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KEY PO INT S

l FasL-mediated
apoptosis plays an
important role in Treg
depletion and
subpopulation
imbalance in AA,
leading to immune
dysregulation.

l Remaining AA Tregs
become FasL resistant
in response to high
concentration of IL-2
and are functional in
an inflammatory
environment.

Idiopathic aplastic anemia (AA) has 2 key characteristics: an autoimmune response against
hematopoietic stem/progenitor cells and regulatory T-cells (Tregs) deficiency. We have
previously demonstrated reduction in a specific subpopulation of Treg in AA, which
predicts response to immunosuppression. The aims of the present study were to define
mechanisms of Treg subpopulation imbalance and identify potential for therapeutic in-
tervention. We have identified 2 mechanisms that lead to skewed Treg composition in AA:
first, FasL-mediated apoptosis on ligand interaction; and, second, relative interleukin-2
(IL-2) deprivation.We have shown that IL-2 augmentation can overcome thesemechanisms.
Interestingly, when high concentrations of IL-2 were used for in vitro Treg expansion
cultures, AA Tregs were able to expand. The expanded populations expressed a high level
of p-BCL-2, which makes them resistant to apoptosis. Using a xenograft mouse model, the
function and stability of expandedAATregswere tested.Wehave shown that theseTregswere
able to suppress the macroscopic clinical features and tissue manifestations of T-cell–mediated
graft-versus-host disease. These Tregs maintained their suppressive properties as well as their
phenotype in a highly inflammatory environment. Our findings provide an insight into the

mechanisms of Treg reduction in AA. We have identified novel targets with potential for therapeutic interventions. Sup-
plementation of ex vivo expansion cultures of Tregs with high concentrations of IL-2 or delivery of IL-2 directly to patients
could improve clinical outcomes in addition to standard immunosuppressive therapy. (Blood. 2020;136(7):885-897)

Introduction
Severe aplastic anemia (AA) is a rare and potentially fatal form of
bone marrow (BM) failure syndrome, characterized by peripheral
blood cytopenia and hypocellular BM. Most cases of acquired
AA are associated with autoimmunity.1-3 In AA, the expansion of
T-effector cells (CD41 and CD81 T cells), along with the increased
levels of proinflammatory cytokines such as interferon-g and tu-
mor necrosis factor-a, results in the depletion of hematopoietic
stem/progenitor cells (HSPCs).4,5 Immune destruction of HSPCs is
also associated with Fas/FasL-dependent apoptotic pathway.6,7

Current first-line treatment options for AA patients include he-
matopoietic stem cell transplantation for younger patients with

HLA-matched sibling donors, as well as immunosuppressive
therapy (IST) for older patients and patients without a matched
sibling donor.8,9 In hematopoietic stem cell transplant, acute and
chronic graft-versus-host disease (GVHD) remain an issue, although
occur less frequently using alemtuzumab-based conditioning.10

Standard IST regimen using antithymocyte globulin and cyclo-
sporine A has shown a response rate of 60% to 70% in AA
patients. Nevertheless, 35% of patients relapse after respond-
ing, and up to 15% of patients undergo clonal evolution to
myelodysplastic syndrome and acute myeloid leukemia fol-
lowing IST.3,8,9,11-13 More recently, the addition of thrombo-
poietin receptor agonist (Eltrombopag) to the standard IST has
shown a high rate of complete response among patients with
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severe AA, but the relapse rate and clonal evolution were
comparable to standard IST therapy.14

Regulatory T cells (Tregs) are an integral part of a balance
immune response in human,15 and the insufficient number or
function of Tregs is the major finding in most autoimmune
conditions.16 Our group and others have previously demon-
strated that in AA, the number of Tregs are reduced and their
function is compromised.4,17-19 We have described 2 sub-
populations of human Tregs with distinct immunological
phenotypes, known as Treg-A (naive phenotype with low
proliferation index) and Treg-B (memory phenotype with
moderate/high proliferation index), and shown that the re-
duced number of Treg-B correlates with inferior response
to IST.20

In the present study, we investigated the mechanisms behind
the Treg reduction in AA and potential interventions that
could overcome this mechanism. We found that Treg-A
from AA patients were resistant to FasL-induced apoptosis
and do not respond to low concentration of interleukin-2
(IL-2). However, Treg-A and Treg-B isolated from AA patients
were able to expand in vitro, and these expanded Tregs
were not only functional and stable, but also expressed
a high level of p-BCL-2 and were resistant to FasL-
induced apoptosis. These findings represent potential
targets to overcome AA immune dysregulation in a more
targeted way and improve clinical outcome in addition to
standard IST.

