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Stammzelltransplantation, Klinik für Innere Medizin I, Freiburg, Germany; 17UOC Ematologia, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII Hospital,
Bergamo, Italy; 18FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy;19Department of Oncology, Inselspital, University Hospital Bern/
University of Bern, Bern, Switzerland; 20Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; 21IGMM, University of
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Haematology Unit (MRC MHU), Biomedical Research Centre (BRC) Hematology Theme, Oxford Biomedical Research Centre, Oxford Centre for Haematology,
Weatherall Institute of Molecular Medicine (WIMM), Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; 25Team 16, Hematology
Laboratory, Center of Research of Cancerology of Toulouse, U1037, INSERM/Institut Universitaire du Cancer de Toulouse (IUCT) Oncopole, Toulouse, France;
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KEY PO INT S

l Transcriptomes cluster
most AEL apart from
other myeloid
malignancies.

l Alterations of AEL
erythroid master
regulators impair
GATA1 activity and
induce the disease
in mice.

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive
hematologic malignancy. Previous studies showed that AEL leukemic cells often carry
complex karyotypes and mutations in known AML-associated oncogenes. To better define
the underlying molecular mechanisms driving the erythroid phenotype, we studied a series
of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epi-
genetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low
mutational burden. We established an erythroid vs myeloid transcriptome-based space in
which, independently of the molecular subgroup, the majority of the AEL samples
exhibited a unique mapping different from both non-M6 AML and myelodysplastic syn-
drome samples. Notably, >25% of AEL patients, including in the genetically undefined
subgroup, showed aberrant expression of key transcriptional regulators, including SKI,
ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors

blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility
at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal
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erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated
alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an
erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic
stem or progenitor cells. (Blood. 2020;136(6):698-714)

Introduction
Acute myeloid leukemia (AML) of the erythroid lineage (acute
erythroleukemia [AEL] or AML-M6) accounts for 3% to 5%of AML
patients and is inherently associated with poor outcome.1-3 Al-
though AEL can occur at any age, the majority of patients are
.65 years, and the disease often occurs secondary to other
neoplasms, including myeloproliferative neoplasms (MPNs) or
myelodysplastic syndrome (MDS), or after cytotoxic cancer
treatment. Two major morphological subtypes have been pro-
posed: pure erythroleukemia (PEL; AML-M6b, also known as Di
Guglielmo disease) with .80% of blasts committed to the
erythroid lineage and AML-M6a characterized by the presence
of both erythroid precursors and myeloid blasts.1-3 The 2016
World HealthOrganization (WHO) classification integrated AML-
M6a into MDSs or not otherwise specified AML (AML-NOS), but
this classification remains a matter of debate.4-6

Functional studies have suggested that 2 to 5 genetic driver
lesions on a background of preexisting alterations in hemato-
poietic stem or progenitor cells (HSPCs) might be sufficient to
induce AML.7,8 For AEL, earlier work showed that leukemic cells
often have complex karyotypes, and targeted DNA sequencing
revealed the presence of several known AML-associated
mutations,9-12 but AEL-driving molecular mechanisms remain
incompletely understood and erythroleukemia-specific muta-
tions have seldom been functionally validated. Strikingly, single
or multiple TP53 mutations have been shown to be a molecular
hallmark of PEL.13

Normal erythroid differentiation is controlled by the activity of
both extrinsic signaling factors, including erythropoietin (EPO)
mediating its effects through the EPO receptor (EPOR) signaling
pathways, and intrinsic multimeric transcription complexes.14-16

The latter includes hematopoietic master regulators like GATA-
binding protein 1 (GATA1), T-cell acute lymphocytic leukemia
protein 1 (TAL1), LIM domain-only 2 (LMO2), CBFA2/RUNX1
partner transcriptional corepressor 3 (CBFA2T3, also known as
ETO2), and LIM-domain-binding protein 1 (LDB1), thereafter
broadly namedGATA1 complexes, which can activate or repress
transcription of target genes. These GATA1 complexes con-
tribute to terminal erythroid differentiation through binding to
gene loci and transcription of essential erythroid genes (eg,
hemoglobin). This process is also regulated by Krüppel-like
factor 1 (KLF1), which binds DNA next to the GATA1 com-
plexes to coregulate erythroid genes.17,18 To establish the ery-
throid differentiation program, functional synergism between
these transcriptional complexes and the EPO/EPOR signaling is
mediated by the presence of phosphorylated STAT5 binding in
the neighborhood of GATA1 and KLF1.19,20 Accordingly, mu-
tations in these factors have been associated with altered
erythropoiesis.21,22 For example, GATA1 mutations are associ-
ated with congenital erythroid hypoplasia (Diamond-Blackfan
anemia [DBA]) or X-linked dyserythropoietic anemia.23 More-
over, the identification of a NFIA-ETO2 fusion in pediatric PEL24

suggests that an altered activity of these complexes may con-
tribute to human erythroid leukemogenesis.

To better understand the molecular mechanisms that control the
erythroid feature, we characterized the genetic and transcrip-
tional landscape in leukemic cells from 33 AEL patients. We
identified distinct molecular subgroups composed of patients
carrying (1) TP53 mutations, (2) various combinations of muta-
tions previously found in AML and MDS such as DNMT3A, TET2
or IDH2, and (3) those with none of these recurrent alterations.
Comparative transcriptomics established an erythro/myeloid
differentiation expression signature space that distinguished the
majority of AEL cases from MDS or other AML forms. Notably,
leukemic cells from .25% of AEL patients showed aberrant
expression of key transcriptional regulators including SKI, ERG,
and ETO2, which interfere with the activity of the erythroid
master regulator GATA1. Combinatorial experimental expres-
sion in HSPC fractions induced lethal erythroid or mixed ery-
throid/myeloid diseases in mice phenocopying several aspects
of the human disease, underlining their importance in the mo-
lecular pathogenesis of AEL.

Materials and methods
Patient samples
Fifty-eight human patient samples were obtained with the in-
formed consent of the patient and approved by the local ethics
committees in accordance with national ethics rules. AEL patient
diagnostics were established according to the WHO 2008
classification and criteria described recently.16 Cytogenetic risk
groups were defined according to the revised International
Prognostic Scoring System (IPSS-R).25 Mononuclear cell fractions
were obtained from patient blood or bone marrow (BM) samples
by Ficoll gradient, and frozen in fetal bovine serum (FBS; Gibco)
supplemented with 10% dimethyl sulfoxide (DMSO). DNA and
RNA extraction were done on fresh or frozen samples. DNA was
extracted using bulk or sorted cells from patient samples (n5 7,
CD361 for blast cell population and CD31 or CD191 for non-
neoplastic cell populations) or from xenograft-amplified samples
(n 5 4). RNA was extracted from patient samples (n 5 22) and
xenograft-amplified samples (n 5 7) from bulk or sorted cells
(CD361 or CD451 cells), respectively. We obtained appropriate
sequencing material for 33 patients (11 paired patient samples
for exome sequencing and 29 patient samples for RNA
sequencing).

