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KEY PO INT S

l LUBAC accelerates
B-cell lymphomagenesis
through protection of
DNA damage–induced
apoptosis, thereby
promoting AID-
mediated mutations.

l Inhibition of LUBAC by
small molecules is a
promising therapeutic
strategy for B-cell
lymphomas with NF-
kB activation.

The linear ubiquitin chain assembly complex (LUBAC) is a key regulator of NF-kB signaling.
Activating single-nucleotide polymorphisms of HOIP, the catalytic subunit of LUBAC, are
enriched in patients with activated B-cell–like (ABC) diffuse large B-cell lymphoma (DLBCL),
and expression of HOIP, which parallels LUBAC activity, is elevated in ABC-DLBCL samples.
Thus, to clarify the precise roles of LUBAC in lymphomagenesis, we generated a mouse
model with augmented expression of HOIP in B cells. Interestingly, augmented HOIP
expression facilitated DLBCL-like B-cell lymphomagenesis driven by MYD88-activating
mutation. The developed lymphoma cells partly shared somatic gene mutations with
humanDLBCLs, with increased frequency of a typical AIDmutation pattern. In vitro analysis
revealed that HOIP overexpression protected B cells fromDNAdamage-induced cell death
through NF-kB activation, and analysis of the human DLBCL database showed that ex-
pression of HOIP positively correlated with gene signatures representing regulation of
apoptosis signaling, as well as NF-kB signaling. These results indicate that HOIP facilitates
lymphomagenesis by preventing cell death and augmenting NF-kB signaling, leading to

accumulation of AID-mediatedmutations. Furthermore, a natural compound that specifically inhibits LUBACwas shown
to suppress the tumor growth in a mouse transplantation model. Collectively, our data indicate that LUBAC is crucially
involved in B-cell lymphomagenesis through protection against DNA damage–induced cell death and is a suitable
therapeutic target for B-cell lymphomas. (Blood. 2020;136(6):684-697)

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most frequent
lymphoma subtype in adults,1,2 and it is classified into 2 major
categories, germinal center B-cell–like (GCB) DLBCL and acti-
vated B-cell–like (ABC)-DLBCL, based on the gene expression
profiling.3-6 Since ABC-DLBCL has been shown to have a worse
prognosis than GCB-DLBCL, new therapeutic strategies against
ABC-DLBCL are warranted.7-9

ABC-DLBCL is characterized by constitutive NF-kB activation
mediated by the B-cell receptor and Toll-like receptor (TLR)
signaling pathways, and many oncogenic mutations within these
pathways have been identified. Among them, activating mu-
tations of MYD88, a signaling molecule in the TLR pathway,
including L265P, are present in ;30% of ABC-DLBCL cases10

and constitute the most frequent genetic abnormalities leading
to aberrant NF-kB activation.

Protein ubiquitination is involved in multiple steps of the NF-kB
pathway.11 The linear ubiquitin chain assembly complex (LUBAC),
which consists of the catalytic subunit HOIP (RNF31) and 2
accessory subunits, HOIL-1L and SHARPIN, promotes NF-kB
activation and protects against cell death by synthesizing
unique N-terminally linked linear polyubiquitin chains.12-19 We
previously reported that rare germline single-nucleotide poly-
morphisms (SNPs) in HOIP that increase LUBAC ligase activity are
significantly enriched in ABC-DLBCL patients, suggesting that
augmentation of LUBAC activity contributes to ABC-DLBCL
pathogenesis.20 The majority of ABC-DLBCLs in patients with
these HOIP SNPs also harbor the MYD88 L265P mutation. Given
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that LUBAC plays a pivotal role in NF-kB activation by linearly
polyubiquitinating substrates, including the key NF-kB regulator
NEMO,18,19,21-24 it is speculated that LUBAC collaborates with
MYD88 signaling in B-cell lymphomagenesis by further ampli-
fying NF-kB activation.

By analyzing published clinical RNA sequencing (RNA-seq) gene
expression data,25 we found that expression of HOIP is elevated
in human ABC-DLBCL (Figure 1A). As we previously reported
that enforced expression of the catalytic subunit HOIP augments
LUBAC functions,17 we assumed that LUBAC activation is fre-
quently involved in the pathogenesis of ABC-DLBCL, inde-
pendent of SNPs inHOIP. To clarify the roles of LUBAC played in
the pathogenesis of B-cell lymphoma, we established a gene-
engineered mouse with enforced expression of HOIP in B cells.
We found that increased expression of HOIP enhanced LUBAC
activity, and it facilitated generation of MYD88-mediated
DLBCL, whereas it could not lead to B-cell lymphoma devel-
opment per se. Elevated expression of LUBAC was suggested to
accelerate B-cell lymphomagenesis, not only by activating NF-kB
in concert with MYD88-mediated signals but also by protecting
cells from DNA-damage–induced apoptosis. Importantly, the
mutations in B-cell lymphomas that arose in mice expressing an
oncogenic MYD88 mutant and high levels of HOIP partially
overlap with those reported in human DLBCLs, indicating the
biological similarity between these tumors. Finally, by using a
mouse lymphoma model with secondary transplantation of a
newly established lymphoma cell line, we demonstrated that
LUBAC inhibition represents a novel and promising therapeutic
strategy against B-cell lymphomas.