Methods
Study approval
King’s College Hospital Local Research Ethics Committee ap-
proved this study for sample collection, and informed written
consent was obtained from patients.

Patient samples
A total of 19 AA patients were involved in this study (Table 1).
Peripheral blood mononuclear cells (PBMCs) from 19 AA patient
samples collected at diagnosis and after IST (5 patients) and
25 healthy donors (HDs) were used for various in vitro functional
assays and in vivo experiments.

In vitro Treg expansion
Treg expansion in vitro was performed as previously
described.20,21 Total Tregs, Treg-A, and Treg-B were cultured in
Prime XV T cell expansion XSFM (Irvine Scientific, Santa Ana,
CA), supplemented with 5% human AB serum (Sigma Aldrich,
St. Louis, MO) in the presence of 2 mM all-trans-retinoic acid
(ATRA; Sigma Aldrich) and 100 nM rapamycin (LC Laboratories,
Woburn, MA) for 4 to 6 weeks. Tregs were stimulated with
Dynabeads human T-activator CD3/CD28 (cell:bead ratio 5 1:1;
Thermo Fisher Scientific, Waltham, MA) and 1000 IU/mL of
human IL-2 (Proleukin; Novartis, Basel, Switzerland). The culture
was replenished every 2 days with human IL-2 and every
week with fresh culturemedia andDynabeads human T-activator
CD3/CD28.

Suppression assay
Suppression assay was performed as previously described.20

Conventional T cells (Tcon cells) were stained with a fluorescent

proliferation dye, carboxyfluorescein diacetate succinimidyl
ester (CFSE; BioLegend, San Diego, CA) and cocultured with
autologous Tregs at different Tcon:Treg ratios (8:1, 4:1, 2:1, and
1:1) for 5 days in the presence of anti-CD3/CD28 beads (Tcon:
beads ratio 5 20:1). Cells were harvested after 5 days and
stained with Fixable Viability Dye eFluor 780 (Thermo Fisher
Scientific), anti-human CD3 VioGreen (clone BW264/56;
Miltenyi Biotec, Bergish Gladbach, Germany), and anti-
human CD4 PerCp Cy5.5 (clone RPA-T4; BioLegend).
Stained cells were analyzed on a BD FACSCanto II (BD Bio-
sciences, San Jose, CA). FlowJo Version 7.6.5 software (Tree
Star, Ashland, OR) was used to perform data analysis.

FasL-induced apoptosis assay
Treg-A and Treg-B were stimulated with 5 mg/mL of anti-Fas
(clone CH11; Millipore, Burlington, MA) for 5 hours and stained
with Fixable Viability Dye eFluor 780 (Thermo Fisher Scientific)
followed by Annexin V APC (BioLegend) in binding buffer
(BioLegend). Stained cells were analyzed on a BD LSR Fortessa
(BD Biosciences). Percentages of early (Viability Dye eFluor

Table 1. Patients’ characteristics at diagnosis

Characteristics Value

Number of patients 19

Sex
Male 11
Female 8

Disease severity at diagnosis
VSAA 5
SAA 8
NSAA 6

PNH clone
Yes 11
No 7
Unknown 1

Size of PNH clone, %
Red cells 0.02 to 0.15
Granulocytes 0.003 to 29.3
Monocytes 0.4 to 25.7

Etiology
Idiopathic 19

Treatment
IST 12
Eltrombopag 2
IST 1 Eltrombopag 1
Allogeneic stem cell transplantation 1
No treatment 3

Response to IST treatment
CR 2
PR 6
NR 4

CR, complete response; NR, no response; NSAA, nonsevere aplastic anemia; PNH,
paroxysmal nocturnal hemoglobinuria; PR, partial response; SAA, severe aplastic anemia;
VSAA, very severe aplastic anemia.
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7802 Annexin V1) and late (Viability Dye eFluor 7801 Annexin
V1) apoptotic cells were calculated. For rescue experiment,
Treg-A and Treg-B were treated with 5 mg/mL of anti-Fas (clone
CH11; Millipore) and 20 IU/mL of human IL-2 (Proleukin;
Novartis).