Murine models
C57BL/6JOlaHsdmice (named C57BL/6J) were purchased from
Envigo and NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice from
The Jackson Laboratory (005557). TP53R248Q/1 knock-in mice
were described previously.26 To generate double transgenic
TET22/2/GATA1s mice, we intercrossed Tet22/2 and Gata1De2

(here named Gata1s) mice.27,28 Mice were maintained at
the Gustave Roussy preclinical facility and all experiments
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were approved by the French National Animal Care and
Use Committee (CEEA 26: projects 2017-082-12726 and
2017-084-12799).

Flow cytometry and cell sorting
Antibodies used for flow cytometry are listed in supplemental
Table 1 (available on the Blood Web site). Cells were stained in
13 phosphate-buffered saline (PBS) supplemented with 2% FBS
at 4°C for 30 minutes and washed prior to analysis. Whole BM or
spleen cells were analyzed without red blood cell lysis. For cell
sorting, total BM cells underwent red blood cell lysis. To obtain
HSPCs, total BM was depleted of all major hematopoietic cell
lineage (Lin2) using the Mouse Hematopoietic Progenitor (Stem)
Cell Enrichment Set (Becton Dickinson [BD]]. Progenitor pop-
ulations were further purified by fluorescence-activated cell
sorting (FACS) according to the following phenotypes: Hema-
topoietic stem cells (HSC) were defined as Lin-/Sca11/KIT1/
CD342/CD482, megakaryocytic-erythroid progenitors (MEPs)
were defined as Lin2Sca12 /KIT1/CD342/CD16/322 and
granulocyte-macrophage progenitors (GMP) were defined as
Lin2/Sca12/KIT1/CD341/CD16/321. To obtain mouse erythroid
progenitors, BM cells were first depleted using biotin-
conjugated antibodies against CD3, B220, Gr-1, and CD11b
(BD) followed by FACS according to the population described as
CD711/Ter1191/KIT1. Flow cytometric analysis was performed
using ARIAII, CANTO-II, or CANTO-X instruments (BD), and data
were analyzed using the FlowJo software (Flowjo 9.3.2).

Cell culture
Mouse erythroid progenitor cells were expanded in StemSpan
serum-free expansion medium (SFEM; Stem Cell Technologies)
supplemented with penicillin (100 U/mL)-streptomycin (100 mg/
mL), murine stem cell factor (mSCF) (10 ng/mL), murine in-
terleukin 3 (mIL3) (10 ng/mL), mIL6 (10 ng/mL), human EPO
(hEPO) (2 U/mL), 0.4% cholesterol, and dexamethasone (1026

M). Mouse erythroleukemia (MEL) cells were maintained in RPMI
1640 (Gibco) supplemented with 10% FBS, penicillin (100 U/mL)-
streptomycin (100 mg/mL) and 2 mM L-Glutamine (Gibco).
Murine G1E cells, a generous gift from M. Weiss,29 were
maintained in Iscove modified Dulbecco medium (Gibco) sup-
plemented with 15% FBS, penicillin (100 U/mL)-streptomycin
(100 mg/mL), mSCF (10 ng/mL), hEPO (2 U/mL), mono-
thioglycerol (4.5 3 1025 M), and 2 mM L-Glutamine (Gibco).
Murine growth factor-dependent Ba/F3 cells was maintained in
RPMI 1640 (Gibco) supplemented with 10% FBS, penicillin (100
U/mL)-streptomycin (100 mg/mL), mIL3 (10 ng/mL), and 2 mM
L-Glutamine (Gibco). Human embryonic kidney (HEK-293T) cells
were grown in Dulbecco modified Eagle medium (Gibco) sup-
plemented with 10% FBS, penicillin (100 U/mL)-streptomycin
(100 mg/mL), and 2 mM L-Glutamine (Gibco).

Retroviral constructs, particle production, and cell
transduction
The SKI complementary DNA (cDNA) was a kind gift from Suzana
Atansoski (Basel, Switzerland). The other cDNAs were synthe-
sized. All cDNAs were cloned into retroviral pMSCV-IRES-EGFP
or -mCherry backbones. GATA1 cDNA was cloned into lentiviral
pLT3-GEPIR-IRES-EGFP expression vector. For retroviral or
lentiviral particles production, HEK-293T cells were plated 1 day
before cotransfection with the expression constructs coex-
pressing EGFP or mCherry and cDNA using the X-tremeGENE-9
DNA Transfection Reagent (Roche) or jetPRIME reagent

(Polyplus transfection), respectively, according to the manu-
facturer’s recommendations. Culture media were changed
24 hours posttransfection and supernatants containing viral
particles were harvested 48 hours and 72 hours posttransfection.
Murine cells were transduced by spinoculation (90 minutes at
2500 rpm, 33°C) with supernatants containing viral particles
supplemented with 5 mg/mL polybrene in 7.5 mMHEPES buffer.

BM transplantation
Total BM (0.4 3 106 cells) and/or transduced progenitor cells
were transplanted through IV injection in lethally (9.5 Gy)
or sublethally (5 Gy) irradiated 8- to 10-week-old C57BL/6J
recipient mice.

RNA extraction and RT-qPCR
RNA was extracted using a RNeasy Mini kit (Qiagen) or AllPrep
DNA/RNA Mini kit (Qiagen), according to the manufacturer’s
recommendations and quantified using NanoDrop (Thermo-
Scientific). Reverse transcription (RT) was performed using
SuperScript II (Invitrogen). Quantitative polymerase chain
reaction (qPCR) was performed using SYBR Select Master mix
or TaqManGene ExpressionMaster mix (Applied Biosystems) on
a 7500HT Fast Real-Time PCR System (Applied Biosystems)
following the manufacturer;’s recommendations. Primer se-
quences are listed in supplemental Table 2.

Whole-exome sequencing
Whole-exome sequencing was conducted as described
previously30 on paired-samples from 11 patients. DNA from
sorted CD31 or CD191 nonneoplastic cells was used for exome
capture using SureSelect All Exon V4 or V5 kits (Agilent Tech-
nologies). We performed paired-end sequencing (100 bp) using
HiSeq2000 sequencing instruments at Gustave Roussy genomic
platform. Reads were mapped to the reference genome hg19
using the Burrows-Wheeler Aligner (BWA) alignment tool version
0.7.10. PCR duplicates were removed using Picard tools–Mark
Duplicates (version 1.119). Local realignment around indels and
base quality score recalibration was performed using GATK 3.3
(Genome Analysis Tool Kit). Reads with a mapping quality
score , 30 , 20 were removed. Somatic single-nucleotide
variations (SNVs) and indels were called in the leukemic sam-
ple using Varscan (v2.3.7) by comparison with the paired non-
neoplastic samples for exomes, and by comparison with the
reference genome for RNA-seq. For candidate somatic muta-
tions, the variants were adopted as candidate mutations when
P value was,.001 and allele frequency was,.1 in the reference
sample. Variants were annotated with Annovar (v141112). We
excluded synonymous SNVs, variants located in intergenic,
intronic, untranslated regions and noncoding RNA regions. The
mean coverage in the targeted regions was, respectively, 85,43
and 91,23 for leukemic and nonneoplastic samples. The func-
tional variants were predicted using the open platform Cancer
Genome Interpreter31 (CGI) and only known-variants or pre-
dicted driver variants were confirmed through visualization with
IGV (2.3.88) and finally kept in this study.

