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KEY PO INT S

l RNA-binding proteins
with roles in regulating
alternative splicing,
DAZAP1, EWSR1,
HNRNPH1, are
frequently mutated
in MCL.

l Most somatic
HNRNPH1 mutations
are intronic and
disrupt regulation of
HNRNPH1 through
alternative splicing.

Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is
incurable with standard therapies. The genetic drivers of this cancer have not been firmly
established, and the features that contribute to differences in clinical course remain limited.
To extend our understanding of the biological pathways involved in this malignancy, we
performed a large-scale genomic analysis of MCL using data from 51 exomes and 34
genomes alongside previously published exome cohorts. To confirm our findings, we
resequenced the genes identified in the exome cohort in 191 MCL tumors, each having
clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1
mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a
single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors
with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing
of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant
increase in protein expression by immunohistochemistry. We describe a functional role for
these recurrent noncodingmutations in disrupting an autoregulatory feedbackmechanism,

thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant
regulation of messenger RNA processing in MCL pathobiology. (Blood. 2020;136(5):572-584)

Introduction
Mantle cell lymphoma (MCL) is an uncommon B-cell lymphoma
representing 4% to 9% of non-Hodgkin lymphoma (NHL) di-
agnoses worldwide.1 It can be broadly divided into 2 clinical sub-
types, nodal and leukemic nonnodal disease, with each displaying
distinct natural history and clinical and genetic features.2 MCL
commonly follows an aggressive clinical course in patients, in-
cluding nonsustained responses to frontline chemoimmunotherapy
and frequent relapses, although some patients, including the ma-
jority of those with the leukemic nonnodal variant, exhibit signifi-
cantly longer survival.3 Clinical prognostic metrics such as the MCL
International Prognostic Index have enabled patient stratification
and improvements in frontline therapy, such as the inclusion of
active agents (rituximab, bendamustine, and cytarabine) as well as
consolidative strategies (autologous stem cell transplantation), have
significantly improved outcomes over the past 2 decades.1,4,5

The unifying genetic feature ofMCL is a chromosomal translocation
that places cyclin D1 (CCND1) proximal to the immunoglobulin

heavy chain enhancer, causing constitutive CCND1 expression.2,6

The translocated CCND1 allele can also accrue secondary mu-
tations including noncoding mutations in the 39 untranslated re-
gion (UTR), thereby enhancing CCND1 messenger RNA (mRNA)
stability and further elevating CCND1 protein abundance.7,8

Through exome and targeted sequencing efforts, largely focused
on nonnodal leukemic subtype, several genes have been iden-
tified as commonly mutated in MCL, including those involved
in DNA damage response (ATM, TP53), epigenetic regulation
(KMT2D, WHSC1), Notch signaling (NOTCH1, NOTCH2), NFkB
signaling (CARD11, BIRC3, SYK), and ubiquitin-mediated pro-
teolysis (UBR5).9-11 The genomic features of MCL have proven to
be heterogeneous and diverse, and therefore larger compre-
hensive explorations are necessary to further understand its bi-
ological spectrum.

A limited number of recurrent mutations have been associated
with prognosis in MCL treated with standard therapy. The
most firmly established of these include nonsilent mutations
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affecting TP53, NOTCH1, and CCND1,12-15 as well as ampli-
fications of 3q or deletions in 17p.13,16 With the ongoing
evaluation of new therapeutics for MCL, mutations associated
with acquired treatment resistance are beginning to be
identified.17 Despite a broad collection of MCL-related genes
and mutations, stratification of patients by proliferation, whereby
patients are separated into low-, intermediate-, and high-risk
categories, remains more robust than any individual driver
mutation.14,18

The present study describes driver mutations in MCL and
nominates the perturbation of mRNA processing as an im-
portant feature of MCL biology. Specifically, we report novel
recurrent mutations affecting genes that encode 3 RNA-
binding proteins HNRNPH1, DAZAP1, and EWSR1, including
intronic mutations affecting exon 4 splicing in HNRNPH1. We
demonstrate that select mutations in HNRNPH1 alter this
splicing and are associated with higher HNRNPH protein
expression in patient tissues. Our functional characterization
in MCL patient samples and cell lines indicate that HNRNPH1
splicing is regulated by the HNRNPH1 protein via a negative
feedback loop leading to exclusion of exon 4 in the alternative
transcript.

Methods
Study design and sequencing
We assembled a discovery cohort of paired fresh-frozen (FF)
tumor-normal exome sequencing from 51 novel Canadian cases
and 33 previously published cases.9,11 Our validation cohort
consisted of targeted sequencing performed on formalin-fixed,
paraffin-embedded tissue representing 191 diagnostic tumor
samples from British Columbia (BC) (170 unique cases). Sixteen
validation samples and 18 additional FF biopsies from BC un-
derwent whole-genome sequencing (WGS). We performed RNA
sequencing (RNA-seq) on a subset of the BC cases (103 total).
Patient characteristics are available in Table 1. See supplemental
Data and supplemental Figure 1 (available on the Blood Web
site) for more details. This study was approved by the BC Cancer
Research Ethics Board. All participants recruited provided in-
formed consent.