Treg sensitivity to IL-2
Treg-A and Treg-B were treated with 1, 40, 60, or 80 IU/mL of human
IL-2 (Proleukin; Novartis) for 15 or 30minutes. Protein expression

level of pSTAT5, a marker for IL-2 response, was measured using
western blot.

DNA methylation analysis by deep amplicon
bisulfite sequencing
FoxP3 Treg-specific demethylation region (TSDR) methylation anal-
ysis using deep amplicon bisulfite sequencing was performed as
previously described.20,22 Details of themethod and data analysis are
included in supplemental methods, available on the BloodWeb site.
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Figure 1. Treg-B are sensitive to FasL-induced apoptosis. (A) IPA comparing Treg-B isolated from AA patients (n5 3) to Treg-B isolated from HD (n5 2) shows the ranking of
top 10 significant upregulated canonical pathways by 2log (P value). Red indicates positive z score; gray indicates zero z score, and blue indicates negative z score. (B) IPA
analysis on the RNA sequencing data shows the ranking of top 10 canonical pathways by 2log (P value) in AA Treg-B (n 5 3) compared with AA Treg-A (n 5 3). Significant
upregulation of Fas in 3 out of 10 pathways is indicated. (C) Volcano plot shows the significant differential expressed genes in death receptor signaling (red) and the upregulation
of homing receptors (yellow) in Treg-B isolated from AA patients (n5 3) as compared with Treg-A (n5 3). (D) The percentage of early (Viability Dye eFluor 7802 Annexin V1) and
late (Viability Dye eFluor 7801 Annexin V1) apoptotic cells in Treg-A and Treg-B before and after treatment with 5 mg/mL of anti-Fas. Error bars represent mean 6 standard
deviation (SD). **P # .01, ***P # .001. IRF, interferon regulatory factor.
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Figure 2. IL-2 responsiveness and in vitro expandability of Treg-A and Treg-B. (A-B) Western blot analysis of STAT5 and pSTAT5 protein expression in Treg-A and Treg-B
after treatment with 1, 40, 60, or 80 IU/mL of human IL-2 for 15 or 30 minutes. b-ACTIN protein level is used as a loading control, and numbers represent the densitometric
quantification of STAT5 and pSTAT5 protein expression levels normalized to b-ACTIN. (C) The expansion rate of Treg-A and Treg-B from HD (n 5 6) and AA patients (n 5 3).
Treg-A and Treg-B were stimulated with anti-CD3/CD28 beads (1 cell:1 bead ratio) and 1000 IU/mL IL-2 for 4 weeks with 2 mM ATRA and 100 nM rapamycin in Prime XV T-cell
expansion XSFM medium. Error bars represent mean 6 SD. *P # .05; ns, not significant. (D) GSEA enrichment plot shows the significant enrichment of gene set for cell
proliferation in AA-expanded Treg-A compared with Treg-A before expansion. However, gene set of cell proliferation was not enriched in expanded HD Treg-A as compared
with preexpansion Treg-A. This finding suggests the higher “expansion potential” of AA Treg-A compared with HD Treg-A. ES, enrichment score; NES, normalized enrichment
score. (E) PCA analysis on transcriptional profiles in AA Treg-A as well as Treg-B before and after expansion. (F) Chart shows the median expression of 29 markers measured by
CyTOF analysis in HD-expanded Treg-A (n 5 3) and Treg-B (n 5 3). Error bars represent mean 6 SD. (G) Heat map shows the median expression of Treg-B–specific markers
(CD45RA, CD45RO, CD95, and CCR4) in HD Treg-A (n 5 3) and Treg-B (n 5 3) before and after expansion.
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RNA sequencing
Total RNA was extracted using RNeasy Mini Kit (Qiagen,
Hilden, Germany) and sent to Genewiz for RNA sequencing.
Details of the data analysis are included in supplemental
methods.

Xenotransplantation
NOD/SCID/IL2rg2/2/IL-3/GMCSF/SCF (NSG-SGM3) mice were
obtained from Leonard Shultz (The Jackson Laboratory) and
bred at the Francis Crick Institute biological resources facility.
All animal experiments were performed in accordance with UK
Home Office and Francis Crick guidelines. PBMCs and Tregs
were either coinjected or injected alone into the recipient
mice via the IV route. PBMCs and Tregs from HDs were
coinjected in 1:1 ratio (10 3 106 cells). Due to the limited
number of cells available from AA patients, the number of
PBMCs injected into recipient mice ranged from 1.753 106 to
4.5 3 106, and equal numbers of Tregs were coinjected to-
gether. Mice were euthanized either when animals lost 20%
of body weight or at week 12. Then, mouse tissues were re-
covered and analyzed (see supplemental methods for more
details).