RNA sequencing
RNA sequencing (RNA-seq) was performed as described.27

Sequences were aligned to the reference genome with TopHat2
version 2.0.9 using the following parameters: –bowtie1–fusion-
search–library-type fr-firststrand–read-realign-edit-dist 0 -p 8 -r
50 (or 2.0.14 for mice data sets) and Bowtie1 version 1.0.0. The
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number of reads per genes (RefSeq database) was counted with
HTSeq-count version 0.5.4p5 using the “union” mode. The
counts were then normalized with the DESeq2 method, which
takes into account the library size of each sample.

ATAC sequencing
ATAC-sequencing (ATAC-seq) analysis has been previously
described32 Briefly, after lysis of 50 000 cells, transposition, and
purification steps, the transposed DNA fragments were ampli-
fied by PCR (12 cycles) using adapters from the Nextera Index Kit
(Illumina). PCR purification was performed using Agencourt
AMPure XP magnetic beads (Beckman Coulter) to remove large
fragments and remaining primers. Library quality was assessed
using an Agilent 2100 Bioanalyzer using a High Sensitivity DNA
Chip (Agilent Technologies). Libraries were sequenced using
NovaSeq 6000 sequencer (Illumina; 50 bp paired-end reads).
Quality control of reads was performed using FastQC 0.11.7
and multiQC 1.5. The reads were aligned to the reference
genome mm10 with bwa (aln 0.7.17). After alignment, we re-
moved reads mapping to the mitochondrial genome, PCR
duplicate reads, and reads with a mapping quality lower than
20 using samtools (v 1.9). Final read counts for all mouse data
sets ranged from 42 to 128 million reads. Mapped reads were
normalized to bins per million and were converted to bigwig
format using deeptools (v3.3.0). Peak calling, differential
analysis, annotation, and motif analysis were performed using
macs2 (v 2.1.1) and homer (v4.10.4, annotatePeak.pl and
findMotifsGenome.pl).

PCA of data from differentiation map
To define the hematopoietic space described (Figure 3A), we
built a principal component analysis (PCA) of cell types from
Differentiation Map [DMAP]33 (DMAP_PCA), excluding NK cells,
B cells, T cells, and dendritic cells. As features we included ranks
of differentially expressed genes (DMAP_DE) (FDR , 0.05,
logFC. 2) determined with limma.34 A Loess regression line was
fitted in PCA space to erythroid cells (all erythrocytes and MEP),
and Myelocytes (HSC, CMP, GMP, GRAN, MONO, BASO, and
EOS). New data points (NP) was projected into the DMAP_PCA
space as a dot product between scaled NP vector and
DMAP_PCA rotation. By these calculation, we applied the same
transformation to NP and added them to DMAP_PCA without
recalculation of principal components.

Transcription factor activity inference
For gene regulatory network inference, the ARACNe-AP soft-
ware was used to infer a Gene Regulatory Network using scRNA-
seq data from healthy human progenitors to predict a list of
target genes for each transcription factor (TF).28,29 ARACNe was
run over the log2 normalized counts in bootstrap mode (100
iterations), with a P value threshold of 1e-8 and a custom curated
list of 2171 TFs. Therefore, the activity of each TF in a normal
context was computed in a network. For each AEL sample, TF
activities were inferred by interrogating this network with AEL
transcriptome data and expressed as Normalized Enrichment
Score (NES) using the R library viper, as described in the bio-
conductor package manual.30 NES were used to test differential
activity by Student t test and P value correction by Benjamini-
Hochberg (FDR cutoff at 0.05). Differentially activated gene lists
were established by PCA analysis using predicted activated
gene matrix (previously computed using ARACNE and VIPER
algorithm), then genes driving PCA dimensions were identified

and ranked by contribution (using FactoMineR v1.41 and
factoextra v1.0.5 R packages). Finally, heatmap of activated
genes was obtained by plotting the top 50 most contributed
genes from the first PCA dimension (using pheatmap v1.0.12 R
package).

Data sets
Sequencing data were deposited into EBI - Array-Express under
the accession E-MTAB-9012 (ATAC-seq) and European
Genome-Phenome Archive (EGA) under the accession
EGAS00001004203 (Exome/RNA-seq). Available GATA1 ChIP-
seq on mouse erythroblasts were obtained from ENCODE
(GSE36029; SRA accession: SRR492437) and available ATAC-
seq data sets from mouse MEP, CFU-E, and proerythroblasts
were previously published.35

Statistical analysis
Statistical significance was calculated using Prism (version 6.0a)
and is indicated as P values (Student t test except when oth-
erwise specified). *P , .05, **P , .01, ***P , .001.

Results
Molecular alterations in AEL patients
We collected samples from 58 AEL patients, including 34 adults
.60 years, 14 between 40 and 59 years, 8 young adults (21-39
years), and 2 pediatric patients. According to the 2008 WHO
classification, 33 patients were diagnosed with de novo AEL,
including 29 AML-M6a and 4 AML-M6b; 20 patients were di-
agnosed with AML-M6a secondary to MDS/CML/ALL; 1 with
AML-M6b secondary to plexus choroid carcinoma; and a more
precise diagnosis was lacking for 4 patients (supplemental
Figure 1A; supplemental Table 3). Thereafter, the term “AEL”
was used for all patients. Several AEL samples lacking suffi-
cient number of viable cells, were expanded by xenografting
them in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. This
approach provided additional leukemic material to isolate
RNA (7 patients) and DNA (4 patients). Together, we obtained
appropriate sequencing material for 33 patients and per-
formed exome sequencing on 11 paired leukemic and non-
neoplastic (either CD31 or CD191 cells from the same patient)
samples and RNA sequencing of 29 leukemic samples.
Combining exome and RNA-seq data, we identified sequence
variants with predicted functional consequences in 62 genes
(Figure 1).

These data, including high variant allele frequency (supple-
mental Figure 1B), support classification of patients into 3 mo-
lecular subgroups (Figure 1). Subgroup 1, presenting with TP53
mutations (n 5 12, 36.3% of patients), had in average 4.41
mutations per sample and was associated with both a higher
cytogenetic risk and a poorer outcome (Figure 1; supplemental
Figure 1C-F). Subgroup 2 (n5 11, 33.3%) mostly presented with
TET2 nonsensemutations (n5 8) andDNMT3Amutations (n5 5),
including 2 patients with both TET2 and DNMT3A mutations,
and had in average 5.72 mutations per sample. Several patients
with TET2 and/orDNMT3Amutations also carried SRSF2P95H/R or
IDH2R140Q mutations. Of note, in the only sample presenting
both a TET2 and an IDH2mutation, the variant allele frequencies
were 60% and 13%, respectively (data not shown), possibly
reflecting 2 independent clones. Interestingly, 1 case (#17) of
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subgroup 2 harbored a TET2 loss-of-function mutation and
a GATA1 mutation, predicted to encode the short isoform
GATA1s. Additional mutations affected transcription factors
(eg, WT1, RUNX1), epigenetic regulators (eg, ASXL1, EP300,
BCOR), signaling mediators (eg, NOTCH2, IL7R), and other
genes in this group of patients. Finally, subgroup 3 (n 5 10,
30.4%) contained samples without TP53 or epigenetic

variants. On average, these AEL showed 1.60 mutations per
sample, a significantly lower value than for subgroups 1 and 2
(Figure 1; supplemental Figure 1G-H). Overall, our data
confirmed that AEL is a molecularly heterogeneous disease
characterized by a high prevalence of genetic variants in TP53
and epigenetic regulators comparable to other published
cohorts.11,36
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AEL gene-expression signatures correlate with
erythroid differentiation
As the heterogeneous genetic alterations did not provide any
strong rationale for the erythroid phenotype of these leukemia,
we investigated the erythroid feature by comparing gene-
expression signatures (GES). PCA did not reveal any signifi-
cant correlation between the GES and the 3 previously identified
molecular subgroups (Figure 2A). Similarly, the percentage of
erythroblasts in the patient BM at diagnosis was poorly reflected
by GES (Figure 2B).