Methods
Mice
Tissue-specific HOIP transgenic mice (ROSA26-STOP-Hoip-
ires-eGFP-pA) and MYD88 L252P transgenic mice (ROSA26-
STOP-Myd88_L252P-ires-eGFP-pA) (accession No. CDB 1320K;
http://www2.clst.riken.jp/arg/mutant%20mice%20list.html) were
established as described in supplemental Methods (available
on the Blood Web site). ROSA26-STOP-Hoip-ires-eGFP-pA or
ROSA26-STOP-Myd88_L252P-ires-eGFP-pA transgenic mice
were crossed with CD19-cre mice to express transgenic HOIP or
MYD88 protein specifically in B cells from the pre–B-cell stage.26

All mice were maintained under specific-pathogen–free condi-
tions. All animal protocols were approved by Kyoto University
and RIKEN Center for Biosystems Dynamics Research.

Analysis of EGA and TCGA datasets
Clinical and RNA-seq gene expression data derived from the
core set of 624 human DLBCL samples were obtained from the
European Genome–phenome Archive (EGA) (dataset identifier
[ID]: EGAD00001003600)25 and the Cancer Genome Atlas
(TCGA). Whole-exome sequencing and RNA-seq data of
48DLBCL samples (project ID: TCGA-DLBC) were obtained from
the Broad Institute Firehose (http://gdac.broadinstitute.org)27,28

and analyzed as described in supplemental Methods and sup-
plemental Tables 1 to 4.

Whole-exome sequencing
Lymphoma tissues obtained from the transgenic mouse model
were analyzed by whole-exome sequencing using the Sure-
Select XT Mouse All Exon V2 kit (Agilent). Mouse tail DNA was

used as a germline control. Sequence alignment to GRCm38/
mm10 andmutation calling were performed using the Genomon
pipeline (https://github.com/Genomon-Project) as previously
described,29 with minor modifications. Candidate mutations with
(1) P , .01 (Fisher’s exact test), (2) .4 variant reads in tumor
samples, and (3) variant allele frequency (VAF) in tumor samples
.0.05 or .0.2 were selected and manually reviewed. Human
orthologs of mouse genes were assigned with the Ensembl
92 database. For each sample, the number of mutations, single-
nucleotide variations (SNVs) at C:G base pairs, transitions, and
SNVs within the WRCY/RGYW motifs were calculated and
compared using the Brunner-Munzel test. Enrichment of SNVs at
C/G within theWRCY/RGYWmotifs in genes were performed by
binomial test. Gene enrichment analyses were performed with
Fisher’s exact test using the gene sets derived from supple-
mental Tables 5 to 8.30,31

AlphaScreen binding assay for LUBAC inhibitors
To search for inhibitors of linear polyubiquitination, an
AlphaScreen-based high-throughput screening (HTS) system
was established using N-terminally FLAG-His–tagged ubiquitin,
C-terminally glutathione S-transferase–tagged ubiquitin, ubiquitin-
activating enzyme E1, UbcH7 as the E2 ubiquitin–conjugating
enzyme, and Petit-LUBAC or Petit-SHARPIN as the E3 ubiquitin
ligase, as described in supplemental Methods.

Generation of a preclinical model for validation of
the LUBAC inhibitor
The cell line HM876 was established as described in supple-
mental Methods. Transplantation of HM876 tumor cells was
performed by subcutaneously injecting 5 3 106 cells into
6-week-old C57BL/6 females that were sublethally irradiated
(4.5 Gy) 6 hours before transplantation. The animals were divided
into 3 groups; the control group (n 5 7) received intraperitoneal
injection of dimethyl sulfoxide (DMSO) diluted in 5% glucose,
and the other 2 groups were injected intraperitoneally with
thiolutin diluted in 5% glucose at 2.5 or 5.0 mg/kg per day
(n 5 7). Thiolutin was administered from days 2 to 6 and days
9 to 13. On day 14, the animals were killed, and tumor weight
was assessed.

Results
Augmented HOIP expression accelerates
MYD88-mediated B-cell lymphomagenesis in mice
Based on the analysis of a publicly available database of gene
expression in human B cells,32 HOIP is physiologically expressed
throughout B-cell development (supplemental Figure 1A).
However, we previously reported that 2 rare SNPs of HOIP that
augment LUBAC activity were enriched specifically in patients
with ABC-DLBCL.20 Because the protein expression level of
HOIP determines the amount of other LUBAC subunits and
activity of LUBAC,17 we hypothesized that HOIP plays a key role
in the activation of the NF-kB pathway in ABC-DLBCL,21,33,34

irrespective of the SNP status. We examined expression of HOIP
in RNA-seq data from 624 DLBCL samples in the EGA (dataset
ID: EGAD00001003600)25 and found that its expression level
was significantly higher in ABC-DLBCL than in GCB-DLBCL, as
well as HOIL-1L and SHARPIN, which encode other subunits of
LUBAC, although statistical significance was not observed for
SHARPIN (Figure 1A; supplemental Figure 1B; supplemental