Multiparameter mass cytometry (CyTOF)
Cytometry by time of flight (CyTOF) was performed as previously
described.20 Details of the method and data analysis are in-
cluded in supplemental methods.

Statistical analysis
Statistical analysis was performed using Prism Version 7 software
(GraphPad Software, La Jolla, CA). Statistical significance
was calculated by P value using unpaired Student t test. A
P value , .05 was considered statistically significant.

Results
Treg-B are sensitive to FasL-induced apoptosis
Treg-B are characterized by high expression of CD95 (Fas);
therefore, we hypothesized that these Tregs are more sensitive
to FasL and will undergo increased apoptosis following FasL
exposure compared with Treg-A. To investigate this, we first
performed RNA sequencing on Treg-A and Treg-B isolated from
both HD and AA patients to explore whether Treg-B show ac-
tivation of FasL-mediated apoptosis pathway. By comparing
gene expression profiles of AA Treg-B to HD Treg-B using in-
genuity pathway analysis (IPA), the top significant upregulated
pathway in AA Treg-B was apoptosis-related pathways (2log
P value 5 4.69; z score 5 1.414) (Figure 1A; supplemental
Figure 1; supplemental Table 1). In addition, one of themarkedly
upregulated pathways in AA Treg-B compared with AA Treg-A
was death receptor signaling (2log P value 5 6.67; z score 5
2.646), which includes apoptosis-inducing genes and therefore
suggests previous exposure of AA Treg-B to proapoptotic li-
gands (Figure 1B-C; supplemental Figure 2; supplemental Ta-
ble 2). Expression of homing receptors, including CCR4, CCR5,
CCR6, and CXCR6, were also significantly increased in AA Treg-B
as compared with AA Treg-A (Figure 1C). Notably, expression of
Fas was significantly increased in 3 out of top 10 upregulated
pathways in AA Treg-B (Figure 1B). Therefore, we next assessed
whether Treg-B cells are more susceptible to FasL-mediated
apoptosis in vitro. We found that both early and late apoptotic

rates were markedly increased in Treg-A (P value 5 .0042) and
Treg-B (P value 5 .0001) (Figure 1D; supplemental Figure 3).
However, there was a significantly higher percentage of apo-
ptotic cells in Treg-B compared with Treg-A (P value 5 .0041),
therefore confirming that Treg-B are more sensitive to FasL-
induced apoptosis than Treg-A. Interestingly, Treg-B from AA
patients remain sensitive to FasL even after response to IST
(supplemental Figure 4).

IL-2 responsiveness and in vitro expandability of
Treg-A and Treg-B
Although FasL sensitivity explains Treg-B reduction in AA, it is
not clear why Treg-A, which are more resistant to FasL, cannot
expand. To address this, we tested the “IL-2 responsiveness” of
Treg-A in vitro. When Treg-A and Treg-B were treated with a low
concentration of IL-2 (1 IU/mL) for 15 and 30 minutes, lower
pSTAT5 protein expression was observed in Treg-A compared
with Treg-B (Figure 2A). However, when IL-2 concentration was
increased to 40, 60, and 80 IU/mL, protein expression of pSTAT5
in Treg-A increased and was comparable to Treg-B after
30 minutes of IL-2 exposure (Figure 2B). These data suggest that
Treg-A do not respond to low concentration of IL-2 but respond
to higher concentration of IL-2.

When we tested the in vitro expandability of Tregs in a Treg-
promoting culture condition21 with high concentration of IL-2,
both Treg-A and Treg-B isolated from HD and AA patients were
able to expand up to 4 weeks. Expansion rates of Treg-A and
Treg-B fromHDwere comparable (P value5 .6429) where Treg-A
was expanded with an average of 45-fold increase (range, 10.47
to 113.27), whereas Treg-B increased by 33-fold (range, 4.56 to
129.03) (Figure 2C). Surprisingly, for AA patients, Treg-A ex-
panded at a significantly higher rate compared with Treg-B
(P value 5 .0198), with an average increase of 4708-fold (range,
3388.7 to 6027.4) compared with 185-fold increase (range,
32.39 to 374) (Figure 2C). Interestingly, gene set enrichment
analysis (GSEA) showed that expanded AA Treg-A were sig-
nificantly enriched (false discovery rate [FDR] q value 5 0.0377)
for cell proliferation–related genes as comparedwith preexpansion
Treg-A (Figure 2D), which was not the case for HD Treg-A.