Because the AEL WHO classification is based on the number of
erythroid andmyeloid blasts present in the BM, we used a digital
cellular deconvolution method (xCell) to compute a GES-based
enrichment in erythroid, myeloid, and other hematopoietic cell
types (supplemental Figure 2A).37 The majority of samples had a
prominent “erythrocyte” signature (n 5 20), whereas some AEL
samples presented a higher signal for the immature (MPP, CMP,
GMP) or mature myeloid (monocyte, neutrophil) signatures
(n 5 9). To further explore the link between AEL transcriptomes
and different stages of human erythroid maturation, we com-
pared GES from the patients with those obtained experimentally
after in vitro differentiation of human peripheral blood mono-
nuclear cells into colony-forming unit erythroid (CFU-E;
CD711CD235-), proerythroblasts (Pro-E; CD711CD235low), in-
termediate (Int-E; CD711CD235high), and late erythroblasts (Late-
E; CD71lowCD235high)38 and observed clustering according to
these maturation stages (Figure 2C-D). Importantly, tran-
scriptomes from an independent larger cohort of AEL patients36

clustered similarly (Figure 2E-F).

Together, AEL gene expression programs are influenced by the
erythroid differentiation stages rather than by the presence of
particular genetic lesions, suggesting that the erythroid identity
in human AEL relates to the cellular origin and the activity of
transcriptional regulators driving cellular differentiation.

A transcriptome-based space maps AEL, MDS, and
other AML to erythroid- and myeloid-lineage
trajectories
As the 2016 WHO classification assigns most cases previously
diagnosed as AEL toMDS or other AML,7 we aimed at designing
a transcriptome-based space that is able to distinguish AEL from
MDS and other non-AEL AML subtypes. To this end, we re-
trieved cellular signatures from the DMAP database32 and
computed erythroid and myeloid differentiation expression
trajectories (Figure 3A). As expected, relative differential gene
expression clustered our AEL samples between the erythroid

and myeloid trajectories. The majority of cases (n5 25) mapped
closer to the erythroid axis whereas the rest mapped closer to
the myeloid trajectory (n 5 7) and closer to MDS transcriptomes
(Figure 3B-C). Likewise, the samples from a recently published
large AEL cohort36 mostly clustered apart fromMDS samples39,40

(Figure 3C) and apart from non-M6 AML samples41 (Figure 3D).
Notably, AEL samples mostly projected between HSC and
mature erythroid cells supporting that only part of the
maturation-associated erythroid program is expressed in these
samples. Interestingly, among our AEL samples that mapped
closer to the myeloid axis and other AML samples, sample 24
showed a high expression of SPI1 (Figure 3D; supplemental
Figure 2B) also seen in other AML subtypes and was actually
independently reclassified as AML-M5 by clinicians during the
course of this study. These data support the idea that the
transcriptional programs of the majority of AEL cases differs from
those of MDS and other AML subtypes. They also support the
existence of an overlapping continuum between these entities
and the WHO-2016 reclassification of some AEL cases as
AML-NOS.

Expression and activities of erythroid regulators
in AEL
Myelo/erythroid differentiation is controlled by expression and
activity of a relatively small group of transcription factors. Using
the ARACNe and VIPER packages42-44 and a large data set from
human healthy progenitor cell transcriptomes,45 we computed
the activity of transcription factors and inferred lists of putative
target genes (supplemental Figure 3A-B). Interestingly, we ob-
served a gradual decrease in expression of erythroid tran-
scription factors (eg, KLF1, GATA1,NFE2, TAL1,NFIA) and their
predicted activity when going from the erythroid to the myeloid
trajectories and an inverse correlation with myeloid factors (eg,
CEPBA and SPI1) (Figure 3E; supplemental Figure 3C). This
finding indicates that AEL is characterized by the transcriptional
proximity to the normal erythroid lineage trajectory and by the
relative activity of master transcription factors that control ery-
throid differentiation.

These data led us to hypothesize that some AEL cases might be
driven by aberrant expression and activity of erythroid tran-
scription factors. We focused on factors known to be pre-
dominantly expressed during erythroid differentiation and/or to
control the activity of the GATA1 erythroid master regulator.14

Using a threshold of fourfold higher expression level than the
average, we observed that some AEL patients indeed expressed
abnormally high levels of ERG (n 5 2), GFI1 (n 5 1), RUNX1T1
(5 1), and ETO2 (n 5 1) (Figure 3F). GATA3, which enforced
expression previously resulted in erythroid bias,46 was also highly

Figure 3. Transcriptome-based mapping and aberrant erythroid regulators in AEL. (A) PCA of data from Differentiation Map (DMAP)33 with regression to cell types in an
erythroid and myeloid compartment. The regression line fits to erythroid (green) and myeloid (gray) cells in the PCA space of genes significantly (FDR . 0.05, LogFC . 2)
segregating each hematopoietic population: basophiles (BASO), common myeloid progenitor cells (CMP), eosinophil (EOS), erythrocytes (ERY), granulocyte-monocyte
progenitor cells (GMP), granulocytes (GRAN), hematopoietic stem cells (HSC), megakaryocytes (MEGA), megakaryocytes-erythroid progenitor cells (MEP), and monocytes
(MONO). (B) PCA with regression lines from plot (A) with projection of AEL patient samples. (C) PCA with regression lines from plot (A) with projection of AEL patient samples
from our cohort (AEL cohort 1), from Iacobucci et al36 (AEL cohort 2) andMDS samples.39,40 (D) PCA with regression lines from plot (A) with projection of our AEL patient samples,
AML and APL samples from the Blueprint consortiumdatabase. (E) PCAwith regression lines from plot (A) with projection of AEL patient samples coloredwith KLF1, GATA1, and
CEBPA expression and predicted activity. (F) Histogram representation of ERG, GFI1, RUNX1T1, ETO2, GATA3, and SKI gene expression in AEL patients. Positive patient
samples (red bars) were defined as presenting an expression above the threshold set as fourfold the average of AEL samples. Dotted bars represent the average expression of
AEL samples. (G) Table indicate patient samples presenting with genetic alteration (orange) or transcriptional alteration (blue) of GATA1-associated genes67-70 in 3 molecular
subgroups of AEL: TP53-mutated, epigenetics, and others. (H) Kaplan-Meier survival plot of AEL patients grouped according to the presence (or absence) of genetic or
transcriptional alterations defined in panel G. P value using log-rankMantel-Cox test is indicated. (I) Kaplan-Meier survival plot of AEL patients from Iacobucci et al36 and grouped
according to the presence (or not) of genetic or transcriptional alterations defined in panel G. P value using log-rank Mantel-Cox test is indicated.
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expressed in 3 samples. Notably, we also found high expression
of the transcriptional corepressor SKI (v-Ski avian sarcoma viral
oncogene homolog) in 2 patients from molecular subgroup
3 (Figure 3F). Interestingly, v-Ski was previously reported to
transform chicken erythroid cells, and to directly interact with
GATA1 to repress erythroid differentiation.47-50 Our findings
suggest that SKI not only influences experimental erythroid
differentiation but could also contribute to human AEL
pathogenesis.