ROLES OF LUBAC IN B-CELL LYMPHOMAGENESIS blood® 6 AUGUST 2020 | VOLUME 136, NUMBER 6 685

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/6/684/1750775/bloodbld2019002654.pdf by guest on 18 M

ay 2024

http://www2.clst.riken.jp/arg/mutant%20mice%20list.html
http://gdac.broadinstitute.org
https://github.com/Genomon-Project


H
CD19-cre CD19-cre-MYD88LP CD19-cre-HOIP/MYD88LP

B
cI

6
Ir

f4
H

&
E

I

M N
o

rm
al

 S
p

l B

N
o

rm
al

 S
p

l B

Tumor Tumor

10
84

78
6

10
84

78
6

Cd19 T1084
specific

VDJ

(kDa)

CpG-DNA (-) (+)

C
D

19
-c

re

Li
ne

ar
 U

b

C
D

19
-c

re
-M

Y
D

88
LP

C
D

19
-c

re
-H

O
IP

/M
Y

D
88

LP

C
D

19
-c

re

245
180
135

100

100 Inp
ut

M
1-sp

ecific TU
B

E

HOIP

MYD88

* FLAG-MYD88 L252P

** Endogenous MYD88

actin

35 *

48
**

75
63

E

G

1

Spleen

2 1 3 1

Lymph modes

2 1 3

1: CD19-cre
2: CD19-cre-MYD88LP
3:CD19-cre-HOIP/MYD88LP

0.0

0 100 200 300 400 500

0.2

Su
rv

iva
l p

ro
ba

bi
lit

y

Survival time (days)

0.4

1.0

0.6

0.8

CD19-cre

CD19-cre-HOIP

CD19-cre-MYD88LP

CD19-cre-HOIP/MYD88LP

n.s.

**

***
***

F

3.0

GCB

(n
 =

 2
78

) ABC

(n
 =

 2
52

)

3.5

HO
IP

 (R
NF

31
) e

xp
re

ss
io

n
Lo

g2
 (F

PK
M

 +
 1

)

RNA seq based subtype

4.0

4.5

5.0

A
Average fold change

of FPKM = 1.14

p < 10-4

B

STOP

ROSA26 promoter

ROSA26 promoter

CD19-cre-HOIP

loxPloxP

loxP

HA-Hoip wt ires eGFP

HA-Hoip wt

Crossing with
CD19-cre mice

ires eGFP

Re
la

tiv
e 

m
RN

A 
ex

pr
es

sio
n

C

0.0

0.5

1.0

1.5

Tnfaip3
*

0.0

0.5

1.0

1.5

Nfkbia
n.s.

0.0

0.5

1.0

1.5

Myc
*

0.0

0.5

1.0

1.5

Nfkbid
n.s.

CD19-cre CD19-cre-HOIP

%
 o

f M
AX

0

0 102 103 104 105

0

0 102 103 104 105

0

0 102 103 104 105

0

0 102 103 104 105

Pre-culture 72 hours

Stimuli - CpG-DNA Pam3CSK4

D

Cell trace violet
CD19-cre CD19-cre-HOIP

100
80
60
40
20

100
80
60
40
20

100
80
60
40
20

100
80
60
40
20

Figure 1. Augmented LUBACexpression accelerates oncogenicMYD88-mediated B-cell lymphomagenesis inmice. (A) Association ofHOIP (RNF31) expressionwith cell of
origin in human DLBCL. Boxes represent the median and the first and third quartiles, and whiskers represent the minimum and maximum of all data points. (B) Schematic
representation of conditional expression of HOIP in mice. (C) Transcript levels of NF-kB target genes in unstimulated splenic B cells frommice (10 weeks old), normalized against
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Table 1). On the other hand, the expression level of OTULIN,
encoding a linear ubiquitin-specific deubiquitinase that nega-
tively regulates LUBAC signaling,35,36 was lower in ABC-DLBCL
(supplemental Figure 1B; supplemental Table 1). These results
are compatible with the increased LUBAC activity in ABC-
DLBCL.

Therefore, to investigate the role of LUBAC in B-cell lym-
phomagenesis, we generated mice expressing high levels of
HOIP specifically in B cells from the pre–B-cell stage (CD19-
cre-HOIP) (Figure 1B). Bicistronic expression of eGFP allowed
us to confirm that transgenic HOIP was specifically expressed
in CD191 B cells (supplemental Figure 1C). In CD19-cre-HOIP
mice, elevated expression of HOIP increased expression
of the other LUBAC subunits, thereby increasing the amount
of trimeric LUBAC in B cells (supplemental Figure 1D).
As expected, high levels of LUBAC increased expression
of NF-kB target genes in splenic B cells, albeit mildly
(Figure 1C; supplemental Figure 1E). Although some of the
CD19-cre-HOIP mice aged .14 months showed splenomeg-
aly, no lymphoma development was observed (supplemental
Figure 1F).