The next question was to understand how the in vitro expansion
changes the Treg subpopulations. We performed principal
component analysis (PCA) on RNA sequencing data to study
differences of transcriptional profiles of Tregs before and after
in vitro expansion. PCA analysis showed that prior to expan-
sion, Treg-A and Treg-B isolated from AA patients had distinct
gene expression signatures with 127 significantly differential
expressed genes (FDR q value, 0.05) between them (Figure 2E;
supplemental Table 3). Nevertheless, following in vitro expan-
sion, although there were genes differentially expressed
between the 2 groups, the differences were not statistically
significant (Figure 2E; supplemental Table 4), suggesting that
expanded Treg-A and Treg-B showed similar transcriptional
profile. Using mass cytometry, we next investigated the expres-
sion of commonly expressedmarkers following in vitro expansion.
Both Treg-A and Treg-B had similar expression of immune sig-
natures where there were no significant differential markers ob-
served between the two (Figure 2F). Interestingly, both expanded
Treg-A and Treg-B were characterized by low expression of
CD45RA, but high expression of CD45RO, CD95, and CCR4
(Figure 2G; supplemental Figure 5; supplemental Figure 6A),

MECHANISM OF Treg DEPLETION IN AA blood® 13 AUGUST 2020 | VOLUME 136, NUMBER 7 889

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/7/885/1752727/bloodbld2019001347.pdf by guest on 18 M

ay 2024



therefore demonstrating that they take on the immunephenotype
of Treg-B.20 Similarly, expanded total Tregs isolated from HD and
AA patients showed Treg-B phenotype (supplemental Figure 6).

Stability, phenotypic plasticity, and functionality of
in vitro expanded Treg-A and Treg-B
To investigate the stability of in vitro expanded Tregs, we
examined the methylation status of 15 cytosine guanine

dinucleotide sites within the FoxP3 TSDR.22 TSDR cytosine
guanine dinucleotide sites in the expanded Treg-A and Treg-B
from both HD as well as AA patients were highly unmethylated
compared with the non-Treg (CD41CD25loCD127hi) pop-
ulation (Figure 3A-B). Average methylation percentages
were 7.9% for HD-expanded Treg-A, 3.6% for HD-expanded
Treg-B, 7.4% for AA-expanded Treg-A, and 12.6% for AA-
expanded Treg-B, compared with 89.1% for the non-Treg
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population (Figure 3B), suggesting that expanded Tregs
have stable FoxP3 expression.

Treg possess some degree of plasticity in which they are able to
adapt their phenotypes and functions to changes in the envi-
ronment and extracellular signals.23-27 Hence, we studied the
plasticity of expanded Tregs by culturing them in the presence of
IL-1b and IL-6 that promote the secretion of IL-17A.28,29 There
were no or negligible increase in IL-17A expression in the ex-
panded Treg-A (P value 5 .6624) and -B (P value 5 .5528) as
compared with positive control (CD41CD251 cells) where a
significant increase in IL-17A level (P value 5 .0346) was ob-
served (Figure 3C-D), suggesting that expanded Tregs have a
stable phenotype.

To assess the functionality of expanded Tregs, fluorescent
proliferation dye (CFSE)-stained Tcon were cocultured with au-
tologous expanded Tregs. Both HD and AA-expanded total
Tregs were able to suppress the proliferation of Tcon cells sig-
nificantly at Tcon:Treg ratios of 8:1, 4:1, 2:1, and 1:1, with no
significant difference in the suppressive activity between HD and
AA (Figure 3E). Similarly, both expanded Treg-A and Treg-B
from AA patients were able to suppress the proliferation of Tcon
cells significantly, and the suppressive activity was comparable
between Treg-A and Treg-B (Figure 3F-G).