The search for fusion transcripts using RNA-seq data revealed
additional alterations, including 1 in-frame BCR-ABL1 fusion
gene (expected in this secondary-to-CML sample) and 3 novel
out-of-frame fusion transcripts, notably 2 of them in a TP53-
mutated context (supplemental Figure 4A-B). Sample 37
harbored an out-of-frame fusion of YWHAE (tyrosine 3-mono-
oxygenase/tryptophan 5-monooxygenase activation protein e)
with EPO and sample ES3 showed an out-of-frame fusion of
HSD17B11 (hydroxysteroid 17-b dehydrogenase 11) with
B4GALNT3 (b-1,4-N-acetyl-galactosaminyltransferase 3). These
fusions were associated with ectopic expression of EPO
and B4GALNT3, respectively. Interestingly, the YWHAE-EPO1

sample also showed high EPOR, suggesting an autocrine
mechanism of proliferation/survival in this case (supplemental
Figure 4C). Although the role of B4GALNT3 in human eryth-
ropoiesis remains unclear, an out-of-frame fusion leading to
overexpression of B4GALNT3 has been previously reported in
thyroid carcinoma.51 Sample ES1 from subgroup 3 presented
with an out-of-frame fusion targeting the middle of theDNMT3B
locus and associated with lower DNMT3B expression as com-
pared with other samples, supporting DNMT3B inactivation.
Notably, Dnmt3a and Dnmt3b expression were previously re-
ported to be tightly controlled during erythroid maturation in
mice.52

Overall, genetic and transcriptional alterations in erythroid
regulators, including physical or functional interactors of the
GATA1 transcriptional complexes were found in 9 of 33 patients
(27%) (Figure 3G). Notably, these patients showed a trend toward
poorer overall survival (Figure 3H), which became significant upon

analysis of a larger AEL data set (Figure 3I).36 Together, tran-
scriptome analysis revealed that the majority of AEL samples are
significantly different fromMDS and other AML subtypes and that
AEL frequently presents with epigenomic alterations that con-
verge on factors interfering with GATA1 activity.

Overexpression of AEL-associated
GATA1-interfering factors transforms mouse
erythroid progenitors
To functionally test whether the aberrant expression of GATA1-
interfering factors identified in AEL samples may contribute to
the transformation of the erythroid lineage, we explored the
consequences of ectopic expression of SKI, ERG, ETO2,
GATA1s, EPO, SPI1, and B4GALNT3 on murine erythroid pro-
genitors. FACS-purified KIT1CD711Ter1191 cells were trans-
duced with retroviruses encoding these genes and grown in vitro
(Figure 4A). In contrast to vector-transduced controls that
proliferated for only ;7 days, ectopic expression of ERG,
SPI1, ETO2, SKI, and B4GALNT3 significantly maintained
proliferation of erythroid cells presenting with an immature
CD711KIT1Ter119- phenotype and a proerythroblast morphol-
ogy for.30 days (Figure 4B; supplemental Figure 5A). Although
the precise comparison between the overexpression level ob-
served in human AEL samples and those achieved in murine
models is technically challenging in this setting, a similar range
of overexpression was observed for ERG, ETO2, SKI, and
B4GALNT3 (supplemental Figure 5B). Notably, ectopic ex-
pression of EPO or GATA1s alone was not sufficient to expand
erythroblasts longer than 10 days (Figure 4B).

To address whether a cooperation between Tet2-inactivating
and Gata1s mutations could transform erythroblasts in vitro, we
purified erythroid progenitors from wild-type, Tet2-deficient27

(thereafter named Tet22/2), Gata1De2 knock-in28 (thereafter
named Gata1s), and double Tet22/21Gata1s transgenic mice
and compared their proliferation (Figure 4C). Although Gata1s-
or Tet22/2-only erythroblasts did not expand for.10 to 15 days,
Tet22/21Gata1s erythroblasts proliferated .2 months and
exhibited an erythroid morphology (Figure 4D; supplemental
Figure 5C).

