 7G), which was probably related to preserved
fibrinogen binding ability (Figure 3I; supplemental Figure 7) and
increased RhoA (Figure 4)/Rac1 (supplemental Figure 11) activa-
tion. This accelerated clot retraction may have partially compen-
sated for the inhibitory effect of THOonGPIb and aIIbb3, and thus
no significant bleeding occurred.

In summary, our study provides a conceptual advance by re-
vealing a novel c-Src partner, 14-3-3z, and the presence of a
14-3-3z–c-Src–integrin-b3 complex scaffold in platelets that
regulates integrin signaling. We demonstrated that 14-3-3z
synergizes c-Src to integrin-b3, induces massive mobilization of
c-Src to integrin-b3 during platelet activation, and likely regulates
c-Src activation. The discovery of the 14-3-3z–c-Src–integrin-b3
association may form a conceptual basis for selectively inhibiting
outside-in signaling without perturbing the ligand binding of
integrins. Based on this new concept, we found novel antithrombotic
agents that contain potent ability to inhibit thrombosis without the
adverse effect of bleeding and that provide a novel avenue for the
development of antithrombotic therapies.
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