High-dose IL-2 induces survival of Treg-A and
Treg-B by upregulating phosphorylated BCL-2
To study the mechanisms that lead to the survival of Tregs
following in vitro expansion, we performed RNA sequencing to
compare Tregs before and after expansion. IPA analysis showed
that IL-2 signaling was significantly upregulated in expanded AA
Treg-B in comparison with preexpansion AA Treg-B (supple-
mental Figure 7). Thus, we next investigated whether IL-2 was
able to rescue FasL-induced apoptosis by adding IL-2 to FasL-
treated Tregs. In Treg-B, FasL-induced early and late apoptosis
were rescued (P value 5 .0022), whereas the FasL-mediated
apoptosis of Treg-A remained low in the presence or absence of
IL-2 (Figure 4A; supplemental Figure 8A). Interestingly, GSEA
analysis showed that expanded Treg-A were significantly

enriched (FDR q value 5 0.0317) for genes associated with
negative regulation of extrinsic apoptotic signaling pathway
compared with Treg-A before expansion (Figure 4B). In-
triguingly, Bcl2 was significantly upregulated in 6 out of 10
enriched biological processes in expanded AA Treg-A com-
pared with preexpansion Treg-A (supplemental Figure 8B).
Furthermore, multiplex protein assay quantifying the ex-
pression levels of various apoptotic-related proteins showed
that the expression of 2 prosurvival proteins, p-BCL-2 and
p-AKT, were increased in expanded Treg-A and Treg-B as
compared with preexpansion total Treg (supplemental Fig-
ure 8C-D). Similarly, western blot results showed that the
protein level of p-BCL-2 was significantly increased (P value
, .05) in expanded Treg-A and Treg-B as compared with
total Treg before expansion, with higher p-BCL-2 expression
in AA-expanded Tregs when compared with HD (Figure 4C-
D). Taken together, our data suggest that when Treg-A and
Treg-B are exposed to a high concentration of IL-2 in in vitro
expansion culture, elevated p-BCL-2 protein expression
promotes their survival and therefore prevents FasL-derived
cell apoptosis.

In vitro expanded Tregs are able to prevent GVHD
in a xenograft mouse model
In order to evaluate the suppressive ability of the expanded
Tregs in in vivo, we used our NOD/SCID/IL2rg2/2/IL-3/GMCSF/
SCF (NSG-SGM3) humanized mice (Figure 5A). The NSG-SGM3
mouse model has been previously shown to efficiently sup-
port the development and maintenance of human Tregs.30 First,
to study the kinetics of human Tregs in in vivo, HD Tregs were
transduced with a bicistronic vector coexpressing green fluo-
rescent protein and luciferase, and then coinjected with or
without human HD CD31 cells in NSG-SGM3 mice (supple-
mental Figure 9A-C). Using whole-body bioluminescence im-
aging, we detected Tregs for up to 5 weeks in mice that were
coinjected with CD31 T cells (supplemental Figure 9C).

Next, human HD PBMCs were injected into NSG-SGM3 mice
with or without expanded Tregs (1:1 ratio; 103 106). Then, mice
that were injected with PBMC1Tregs also received additional
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doses of Tregs every 2 weeks postinjection (Figure 5A). These
2 weekly Treg injection doses were chosen based on our earlier
experiment showing exhaustion of Tregs after 5 weeks (sup-
plemental Figure 8C) in mice. Tregs or PBMC1Tregs–recipient
mice showed no or little clinical disease symptoms associated
with xeno-GVHD. Tregs or PBMC1Tregs–recipient mice lost
less body weight as compared with mice injected with PBMCs
alone (Figure 5B). Notably, mice injected with either Tregs or
PBMC1Tregs had a significantly better overall survival com-
pared with mice injected with PBMCs alone (Figure 5C). Fol-
lowing xenotransplantation, male recipient mice had a better
survival than female counterparts (data not shown). Histological
assessment of mouse femurs and spleen at the time of death
illustrated that tissue from PBMC-recipient mice had acellular
BM and severe disruption of tissue architecture in the BM as well
as spleen (Figure 5D; supplemental Figure 10A; supplemental
Figure 11). Morphological assessment of BM sections demon-
strates atypical hematopoiesis with prominent fibrotic tissue in
mice injected with PBMCs alone. However, mice injected with
Tregs with or without PBMCs had normocellular marrow with no
or little evidence of marrow fibrosis and Tregs present in BM
(Figure 5D; supplemental Figure 12). We next tested expanded
Tregs from AA patients in NSG-SGM3mice. Similar to HD Tregs,

AA-expanded Tregs (1:1 ratio; up to 4.5 3 106 cells) provided
the protective effect from xeno-GVHD symptoms, and mice
with either Tregs or PBMC1Tregs survived significantly longer
compared with mice injected with PBMCs alone (Figure 5E;
supplemental Figure 10B). It is noteworthy that the GVHD
suppressive ability of HD Tregs was better compared with AA
Tregs, even though recipient mice with HD cells received higher
doses of PBMCs (AA: 1.75 to 4.5 3 106 vs HD: 10 3 106).