Data analysis
Sequencing reads were aligned to GRCh38 using Burroughs-
Wheeler alignment19 (exomes, WGS), Geneious (targeted), or
STAR20 (RNA-seq; individual-nucleotide resolution crosslinking
and immunoprecipitation [iCLIP]). Simple somatic mutations
(SSMs) in exomes and WGS were called, by using Strelka
(v1.0.14)21 and Strelka2 (v2.9.6),22 respectively. Variants were
annotated with Variant Effect Predictor23 using Ensembl release
83 (exomes) and Ensembl release 95 (WGS, targeted). Signifi-
cantly mutated genes in the discovery cohort were identified
by using a voting strategy with results from MutSigCV,24

OncodriveFM,25 OncodriveFML,26 and OncodriveCLUST27 (false
discovery rate [FDR] , 0.1). Targeted sequencing was per-
formed on significantly mutated genes identified by 2 or more
methods, as well as NOTCH1, CARD11, and NFKBIE.11,12,28

Variants from all sequencing approaches were consolidated
on a per patient basis. We compared the mutation patterns
observed in MCL to diffuse large B-cell lymphoma (DLBCL) by

using targeted and exome sequencing data from 1616 unique
patients.29-31

Experimental approaches
All cell lines were grown as previously described.12,29 None of
the cell lines REC-1, JVM2, Z-138 (in-house sequencing), or
HEK cells32 have HNRNPH1mutations at the hot spots identified
herein. The HNRNPH1_ex2-6 “minigene” was assembled from
human genomic DNA. pEGFP-HNRNPH1 was generated by
inserting cDNA encoding the entire open reading frame into the
pEGFP-C1 plasmid. Droplet digital polymerase chain reaction
(ddPCR), western blot analysis, and tissue microarray immuno-
histochemistry were performed as described in the supple-
mental Methods. All ddPCR samples were normalized to the
geometric mean of 3 reference genes.

Statistical analysis
Associations between gene mutation status and binary clinical
characteristics were assessed, using Fisher’s exact test. Over-
all survival (OS) correlates were separately tested in all pa-
tients, regardless of treatment (n 5 213), and in the subset of
R-CHOP (rituximab, cyclophosphamide, doxorubicin hydrochlo-
ride, vincristine, prednisone)–treated, hematopoietic stem cell
transplantation–untreated cases (n 5 133), using univariate
Cox proportional hazard modeling, and P values were corrected
for multiple-hypothesis testing by the Bonferroni-Hochberg
method. Corrected P , .1 was considered significant. The
HNRNPH1 exon 4–skipping ratio was derived from RNA-seq
data, and survival analysis using this ratio was limited to these
cases (n 5 102), using the median skipping ratio for all
HNRNPH1-mutated cases as a cutoff for “mutant-like” splicing.
Multivariate survival associations were examined with the Cox
proportional hazard model on RNA-seq cases so that the
HNRNPH1 exon 4–skipping ratio could be included in themodel

Table 1. Characteristics of patient samples

Total (n 5 213)

Median age (range; n 5 189) 64 (31-84)

Male (%) 160/211 (76)

Performance status .1 (%) 35/176 (20)

Blastoid (%) 20/212 (9)

MIPI (%)
Low 59/138 (43)
Intermediate 34/138 (25)
High 45/138 (33)

Treatment
R-CHOP 147
Observation 39
Other 5
Unknown 22

HSCT/AUTO 14

MCL tumor samples from 213 patients were obtained from patients living in British
Columbia.

MIPI, MCL International Prognostic Index.
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(n 5 102). The final tested multivariate model included the
TP53 and NOTCH1 mutations, HNRNPH1 mutant-like splicing,
and morphology.

Results
Resolving the frequency of SSMs and recurrently
mutated genes in MCL
Several genes have previously been implicated as recurrent
targets of SSMs in MCL,9-11,33 although the relevant genes and
their mutation incidence has varied considerably among these
studies.34 This variability can be attributed to both genetic
heterogeneity in this malignancy and the limited cohort sizes
included in each study. To address this problem, we sequenced
paired tumor/normal exomes from 51 MCLs diagnosed in
Canada and analyzed the data alongside available paired exome
data. Three of the 87 available samples exhibited significantly
higher mutation burdens (median 5 112; range 1621-14 959)
and were excluded because of the effect of hypermutation on
the detection of drivers. In the remaining “discovery cohort,”
comprising 84 cases, tumor exomes harbored an average of
nonsilent SSMs affecting 76 genes (range, 30-219).