The majority of ABC-DLBCLs with LUBAC-activating HOIP SNPs
also carry the oncogenic MYD88 L265P mutation.20 Consistent
with this, we found that B cells with enforced HOIP expression
proliferated more efficiently by TLR stimulation (CpG-DNA and
Pam3CSK4) (Figure 1D), which suggested the synergistic effect
of LUBAC and MYD88 signaling. To evaluate the combinatorial
effect of LUBAC andMYD88 L265P, we generated mice in which
Myd88 L252P, the equivalent of human L265P, was expressed
specifically in B cells from the pre–B-cell stage (CD19-cre-
MYD88LP) (supplemental Figure 1G-I). MYD88 L252P increased
proliferation and NF-kB activity of splenic B cells (supplemental
Figure 1J-K). Hence, we assessed the synergistic effects of HOIP
and MYD88 L252P on B-cell tumorigenesis in these mice. We
evaluated the linear ubiquitin chains in B cells by using linear
ubiquitin-specific tandem ubiquitin binding entity (supplemental
Figure 1L)37,38 and found that the amount of linear ubiquitin
chains was higher in splenic B cells of CD19-cre-HOIP/MYD88LP
mice than in those of CD19-cre-MYD88LP mice (Figure 1E). As
reported previously, B-cell–specific expression of MYD88 L252P
led to decreased survival.39We found that introduction of a HOIP
transgenic allele significantly shortened the survival of CD19-cre-
MYD88LP mice (Figure 1F).

Next, we examined pathological changes in CD19-cre-HOIP/
MYD88LP and CD19-cre-MYD88LP mice. Mice with both ge-
notypes developed marked lymphosplenomegaly, and histo-
logical examination of spleens and lymph nodes revealed

infiltrates of lymphoid cells in these organs (Figure 1G-H). In
addition, human DLBCL-like eGFP and CD19-positive large
abnormal B cells diffusely infiltrated into the affected organs in
mice with both genotypes (Figure 1H; supplemental Figure 2A).
Assessment of V(D)J recombination of immunoglobulin heavy
chain loci using a polymerase chain reaction–based method
confirmed the presence of monoclonal B-cell populations in
all involved tissues derived from 14 mice (4 CD19-cre-
MYD88LP and 10 CD19-cre-HOIP/MYD88LP) (Figure 1I;
supplemental Figure 2B; Table 1). Lymphomas developed in 4
CD19-cre-MYD88LP mice, and those in 8 of the 10 CD19-cre-
HOIP/MYD88LP mice were positive for CD19, B220, and
immunoglobulin M (IgM) and negative for CD138 by flow
cytometric analysis (DLBCL-like lymphomas). These tumors
were Irf4 positive and Bcl6 negative by immunohistochemical
staining (Figure 1H). Moreover, sequence analysis of the vari-
able regions of the clonally rearranged IgH gene revealed the
presence of somatic hypermutations in most of the DLBCL-like
lymphomas (supplemental Table 9). These results suggested
that these tumors are mostly derived from post–germinal
center B cells and are compatible with human ABC-DLBCL.40

Tumor cells of the remaining 2 CD19-cre-HOIP/MYD88LP
mice exhibited a plasma-cell–like phenotype of CD19- and
B220-negative and CD138-positive expression (Table 1).
These results indicated that elevated expression of LUBAC
potentially has a function to facilitate MYD88-mediated B-cell
tumorigenesis.

High LUBAC expression is associated with
increased accumulation of activation-induced
cytidine deaminase (AID)–mediated somatic
mutations
We did not find any significant macroscopic, histological, and
immunophenotypic differences between DLBCL-like lympho-
mas that developed in CD19-cre-MYD88LP and CD19-cre-
HOIP/MYD88LP mice (Figure 1G-H; Table 1). To understand the
biological background of the accelerated MYD88-mediated
lymphomagenesis in the condition of augmented LUBAC ac-
tivity, we performed whole-exome sequencing analyses of
genomic DNA isolated from 12 lymphomas derived from
12 different mice (8 from CD19-cre-HOIP/MYD88LP and 4 from
CD19-cre-MYD88LP mice). Significantly more mutations were
detected in the whole exons of lymphoma cells derived from
CD19-cre-HOIP/MYD88LP mice than in those from CD19-cre-
MYD88LP mice (Figure 2A; supplemental Figure 3A), indicating
that elevated LUBAC expression increased the number of so-
matic mutations. Twenty-six genes were found to be recurrently
mutated nonsynonymously in $2 samples among 12 mice.
Twenty-three of them were recurrently mutated among those
from 8 CD19-cre-HOIP/MYD88LP mice. Moreover, 6 of them,