Immune signatures and TCR clonality of the
expanded Tregs pre- and posttransplanted into
NSG-SGM3 mice
To study the possible changes in Tregs’ immune signatures
before and after xenotransplantation, we performed multipa-
rameter mass cytometry on expanded Tregs preinjection and
Tregs isolated from PBMC1Tregs–recipient mice BM. In vitro
expanded Tregs isolated from HD and AA patients had similar
immune profiles prior to injection into mice (Figure 6A). Al-
though we observed a significant upregulation of PD-1, Helios,
Tbet, and downregulation of CD62L, CD38, GATA3, CCR4,
CXCR4, CD177 after xenotransplantation of HD-expanded
Tregs (supplemental Figure 13A), Pearson correlation analy-
sis on median expression of 29 parameters showed that the
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immunological phenotypes of HD-expanded Tregs before and after
xenotransplantation were similar (range of r 5 0.45 to 0.64) (Figure
6B). Similarly, there was significant downregulation of CXCR4,
CCR4, CD45RO, GATA3, FoxP3, CD38, CD7, and CD161 after
xenotransplantation of AA-expanded Tregs (supplemental
Figure 13B); however, Pearson correlation analysis on median
expression of 29 parameters showed similar immunological
phenotypes of AA-expanded Tregs before and after

xenotransplantation (range of r 5 0.04 to 0.47) (Figure 6C).
Interestingly, when we compared Treg-B–specific markers
between pre- and posttransplanted expanded Tregs, CCR4
expression was markedly reduced after xenotransplantation
of both HD (P value 5 .00017) and AA (P value , .0001)
expanded Tregs (Figure 6D-E; supplemental Figure 14; sup-
plemental Figure 15). In addition to CCR4 expression,
CD45RO (P value , .0001) expression was also significantly
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Figure 6. Immune signatures and TCR clonality of the expanded Tregs before and after xenotransplantation into NSG-SGM3mice. (A) CyTOF analysis shows the relative
median expression of the 29 markers in HD (n5 3) and AA (n5 4) expanded total Tregs. (B) Heat map of similarity matrix between pre- (n5 4) and postinjection (n5 4) of HD-
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downregulated after AA-expanded Tregs were injected into
mice (Figure 6E; supplemental Figure 15). Overall, despite
some phenotypic changes following xenotransplantation,
expanded Tregs from HD and AA were able to protect mice
against GVHD.

To investigate the T-cell receptor (TCR) clonality of the ex-
panded Tregs before and after xenotransplantation, we per-
formed TCR Vb chain CDR3 high-throughput sequencing
on expanded Tregs preinjection and Tregs isolated from
PBMC1Tregs–recipient mice BM. The average productive
clonalities of the AA-expanded Treg before and after xeno-
transplantation were 0.093 and 0.209, respectively, indicating
that TCR repertoires of Treg cells are less diverse following
xenotransplantation after in vivo exposure to inflammatory
environment (Figure 6F-G). Similarly, for HD-expanded Tregs,
the average productive clonalities before and after xeno-
transplantation were 0.071 and 0.231, respectively (supple-
mental Figure 16).

Discussion
The reduction in the number and function of Tregs is a well-
known phenomenon in AA,4,17-19 although the exact mecha-
nism is less clear. The expansion of activated T cells as well as
an increase in proinflammatory cytokines such as interferon-g
and tumor necrosis factor-a4,5 could play an important role in
preventing immunoregulatory function of Tregs and create a
vicious circle of immune dysregulation. In addition, expansion
of autoreactive T cells in AA results in destruction of HSPC,
partly through the Fas/FasL cytotoxic pathway where Fas
expression is enhanced on CD341 cells and FasL is upregu-
lated in the T lymphocytes.7,31-35 The specific subpopulation of
suppressive and proliferative Tregs (Treg-B) expresses a
higher level of CD95 (Fas) than another less proliferative
subpopulation, known as Treg-A.20 In this study, we have
demonstrated that FasL induces a higher degree of apoptosis
in Treg-B, and these Tregs remain FasL sensitive even after
response to IST. Considering the suggested role of FasL-
induced progenitor cells’ apoptosis in AA, it could similarly
be the reason for the skewed composition of Tregs in AA
patients. Although Treg-A is less sensitive to FasL, Treg-A do not
expand in AA patients in the presence of low concentration of IL-2.
IL-2 is a key cytokine for the Treg differentiation, functional
competence, and stability36-38; thus, we hypothesized that
Treg-A do not respond to the physiological level of IL-2 and
cannot expand in AA to compensate for overall reduction in
Tregs due to FasL-induced apoptosis. Here we show that
indeed Treg-A do not respond to low concentration of IL-2
and thus do not compensate for the decrease in Treg-B ob-
served in AA.