Figure 4. AEL-associated transcription factors transform erythroid progenitors and impair GATA1 activity. (A) Experimental design: mouse erythroid progenitors
(CD711Ter1191KIT1/low) were sorted from lineagemarker–depleted BM, transduced with retrovirus encoding SKI, ERG, ETO2,GATA1s, EPO, SPI1, or B4GALNT3 combined with
IRES-GFP (GFP expression is a surrogatemarker for transgene expression), or an empty vector (Ctrl), andmaintained in StemSpan SFEMwith cytokines (mSCF, mIL3, mIL6, hEPO,
cholesterol, and dexamethasone). (B) A total of 5 3 104 transduced mouse erythroid progenitors were cultured for 15 days and viable cells were enumerated by trypan-blue
exclusion. Mean plus or minus SD number of cells is represented. SKI (n5 5), ERG (n5 4), ETO2 (n5 3),GATA1s (n5 3), EPO (n5 3), SPI1 (n5 6), B4GALNT3 (n5 3), or empty
vector (Ctrl) (n5 5). (C) Experimental design: erythroid progenitors (CD711 Ter1191 KIT1/low) fromWT, Tet22/2,Gata1s (G1s), or Tet22/21Gata1s (Tet22/21G1s) mice were sorted
from lineagemarker–depleted BM andmaintained for 15 days in StemSpan SFEMwith cytokines (mSCF, mIL3, mIL6, hEPO, cholesterol, and dexamethasone). (D) A total of 3.53
104 sorted erythroblasts from WT, Tet22/2, Gata1s (G1s), or Tet22/21 Gata1s (Tet22/21G1s) mice were grown in liquid cultures over 15 days and viable cells were counted by
trypan-blue exclusion.Mean plus orminus SD (n5 3) is shown. (E) Dot-plot showing the log(fold changes) of the percentage of sequence for a givenmotif found under ATAC-seq
peaks, between normal and transformed erythroblasts (expressing ERG, ETO2, SKI, and SPI1). (F) Histogram representation of the percentage of sequence with GATA1 (top) or
ERG (bottom)motif found under ATAC-seq peaks of normal (Ctrl) and transformed erythroblasts. Statistical differences were calculated using the x2 test. For GATA1motif, Ctrl vs
ERG: P5 .0013; Ctrl vs ETO2: P5 .0001; Ctrl vs SKI: P, .00001; Ctrl vs SPI1: P5 .0032. For ERGmotif, Ctrl vs ERG: P5 .00001; Ctrl vs ETO2: P, .00001; Ctrl vs SKI: P5 .0498; Ctrl vs
SPI1: P5 .0415. (G) Heatmap representing the hierarchical clustering of ATAC-seq signals, performed using normal (Ctrl) and transformed erythroblast by either ERG, ETO2, SKI,
or SPI1, focused onGATA1-binding sites in normal Ter1191 erythroblast (ENCODE). Heatmaps were focused on peak centers with65 kb. (H) Profile plot representing ATAC-seq
signals performed using normal (Ctrl) and transformed erythroblast expressing either ERG, ETO2, SKI, or SPI1 on ATAC-seq specific peaks previously identified in mouse MEP,
CFU-E, or proerythroblasts (proE).35 Profile-plot were focused on peaks centers with 65 kb. (I) Visualization of GATA1 ChIP-seq peaks performed in normal erythroblast
(ENCODE, first lane, gray) and ATAC-seq peaks of normalMEP, proerythroblast, orthochromatic erythroblast, and transformed erythroblasts expressing ERG, ETO2, SKI, or SPI1,
focused onNfe2,Hba-a1, andHbq-a1 genes, using IGV software (v 2.3.88). (J) QuantitativeNfe2mRNA expressionmeasured by RT-qPCR inWT erythroblast (Ctrl) or erythroblast
transformed with either SKI, ERG, ETO2, or SPI1 overexpression. Expression levels were also compared with the erythroleukemia MEL or the Ba/F3 myelolymphoid cell line. (K)
Experimental design: G1E cell lines were cotransduced with a GATA1 doxycycline-inducible vector and withMSCV-vector expressing either ERG, ETO2, SKI, SPI1, or empty. (L)
Flow cytometry histogram analysis of Ter119 expression in G1E cells expressing ERG (green), ETO2 (orange), SKI (blue), SPI1 (red), or empty control (gray), without (left) or with
(right) induction of GATA1 expression. (M) Histogram representation of Ter119 expression detected by flow cytometry analysis of G1E cells expressing ERG, ETO2, SKI, SPI1, or
empty control, without (gray) or with (red) induction of GATA1 expression. Statistical significance (in panels B, D, J, and M) is indicated as P values (Student t test except when
otherwise specified). *P , .05; **P , .01; ***P , .001.
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Collectively, these data demonstrate that ectopic expression of
ERG, ETO2, SKI, or the combination of Tet2 loss-of-function and
Gata1s mutations can efficiently immortalize murine erythro-
blasts in vitro.

Aberrantly expressed AEL-associated
transcriptional regulators interfere with GATA1
chromatin accessibility and function
To better understand how aberrantly expressed transcription
factors (ERG, ETO2, SKI, SPI1) immortalize erythroblasts, we
studied chromatin accessibility by ATAC-seq. Motif analysis
revealed a lower representation of GATA1 and KLF1 (also known
as EKLF) motifs and a global increase of ETS-associated motifs
(including ERG and SPI1 motifs) in all transformed cells com-
pared with Ctrl (Figure 4E-F; supplemental Figure 5D).

To investigate chromatin accessibility at erythroid GATA1-
binding sites and at sites that are regulated at specific stages
of healthy erythroid differentiation, we interrogated previously
published data sets.35 Interestingly, ERG-, ETO2-, SKI-, and SPI1-
overexpressing erythroblasts showed a decreased chromatin
accessibility at erythroid GATA1-binding sites compared with
vector-transduced control cells (Figure 4G). ERG-, ETO2-, SKI-,
and SPI1-expressing erythroblasts also showed a decreased
chromatin accessibility at sites open in healthy CFU-E and
proerythroblasts, whereas there was no difference in chromatin
accessibility at sites open in less differentiated MEP cells
(Figure 4H; supplemental Figure 5E). Notably, these observa-
tions correlated with a decreased chromatin accessibility and
mRNA expression at GATA1-controlled erythroid genes such as
nuclear factor erythroid 2 (Nfe2) or hemoglobin A1 (Hba-a1)
(Figure 4I; supplemental Figure 5F).

Finally, we investigated the consequence of aberrant expression
of these transcription factors on GATA1 activity in the GATA1-
deficient G1E erythroid cell line in which terminal erythroid
maturation can be induced by expression of exogenous Gata129

(Figure 4K). As expected doxycycline-induced Gata1 expression
restored G1E erythroid differentiation with upregulation of
Ter119 expression (supplemental Figure 5G). In contrast, ectopic
expression of ETO2, ERG, SKI, or SPI1 significantly inhibited
GATA1-induced differentiation (Figure 4L-M).

Collectively, these data indicate that aberrant expression of
ETO2, ERG, SKI, and SPI1 functionally interferes with GATA1
activity and restrains GATA1-dependent erythroid differentia-
tion consistent with impaired differentiation observed in primary
human AEL cells.

In vivo modeling of AEL from immortalized
erythroblasts
We used complementary strategies to model in vivo the
leukemogenic potential of AEL-associated alterations of the
different molecular subgroups. First, to ascertain that in
vitro–transformed erythroblasts can induce disease in vivo, we
injected them into irradiated syngeneic recipients. ERG-, ETO2-,
SKI-, or Tet22/21Gata1s-transformed, but not SPI1- or
B4GALNT3- transformed, cells rapidly induced a fully penetrant
fatal disease characterized mostly by the accumulation of
CD711Ter1192 and few CD711Ter1191 blasts lacking expres-
sion of myeloid markers (supplemental Figure 6A-C). Histo-
pathological analysis of symptomatic mice showed infiltration of

BM, spleen, and livers by erythroblasts expressing nuclear
GATA1 (supplemental Figure 6D-E). These results show that
some epigenomic alterations found in human AEL have the
potential to immortalize murine erythroblasts, which can then
induce an AEL-like disease.

In vivo modeling of functional cooperation
between AEL-associated alterations
Next, to define in vivo transforming capacities starting from
healthy hematopoietic progenitors, we obtained oncogene-
expressing Lin2 HSPCs (either by retroviral transduction or by
breeding transgenic models) and assessed disease develop-
ment upon engraftment into lethally irradiated recipients. Based
on our observations that AEL subgroups 1 and 2 showed fre-
quent cooccurrence of mutations (Figure 1B) and that GATA1
activity is targeted either directly (TET21GATA1s and IDH21
GATA1 mutations in another cohort36) or through associated
factors (TP531ERGhigh), we investigated these 2 representative
potential functional cooperation schemes.