Figure 1 (continued) Actb messenger RNA; n 5 3 per genotype. Data are presented as means 6 standard deviation (SD). (D) Cell Trace Violet–labeled splenic B cells were
cultured with or without stimuli. (E) Cell lysates of splenic B cells derived from CD19-cre, CD19-cre-MYD88LP, and CD19-cre-HOIP/MYD88LP mice were subjected to Halo-
tagged linear ubiquitin-specific tandem ubiquitin binding entity (M1-specific TUBE) binding and Halo tag–based purification and analyzed by immunoblotting. (F) Kaplan-Meier
plots of survival of transgenic mice (n5 18, CD19-cre; n5 36, CD19-cre-HOIP; n5 26, CD19-cre-MYD88LP; and n5 33, CD19-cre-HOIP/MYD88LP). (G-I) Representative tumor
involvement of lymphoid organs isolated from 9-month-old CD19-Cre-MYD88LP and CD19-cre-HOIP/MYD88LP mice. (G) Macroscopic appearance of spleens (left) and lymph
nodes (right). (H) Representative H&E and immunohistochemical staining for Irf4 and Bcl6 of spleens (CD19-cre mice) or tumors (CD19 cre-MYD88LP and CD19-cre-HOIP/
MYD88LP mice). Scale bars represent 200 mm (inset 20 mm). (I) Representative analyses of clonality. Tumor 1084–specific primers specifically amplified tumor 1084–specific V(D)J
but did not amplify V(D)J from genomic DNA of normal splenic B cells or tumor 786. *P, .05, **P, .01, and ***P, .001, 2-tailed unpaired Student t test (A and C) or log-rank test
(F). See also supplemental Figures 1 and 2 and supplemental Table 1. CpG, cytosine guanine dinucleotide; FPKM, fragments per kilobase million; HA, hemagglutinin; n.s., not
significant; Spl, splenic; wt, wild-type.
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including Irf2bp2 and Pim1, were reported to be frequently
mutated in human DLBCLs, especially in ABC-DLBCL (Figure
2B-C; supplemental Table 5).30 These results suggested that
B-cell lymphomas generated in mice expressing HOIP with
MYD88 mutant transgene share some genome mutations with
human DLBCLs.25,30

Notably, a significant proportion of recurrently mutated
genes in lymphomas from CD19-cre-HOIP/MYD88LP mice
were identified as known or predicted targets of aberrant
somatic hypermutation induced by AID (Figures 2C and 3A;
supplemental Table 6).25,30,31,41,42 AID plays essential roles in
class-switch recombination and somatic hypermutation of the
immunoglobulin genes during physiological B-cell maturation,43

and it is also involved in the pathogenesis of human DLBCL
by introducing aberrant somatic hypermutations in non-
immunoglobulin genes.34,44-46 We found that somatic SNVs
within WRCY/RGYW motifs or at C:G sites and transition mu-
tations accumulated at higher levels in tumors derived from

CD19-cre-HOIP/MYD88LP mice than in hose from CD19-
cre-MYD88LP mice (Figure 3B; supplemental Figure 3B-D;
supplemental Tables 7 and 8). Additionally, most of these mu-
tations were located within 2 kb downstream of the transcrip-
tion start site of each target gene (Figure 3C; supplemental
Figure 3E). Since all of these characteristics are known as
hallmarks of AID-mediated somatic mutations, it is indicated
that AID-mediated mutagenesis is involved in B-cell lymphoma
development in CD19-cre-HOIP/MYD88LP mice.47-49 Mean-
while, in the analyses of the whole-exome sequencing and
RNA-seq data from 48 human DLBCL samples (project
ID: TCGA-DLBC),27,28 we found that the frequency of AID-
induced mutations positively correlated with the expression
level of HOIP (Figure 3D-E; supplemental Table 4). Taken
together, these results indicated that elevated expression of
HOIP is associated with increased accumulation of somatic
mutations of AID pattern, and augmented LUBAC activity is
suspected to explain the facilitation of MYD88-mediated
B-cell lymphomagenesis.

Table 1. Surface phenotypes of lymphomas in transgenic mice

Tumor
ID Genotype

Surface phenotypes
Major site of
involvementCD19 B220 IgM IgD CD5 CD21 CD23 CD38 CD138 Igk Igl

786 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Spleen

950 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Spleen

1032 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Extranodal
(subcutaneous)

1074 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Mesenteric lymph
nodes

1078 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 2 1 Peripheral lymph
nodes