We were able to expand Treg-A and Treg-B using a high
concentration of IL-2 and anti-CD3/CD28 activation beads with
rapamycin and ATRA in vitro. Surprisingly, we observed a
markedly higher in vitro expansion of Treg-A isolated from AA

patients compared with Treg-B, which could be due to the re-
moval of inhibitory effects of in vivo inflammatory environment in
AA that prevents Tregs function and expansion.

Following in vitro expansion, expanded Tregs show similarities
with Treg-B phenotypically and at the gene expression level.
One of the main characteristics of Treg-B is high expression of
Fas and their sensitivity to FasL-mediated apoptosis. There-
fore, it raises the question whether the expanded Tregs, which
also express a high level of Fas, remain FasL sensitive and
go through apoptosis if exposed to FasL. Nevertheless, we
showed that IL-2 was able to rescue FasL-induced apoptosis in
expanded Tregs, indicating less sensitivity to FasL. Following
expansion, Tregs express a high level of prosurvival protein
p-BCL-2, suggesting that expanded Tregs are able to survive
in an inflammatory environment. Furthermore, there was a
higher p-BCL-2 protein expression in AA-expanded Tregs
when compared with HD-expanded Tregs, in line with the
finding of higher expansion and proliferation rates in AA Tregs
compared with the HD.

Adoptive Treg therapy has shown promising outcomes in
several clinical settings, including GVHD,39,40 solid organ
transplant rejection,41,42 type 1 diabetes,43-45 as well as auto-
immune diseases such as systemic lupus erythematosus46,47

and Crohn disease.48 Although the subtypes of AA patients
involved in this study were heterogenous, we hereby dem-
onstrated that in vitro expanded Tregs from AA are functional
and stable with minimal plasticity, giving the potential of using
these expanded Tregs as an additional strategy to restore the
Treg reduction in AA patients, which may improve the clinical
outcome of the standard treatment using IST. Indeed, by using
the NSG-SGM3 mouse model, we have shown the efficacy of
in vitro expanded Tregs in protecting mice against GVHD.
Although AA and HD Tregs were able to similarly suppress the
proliferation of Tcon cells in vitro, the efficacy of AA-expanded
Tregs in suppressing GVHD in vivo was found slightly lower
than the HD-expanded Tregs. This differences in the in vivo
immunosuppressive ability of AA and HD Tregs might be due
to the preactivation of T-effector cells from AA patients who
were coinjected with Tregs and which was not the case in HD
T-effector cells.4,5 In other words, AA-expanded Tregs were
inhibiting less “suppressible” T-effector cells compared with
HD counterparts. This could be a less problematic issue in
a clinical setting where AA patients would receive IST first
(ie, antithymocyte globulin), which will eliminate the activated
T-effector cells.

This study, for the first time, delineates the mechanisms
behind the skewed Tregs composition in AA, which could be
targeted for therapy. In addition, these findings suggest a
potential role for therapy with low-dose and/or low-affinity
IL-2 in AA as well as the potential clinical use of expanded
autologous Tregs to improve patient clinical outcome in
addition to the standard IST.

Figure 6 (continued)AA-expanded Tregs. ***P# .001. (F) Productive clonality of the TCR repertoires of AA-expanded Tregs before (n5 3) and after (n5 3) xenotransplantation
into NSG-SGM3 mice. Values near 1 represent samples with 1 or a few predominant rearrangements (monoclonal or oligoclonal samples) dominating the observed repertoire.
Clonality values near 0 represent more polyclonal samples. (G) Representative pie charts show the diversity of TCR Vb CDR3 in AA-expanded Tregs before and after
xenotransplantation into NSG-SGM3 mice.
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