Previous work has shown that both Tet2 loss-of-function and
Gata1s alter erythroid differentiation but do not induce bona
fide leukemia in vivo alone27,28,53-57 (supplemental Figure 7A). To
address functional cooperation, we transplanted Tet22 /2

1Gata1s Lin2 HSPCs into lethally irradiated recipients
(Figure 5A). As opposed to recipients of Tet22/2-only cells, re-
cipients of Tet22/21Gata1s cells developed a rapid and fully
penetrant lethal disease associated with high WBC, anemia,
thrombocytopenia, and splenomegaly (Figure 5B-C; supple-
mental Figure 7B). Flow cytometry analysis indicated that leu-
kemic blasts were primarily CD11b1Gr11 myeloid cells
(Figure 5D) and histopathological analysis confirmed that BM
and spleen were highly infiltrated by blasts with myeloid features
(supplemental Figure 7C). Notably, we also observed emper-
ipolesis that was previously described in murine GATA1s
models. Together, these data demonstrate that Tet2 loss of
function cooperates with Gata1s mutation to promote an AML-
like phenotype in vivo.

TP53-mutated AEL samples are associated with other alter-
ations, including aberrant expression of the transcription fac-
tor ERG (Figure 3F). Most AEL-associated TP53 alterations are
DNA-binding missense mutations13 including TP53R248Q.26 To
address functional cooperation, we transplanted TP53R248Q Lin2

HSPCs transduced with an ERG-expressing retrovirus. Because
ectopic ERG expression in adult murine hematopoiesis was
shown to primarily induce T-cell leukemia58,59 (supplemental
Figure 7D-E), we assessed the long-term consequences of high
ERG expression specifically in erythroid progenitors by trans-
planting purified ERG-transduced (GFP1) wild-type or TP53R248Q

erythroblasts obtained from primary recipients, into second-
ary recipients (Figure 5E). All recipients of TP53R248Q eryth-
roblasts overexpressing ERG developed a fatal leukemia
with a median survival of 60 days, whereas recipients of
ERG-expressing wild-type erythroblasts developed disease
after 4 months (Figure 5F). The TP53R248Q1ERG-induced disease
was characterized by anemia, thrombocytopenia (Figure 5G), and
the accumulation of CD711Ter1191 erythroid and to a lesser
extent CD11b1Gr11 myeloid progenitors in the BM (Figure
5H), with infiltration in spleen and liver (supplemental Figure
7F). These data indicate that an AEL-associated TP53 DNA-
binding mutation cooperates with aberrantly high ERG
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Figure 5. In vivo modeling of functional cooperation between AEL-associated alterations. (A) Experimental design: mouse CD45.21 HSPCs from WT, G1s, Tet22/2, or
Tet22/21 G1s mice were sorted and injected into sublethally irradiated CD45.11 recipients followed for disease development. (B) Kaplan-Meier plot of diseased recipients of
HSPC cells from Tet22/2 (n5 5) or Tet22/21G1s (n5 5) mice. (C) Peripheral blood counts (WBC, RBC, and PLT) of immunodeficient mice engrafted with HSPC cells from Tet22/2
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retrovirally transduced with ERG gated for GFP1 or GFP2 cells. Statistical significance (in panels B, C, F, and G) is indicated as P values (Student t test except when otherwise
specified). *P , .05; **P , .01; ***P , .001.
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Figure 6. In vivo modeling of erythroid transformation by aberrant SKI expression. (A) Experimental design: hematopoietic stem cells (HSC), granulocyte-monocyte
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expression to enhance the proliferative capacity of erythroid
progenitors leading to leukemia with several features of the hu-
man disease.

Taken together, these results demonstrate that mutation asso-
ciations in human AEL functionally cooperate to induce murine
AML-like leukemia in vivo. Notably, although both combinations
could readily induce an AEL-like phenotype when expressed in
erythroid-restricted progenitors, their expression in HSPCs led to
other mostly mixed leukemia phenotypes. Therefore, these data
also suggest that the target cell in which these mutations are
active impacts the disease phenotype.

In vivo modeling of erythroid transformation by
aberrant SKI expression
To further explore the relevance of the cell context for conse-
quences of the transcriptional alterations, we investigated in vivo
disease development upon high expression of SKI, which was
observed in 2 AEL samples of subgroup 3 (Figure 3G). First, we
confirmed previous work49 showing that transplantation of Lin2

HSPCs retrovirally overexpressing SKI induced a lethal disease
(supplemental Figure 8A) characterized by anemia, thrombo-
cytopenia, and increased myeloid cells in the periphery (sup-
plemental Figure 8B) associated with hypercellular BM and
spleens showing high percentage of mostly myeloid or erythroid
transgene-expressing cells (supplemental Figure 8C-E). Notably,
GFP detection in all 3 myeloid, erythroid, and platelet lineages
(supplemental Figure 8F) suggested that SKI overexpression
may affect early multipotent stem or progenitor cells.

To investigate whether the transforming activity of SKI depends
on the hematopoietic target cell, we purified, transduced and
transplanted long-term multipotent HSC, erythroid-enriched
(MEP), or myeloid-committed granulocyte-macrophage (GMP)
progenitors (Figure 6A). Three weeks posttransplant, transduced
cells were detectable in the blood for all groups but engraftment
in the BM was only observed in recipients from SKI-transduced
HSCs and MEPs that later developed symptomatic diseases
characterized by anemia, thrombocytopenia, (supplemental
Figure 8H) and presenting with both CD11b1Gr11 myeloid and
CD711Ter1191 erythroid features (Figure 6B-E). SKI-transduced
GMP recipients did not develop disease. Symptomatic recipi-
ents of HSCs or MEPs showed an increase in basophilic, poly-
chromatophilic, and orthochromatic erythroblasts and in
reticulocytes associated with a relative decrease in mature red
cells (Figure 6F), suggesting that SKI delays but does not fully
block erythroid differentiation in vivo. Histopathological analy-
ses confirmed BM hypercellularity and revealed infiltration
of erythroid cells in the spleen and liver (Figure 6G;
supplemental 8I).

Taken together, these data indicate that high SKI expres-
sion transforms HSCs and MEPs, but not myeloid-restricted

progenitors like GMPs. Although aberrant SKI expression
in erythroid-restricted progenitors leads to pure erythroid pro-
liferation, expression in more immature HSPCs resulted in in-
creased self-renewal capacity with aberrant differentiation
toward both myeloid and erythroid lineages indicative of an
AEL/MDS-like disease.

Discussion
AEL is an aggressive human cancer, often difficult to diagnose
due to its close resemblance to other forms of hematopoietic
malignancies presenting with variable compositions of cells with
erythroid features, like MDS or certain AML subtypes. Here, we
describe novel features of AEL that shed light on the patho-
physiology of this disease. First, our data indicate that the
majority of human AEL exhibit a unique erythroid transcriptional
signature that differs from those found in patients with non-M6
AML or MDS without prominent erythropoiesis. Second, aber-
rant expression of various transcriptional regulators known to
modulate GATA1 activity was frequently found in AEL and may
represent a common molecular module that controls erythroid
differentiation. Third, in vivo models demonstrate that the rel-
ative composition of the erythroid and myeloid features is
strongly dependent on the hematopoietic target cell in which a
driving oncogene is expressed, providing a basis for a better
understanding of the highly heterogeneous clinical appearance
of AEL.