1083 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Peripheral lymph
nodes

1084 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Peripheral lymph
nodes

1182 CD19-cre-HOIP/
MYD88LP

1 1 1 2 2 NA NA NA 2 1 2 Mesenteric lymph
nodes

1236 CD19-cre-
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Mesenteric lymph
nodes

1237 CD19-cre-
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Extranodal
(subcutaneous)

1289 CD19-cre-
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Peritoneal

1385 CD19-cre-
MYD88LP

1 1 1 2 2 2 2 1 2 1 2 Peripheral lymph
nodes

876 CD19-cre-HOIP/
MYD88LP

2 2 1 2 2 2 2 1 1 1 2 Peritoneal

1027 CD19-cre-HOIP/
MYD88LP

2 2 1 2 2 2 2 2 1 1 2 Peritoneal

NA, not available.
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Augmented LUBAC activity overcomes cell death
induced by DNA damage, thereby accelerating
accumulation of somatic mutations
Although AID has a strong preference for immunoglobulin
genes, it produces off-target DNA damage as well, resulting
in aberrant somatic mutations.34,44,46,50 As shown above, AID-
mediated mutations accumulated more prominently in CD19-
cre-HOIP/MYD88LP mice compared with CD19-cre-MYD88LP
mice. However, the expression levels of AID and the percent-
ages of germinal center B cells in mesenteric lymph nodes were
comparable between CD19-cre-HOIP/MYD88LP and CD19-cre-
MYD88LPmice (Figure 4A). In addition, no correlation was found
in the expression level of AID and HOIP in human DLBCLs (data

not shown). Therefore, the altered expression level of AID did
not seem to be the main reason for increased somatic mutations
in lymphomas derived from CD19-cre-HOIP/MYD88LP mice.

Previous studies showed that LUBAC has functions in protecting
cells from genotoxic-damage–induced apoptosis and mediating
NF-kB activation via plasma membrane receptors.51,52 There-
fore, we examined the cell protective effect of LUBAC against
genotoxic stress. Enforced expression of HOIP protected HBL1,
a human ABC-DLBCL–derived cell line,7 and murine splenic
B cells from cisplatin-induced cell death (Figure 4B-D; supple-
mental Figure 4A-B). We also found that enforced expression of
LUBAC protected Jurkat cells from cisplatin-induced cell death
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by suppressing apoptosis (Figure 4E-H). It has been reported
that LUBAC-mediated linear ubiquitination of NEMO is involved
in genotoxic NF-kB activation and protects cells from DNA-
damage–induced cell death.52-55 Indeed, expression of NF-kB
target genes, including antiapoptotic genes, was modestly but
significantly higher in splenic B cells of the CD19-cre-HOIP/
MYD88LP mice than in those of CD19-cre-MYD88LP mice

(supplemental Figure 5). Elevated levels of HOIP not only
augmented activation of NF-kB and expression of several
antiapoptotic genes but also enhanced linear ubiquitination
of NEMO induced by cisplatin (Figure 4I-K; supplemental
Figure 4C). In accordance with these results, RNA-seq analyses
of human DLBCLs revealed that expression of HOIP positively
correlated with expression of the genes involved in negative
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regulation of intrinsic apoptotic signaling, as well as those in-
volved in the NF-kB pathway (Figure 4L). These results sug-
gested that enhanced HOIP expression increases LUBAC activity
and confers tumor cell resistance to cisplatin-induced DNA
damage by modulating expression of genes associated with
cell death.

On the other hand, AID-inducedDNA alterations are repaired by
the DNA double-strand break repair machinery, which also
functions in repairing cisplatin-induced DNA damage.41,56 Based
on the observation that somatic mutations of AID signature
are increased in mouse lymphoma cells, it can be speculated
that increased LUBAC activity would also promote the ac-
cumulation of oncogenic somatic mutations caused by AID
and, in turn, facilitate the development of MYD88-mediated
B-cell lymphoma.

LUBAC is an effective target for the treatment
of DLBCL
Analysis of publicly available RNA-seq gene expression data25,30

suggested that the prognosis in primary refractory or relapsed
DLBCL is worse in patients with high HOIP expression than in
those with low HOIP expression (supplemental Figure 6A). In-
deed, we showed that LUBAC is involved in B-cell lympho-
magenesis by protecting cells from DNA-damage–induced
apoptosis (Figure 4D,G; supplemental Figure 4B), which may
lead to resistance to cytotoxic chemotherapies.51 We have
previously described that LUBAC represents a novel therapeutic
target against this cancer because reduction of LUBAC sup-
presses NF-kB activation and proliferation of ABC-DLBCL cells

in vitro cell culture.20,57 We then tried to establish a preclinical
model for B-cell lymphomas using CD19-cre-HOIP/MYD88LP
mice to evaluate whether LUBAC is a promising drug target for
B-cell lymphomas in vivo.

The cell line HM876, derived from a B-cell lymphoma with
plasma-cell–like surface phenotype in a CD19-cre-HOIP/
MYD88LP mouse, exhibited elevated expression of trimeric
LUBAC and constitutive activation of NF-kB, manifested by
phosphorylation and reduced expression of IkBa (Figure 5A;
supplemental Figure 6B; Table 1). Using HM876 cells, we
established a mouse lymphoma model by secondary trans-
plantation of HM876 cells for in vivo drug evaluation (Figure 5B).

We next looked for small compounds that can inhibit the ac-
tivity of LUBAC. HTS of 41 760 compounds in total using an
AlphaScreen-based method (supplemental Figure 6C) identified
aureothricin as a candidate LUBAC inhibitor (Figure 5C-D;
supplemental Figure 6D-E). Because thiolutin is a molecular
derivative of aureothricin, we examined both compounds in
subsequent experiments (Figure 5C-E; supplemental Figure 6E).

Ubiquitin ligases are classified into 3 groups: RING, HECT, and
RING-IBR-RING (RBR). LUBAC is an RBR ligase,58 and thiolutin
inhibited catalytic RBR domain of HOIP in LUBAC (Figure 5F).
Thiolutin did not noticeably inhibit the activities of a HECT ligase
(Nedd4) or a RING ligase (cIAP2) in vitro and only slightly
inhibited another RBR ligase (Parkin) when used in higher
concentrations (supplemental Figure 6F), suggesting that its
inhibitory function is specific for LUBAC. Thiolutin effectively
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suppressed CD40 ligand–mediated NF-kB activation and de-
creased the protein expression levels of LUBAC subunits at
concentrations as low as 0.07 mM in ABC-DLBCL-derived
DLBCL2 cells and HM876 cells (Figure 5G-H). Thiolutin did not
decrease the amount of LUBAC components in the in vitro
ubiquitination assay, nor did it obviously alter the gene ex-
pression of LUBAC subunits in DLBCL cells (supplemental
Figure 6G-H). Thiolutin decreased the amount of linear ubiquitin
chains without affecting the amount of K48- or K63-ubiquitin
chains in cells (Figure 5I; supplemental Figure 6I) and appeared
to decrease survival of ABC-DLBCL–derived cell lines more
effectively than GCB-DLBCL–derived cell lines (Figure 5J).
Likewise, thiolutin suppressed NF-kB activation and exerted
significant cytotoxicity in HM876 cells in vitro (Figure 5A,K).
These results suggested that the cytotoxic effect of thiolutin is
mainly caused by the inhibition of LUBAC and the blockade of
NF-kB signaling. To validate whether LUBAC is an effective
therapeutic target for B-cell lymphomas, we intraperitoneally
administered thiolutin to mice inoculated with HM876 cells and
found that thiolutin significantly decreased the tumor burden
(Figure 5L-M), indicating that inhibition of LUBAC represents an
effective treatment of B-cell lymphomas with NF-kB activation.
Moreover, our results demonstrate that our mouse model pro-
vides a valuable preclinical platform for the development of
novel therapeutic approaches for B-cell lymphomas.

Discussion
Constitutive activation of NF-kB signaling is required for survival
and proliferation of B cells and plays a crucial role in patho-
genesis of ABC-DLBCL. Previously, we reported that rare
germline SNPs in the gene encoding HOIP, which activates
LUBAC ligase activity, are accumulated in individuals with ABC-
DLBCL.20 We also found that expression of HOIP is elevated in
ABC-DLBCL compared with GCB-DLBCL (Figure 1A). According
to these observations, it is suspected that HOIP plays important
roles broadly in ABC-DLBCL, whereas the precise contribution of
HOIP and its functional protein complex LUBAC to lympho-
magenesis has been poorly understood. Hence, we established
mice models that allow enhanced expression of HOIP in B cells
and assessed the roles of LUBAC in the pathogenesis of ABC-
DLBCL. Because the LUBAC-activating SNPs of HOIP accumu-
late in patients with ABC-DLBCL with oncogenic MYD88 L265P
mutation,20 we investigated the functional synergism of LUBAC
and MYD88 in B-cell lymphomagenesis in mice. The results revealed
that elevated expression of LUBAC accelerates MYD88-driven
lymphomagenesis.

Our data showed that overexpression of HOIP increased NF-kB
activation and enhanced proliferation of B cells upon MYD88-

dependent signal activation (Figure 1C-D; supplemental
Figure 1E), although it could not induce lymphomas in mice by
itself (Figure 1F). However, enforced HOIP expression with
oncogenic MYD88 L252P signaling facilitates tumor formation in
mice, of which phenotype is DLBCL-like. More importantly,
whole-exome sequence analysis of lymphomas developed in
mice revealed higher somatic mutations in lymphomas with
coexpression of HOIP, many of which are of AID signature and
partially resemble those often seen in DLBCL patient samples
(Figures 2B-C and 3A-C; supplemental Figure 3A-E). This sug-
gests that the mouse model expressing HOIP andMYD88 L252P
shares biological features with human DLBCL.