The genomic lesions described here are in line with previous
reports, including the largest genetic landscape study of human
erythroleukemia to date,9-12,36 and support classification of AEL
patients into molecular subgroups. In our study, 3 subgroups
were identified, including patients with TP53 mutations (36.3%
of cases), patients with mutations in epigenetic regulators pre-
viously associated with clonal hematopoiesis of indeterminate
potential (CHIP) and MDS (eg, DNMT3A, TET2, and IDH1/2
mutations) (33.3% of cases) and another group of patients
presenting with none of these recurrent alterations (30.4% of
cases). Although TP53 mutations and epigenetic mutations are
not mutually exclusive, their frequencies within AEL samples are
similar.36 In our sequenced AEL cases, we did not detect the
other recently described subgroups, including those with
NUP98, KMT2A, and other in-frame fusions,36 which could re-
flect the limited number of pediatric patients in our cohort. Also,
consistent with the frequent association between FLT3 muta-
tions and NPM1 or KMT2A alterations,33 our patient cohort
lacked samples with FLT3 or NPM1 mutations. For samples
sequenced with RNA-seq only, we cannot exclude the possibility
that some structural variants or low expressed mutated tran-
scripts remained undetected.

In contrast to previous studies, we also found out-of-frame fusion
transcripts associated with altered expression of 1 of the partner

Figure 6 (continued) analysis of myeloid cells (CD11b1Gr-11), erythroid progenitors (CD711Ter1191), B cells (B2201), and T cells (CD41CD81) gated for viable GFP1 cells, in
spleens of mice transplanted with HSC (Ctrl vs SKI) or MEP (SKI) cells. (D) Percentage of myeloid cells (CD11b1Gr11), erythroid progenitors (CD711Ter1191), B cells (B2201), and
T cells (CD41CD81) within viable GFP1 cells, in HSC-Control (Ctrl), HSC-SKI, and MEP-SKI in primary mice BM and spleen. Mean plus or minus SD is shown (n5 5 per group). (E)
Number of GFP1 and GFP2 total BM cells, myeloid cells (CD11b1Gr11), and erythroid progenitors (CD711Ter1191) in the BMof diseased primary recipients. Mean plus or minus
SD is shown (n5 5 per group). (F) Flow cytometry analysis of terminal erythroid differentiation in the BM of diseased HSC (Ctrl and SKI) and MEP-SKI recipients, determined by
forward scatter (FSC-A) and CD44 expression gated for viable Ter1191 cells. Bottom panel, Mean plus or minus SD (n5 5 per group) of the percentage of each population. (G)
Histopathology analysis of BM spleen and liver of mice transplanted with HSC-Ctrl (left row) or HSC-SKI (right row) stained with hematoxylin-eosin (top 6 photomicrographs;
original magnification 320) or with a GATA1 antibody (bottom 4 photomicrographs; original magnification 320).
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genes. For example, the fusion between YWHAE and EPO in a
TP53-mutated patient was associated with ectopic expression of
EPO, and the concomitant high expression of EPOR suggested
an autocrine EPO/EPOR-signaling mechanism.15 Interestingly,
alterations of multiple signaling intermediates, including
downstream of EPO/EPOR, were recently found in up to 48% of
human AEL samples36 and acquired activating KIT mutations
were also essential to induce a bona fide erythroleukemia in a
transgenic murine model,60 indicating the importance of sig-
naling alterations for efficient oncogenic transformation of the
erythroid lineage.

As the vast majority of the AEL-associated mutations are also
found in a wide spectrum of human myeloid malignancies, it is
essential to gain insights into their functional role in the erythroid
phenotype that leads to a diagnosis of AEL. Together with the
molecular alterations targeting EPO (YWHAE-EPO fusion) and
the erythroid transcription factorGATA1 found here, the recently
reported APLP2-EPOR andMYB1-GATA1 fusion genes36 further
support the relevance of alterations in erythroid master regu-
lators as underlying the erythroid phenotype in some AEL cases.
However, most AEL do not present with erythroid-specific ge-
netic alterations. Our patient-based transcriptional data, to-
gether with chromatin accessibility and functional analyses in
cellular and in vivo models revealed that at least 25% of AEL
cases present with transcriptional alterations ultimately in-
terfering with GATA1 activity through direct or functional in-
teraction within the GATA1 transcriptional complexes (eg,
aberrantly expressed ETO2, ERG, SKI, SPI1). Although some of
these transcriptional alterations (eg, ERGhigh expression) were
recently reported to have a genetic bases,61,62 the origin of some
others remains to be determined (eg, SKIhigh). As reported
previously,60,63 we noted that ectopic SPI1 expression was sufficient
to immortalize erythroblasts in vitro but not to induce the disease
in vivo, supporting the idea that cooperating alterations that have
yet to be identified are required in SPI1high human leukemia.

Although the basis for the erythroid phenotype remains to be
demonstrated in many cases, several epigenomic AEL alter-
ations may also functionally converge on aberrant activity of
erythroid master regulators. Indeed, a novel signaling pathway
based on JAK2-mediated phosphorylation of TET2 leading to
interaction with KLF1 was recently reported.64 Combined TET2
and DNMT3A inactivation was also reported to upregulate
expression of KLF1 and EPOR in HSCs.55 Therefore, the con-
comitant TET2 and DNMT3A mutations observed in 2 AEL
patients and the presence of TET2 and GATA1s mutations in
another AEL sample support a functional synergism between
alterations of KLF1 and GATA1 transcriptional programs leading
to differentiation blockage. Based on these observations, we
hypothesize that the erythroid phenotype in AEL results from a
cooperation between genetic and transcriptional alterations. As
proposed for other subtypes of leukemia, interference with the
activity of altered erythroid master regulators, for example,
through targeting of critical protein-protein interactions may
therefore represent promising therapeutic strategies for
AEL.65,66

Our observations also have implications for the classification
of AEL patients into molecular and/or prognosis subgroups.
Comparative analysis of AEL expression signatures with normal
erythroid and myeloid differentiation indicated that AEL is

heterogeneously spread along a differentiation-associated tra-
jectory with some patient samples clustering next to progenitors
retaining myeloid features and other patient samples clustering
closer to the erythroid trajectory. Also, although several onco-
genes (eg, SKI) can transform restricted erythroid lineages, they
led to mixed erythroid/myeloid hematopoietic malignancies
upon expression in multipotent murine progenitors. These data
indicate that the relative composition of myeloid vs erythroid
elements at time of diagnosis is not solely based on the type of
mutations but likely also reflects the type of progenitor targeted
by these mutations. Notably, the relationship between gene-
expression signatures and normal differentiation trajectories was
not clearly visible when comparing the reported immunophe-
notypes of the blasts, and no correlation was found with the
different molecular subgroups. These data strongly suggest that,
in some AEL patients, the erythroid phenotype maybe initiated
either by strong mutations that interfere with erythroid differ-
entiation, or by mutations that provide advantages to erythroid-
restricted progenitors. Alternatively, in others, the erythroid pheno-
type may originate from mutations in multipotent progenitors with a
subsequent epigenetic drift toward the erythroid lineage.

Taken together, our work provided insights into the molecular
mechanisms of the erythroid identity in AEL. Future studies need
to resolve, likely at the single-cell level, the clonal genetic and
epigenomic heterogeneous architecture in prospectively col-
lected fresh samples as a further step toward the development of
specific therapies.
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