NF-kB is known to be activated by genotoxic damage, including
that triggered by AID, and it aids in cell survival by inducing a
variety of antiapoptotic genes.53 We previously reported that
LUBAC-mediated linear ubiquitination of NEMO plays a key role
in transducing nuclear genotoxic signals to the cytoplasm, in turn
inducing genotoxic stress–induced NF-kB activation.52 As no
significant difference in the expression levels of AID could be
observed in B cells between CD19-cre-HOIP/MYD88LP and
CD19-cre-MYD88LP mice (Figure 4A), we assume that the in-
creased mutation burden in the tumors of CD19-cre-HOIP/
MYD88LP mice is rather a result of a higher tolerability to
genotoxic stress in the condition of higher catalytic activity of
LUBAC (Figure 4D,G,J; supplemental Figure 4B). Therefore, ele-
vated expression of LUBAC is considered to facilitate MYD88-
mediated B-cell lymphomagenesis by conferring resistance to
genotoxic stress in B cells and, in turn, augmenting the accu-
mulation of oncogenic mutations. Our findings are compatible
with previous reports that the apoptotic pathway counters
MYD88-driven B-cell proliferation59 and that aberrant expression
of the antiapoptotic protein Bcl-2 facilitates the generation of
oncogenic MYD88-driven DLBCL.39,60,61

In accordance with our mouse experiment, the expression level
of HOIP appears to positively correlate with the number of
somatic mutations of AID signature in human DLBCL (Figure 3E).
Since no correlation was found in the expression level of AID and
HOIP in humanDLBCLs (data not shown), augmented protection
of DNA-damage–induced cell death by enhanced LUBAC ex-
pression might rather be a main cause of the high mutation rates
in human DLBCLs with high HOIP expression. Gene mutations
recurrently found in human DLBCLs could barely be detected in
lymphomas generated in mice with oncogenic MYD88 trans-
gene alone. This could be simply due to the limited number of
tumors that could be analyzed in CD19-cre-MYD88LP mice or
the potential differences in B-cell developmental stage in which
oncogenic MYD88 transgenes are acquired between our model
and human DLBCL.

Figure 5. LUBAC is an effective target for the treatment of DLBCL. (A) Elevated phosphorylation and degradation of IkBa in unstimulated HM876 cells were suppressed by
thiolutin. (B) Diagram of allogeneic transplantation model. s.c., subcutaneously. (C) Chemical structure of aureothricin. (D) Inhibition of LUBAC ligase activity by aureothricin and
thiolutin in vitro. ATP, adenosine triphosphate; IB, immunoblotting. (E) Chemical structure of thiolutin. (F) Thiolutin inhibited linear polyubiquitination mediated by HOIP (amino
acids 699-1072). (G) Upon stimulation of DLBCL2 cells with CD40 ligand, thiolutin suppressed phosphorylation and degradation of IkBa in a dose-dependent manner. DLBCL2
cells were exposed to thiolutin or DMSO for 2 hours and then stimulatedwith CD40 ligand (30 ng/mL) for the indicated times. (H) Levels of LUBAC components in DLBCL2 (upper
panel) and HM876 (lower panel) cells treated with thiolutin were reduced in a dose-dependentmanner. (I) Cell lysates of DLBCL2 (left panel) and HM876 (right panel) cells treated
with or without thiolutin (0.1 mM) for 2 hours were analyzed by immunoblotting. Samples were probed with anti-linear ubiquitin specific antibody (LUB9). (J) Viability of DLBCL
lines after 48 hours treatment with the indicated concentrations of thiolutin, normalized against that of control (DMSO-treated) cells. Data are means 6 SD from three
experiments. (K) Viability of HM876 cells after 48 hours treatment with the indicated concentrations of thiolutin, normalized against that of control (DMSO-treated) cells. Data are
means6 SD from three experiments. (L and M) Thiolutin suppressed growth of lymphomas in vivo. (L) Gross appearance of engrafted tumors. (M) Tumor weight. Data represent
means6 SD. *P, .05, **P, .01, and *** P, .001, 2-tailed unpaired Student t test (J and K) or one-way ANOVAwith Turkey’s post hoc tests (M). See also supplemental Figure 6.
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We observed a population of mice with tumors of a more dif-
ferentiated phenotype with CD138 and IgM expression (Table 1)
and the presence of serum M proteins (data not shown). These
tumors may possibly be the equivalent of lymphoplasmacytic
lymphoma in humans, another B-cell malignancy in which
MYD88 L265P is closely involved.62,63 Considering that these
tumors were observed only in CD19-cre-HOIP/MYD88LP mice
(Table 1), augmented LUBAC activity may have played some role
in their development, whereas there is presently no data for the
involvement of LUBAC in the pathogenesis of lymphoplasma-
cytic lymphoma.

Finally, we established a preclinical tumor transplantation
model for human B-cell lymphomas using a cell line derived
fromaCD19-cre-HOIP/MYD88LPmouse. In thismodel, we showed
that thiolutin, a specific inhibitor of LUBAC, suppressed the
growth of lymphoma cells. Reduction or deletion of LUBAC
counteracts resistance to cytotoxic chemotherapy, possibly by
decreasing the expression of antiapoptotic genes that are in-
duced by NF-kB activation.51

In summary, our results suggest that LUBAC has a function to
accelerate B-cell lymphomagenesis by conferring resistance to
genotoxic stress in B cells. We have also shown that, as a direct
regulator of NF-kB pathway, LUBAC is an effective treatment
target for lymphoma. Considering that resistance to genotoxic
cell death is the common feature of chemorefractory cancers, the
inhibition of LUBACwould represent a promising strategy for the
treatment of multiple types of cancer.
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