Through our analysis of this cohort, 16 genes were deemed re-
currently mutated by 2 or more algorithms used to identify driver
genes. Three of the algorithms found each of ATM, BIRC3, TP53,
S1PR1, and B2M to be significantly mutated, and each of MEF2B
andWHSC1were identified by 2methods (supplemental Table 1).
Notably, CCND1, often affected by somatic hypermutation, was
identified by OncodriveCLUST,27 which relies on spatial clustering
of mutations. Of the candidate MCL genes, those frequently
mutated were ATM, CCND1, TP53, WHSC1, and KMT2D, each
gene having been previously nominated by other studies. Three
genes not previously associated with MCL (HNRNPH1, DAZAP1,
and EWSR1) were also identified by at least 2 methods. Each of
these 3 genes encode RNA-binding proteins that play a role in
regulating RNA maturation, including alternative splicing.35,36

Novel mutation patterns in MCL
Based on these results and those of prior studies, we performed
targeted sequencing of the coding exons of 18 genes in 191
additional MCLs and separately performed WGS on 34 cases
to broadly resolve the exonic and intronic mutation patterns
(supplemental Figure 1). We consolidated variants across all
samples sequenced by more than one approach and used the
resulting nonredundant variants from 272 cases for subsequent
analyses. Mutation patterns and prevalence in established MCL
genes were largely consistent with prior reports (Figure 1A;
supplemental Table 2). Each of NOTCH1, MEF2B, and CCND1
have been shown to have mutation hot spots in MCL and other
cancers, but the pattern ofMEF2Bmutations in MCL was distinct
from that in other cancers (supplemental Figure 2).7,12,37,38

Unsurprisingly, the incidence of nonsilent mutations in newly
identified genes was generally lower than that in established
MCL genes. EWSR1wasmutated in 8 cases (3%) andDAZAP1, in
13 cases (5%; Figure 1A). EWSR1 predominantly harbored
frameshift or nonsense mutations in MCL and exhibited a similar
pattern at a lower prevalence in a larger compendium of DLBCLs
(0.3%; Figure 1B), suggesting that EWSR1 has an unappreciated
tumor-suppressor function in MCL and possibly in DLBCL.
DAZAP1 had a distinctive pattern, with mutations clustered

near the C terminus in a region containing a nuclear localization
signal (p.G383-R407)39 and a proline-rich, protein-binding do-
main (Figure 1C).40,41 Nine cases harbored putative truncating
mutations, with each predicted to remove or disrupt the nuclear
localization signal while leaving most of the open reading frame
intact. Nonsynonymous mutations in this region mainly affected
highly conserved residues (ie, p.F402, p.R406, and p.R407).
Previous work indicates that substitution of these residues
causes cytoplasmic accumulation of DAZAP1 in human kidney
epithelial (293T) and simian (COS7) cells.39

HNRNPH1 intronic mutations disrupt HNRNPH1
binding motifs
HNRNPH1 was mutated in 26 cases (10%) when we consider
both coding and noncoding mutations, placing it as the eighth
most commonly mutated gene overall (Figure 1A; supplemental
Figure 3). Despite limited coverage of introns by our sequencing
assay, intronic variants were the most common type of SSM
detected in this gene, particularly in the regions surrounding
exon 4 (Figure 2A). Paired tumor/normal sequencing confirmed
that all recurrent variants were somatic, and the WGS data
confirmed that the pattern was restricted to this exon and the
immediate flanking regions (Figure 2B). HNRNP proteins are
widely involved in regulating splicing by binding to pre-mRNA at
specific motifs and either promoting or inhibiting usage of
nearby splice sites. Distinct from other HNRNPs, HNRNPH1 (and
its paralog HNRNPH2) preferentially binds RNA at poly-G
motifs.42 Strikingly, 73% (19 of 26) of patients with HNRNPH1
mutations had mutations affecting a poly-G motif within or near
this exon. Each of the affected bases are deeply conserved in the
homologous region of all available vertebrate genomes, sup-
porting their functional importance.

Further confirming the recurrence of this event, we found mu-
tations in this region of HNRNPH1 by reanalyzing published and
unpublished exomes from 2 recent studies. We observed mu-
tations consistent with the same pattern in 3 of 16 (18.8%) re-
lapsed/refractory MCL exomes sequenced from a recent clinical
trial17 and 4 of 24 (16.7%) exomes from another recent study43

(supplemental Table 3). We also sequenced this gene in di-
agnostic tumor tissue from 145 patients treated with either
ibrutinib or temsirolimus on a recent clinical trial (clinicaltrials.
gov #NCT01646021)44 and foundmutations in 11 (7.5%) of these
cases (supplemental Table 3). Among the available WGS data
from Burkitt lymphoma45 (n 5 106), DLBCL (n 5 153), chronic
lymphocytic leukemia (n5 144), and follicular lymphoma (n5 110),
we only identified 2 DLBCL patients with HNRNPH1 mutations
in this region (1.3%), suggesting the potential for these to be
driver mutations with a highly specific function in MCL biology.29

This highly reproducible mutation pattern provides strong
evidence that these mutations have a regulatory function, most
likely affecting the expression and/or splicing of HNRNPH1
mRNA.

There is a growing list of splicing regulators, including multiple
HNRNP family members, that modulate splicing of their mRNA
to tightly regulate expression.46,47 Taking this into consideration
along with the prevalence of HNRNPH1 mutations in sequence
contexts resembling HNRNP motifs led us to speculate that
HNRNPH1 protein regulates its own expression by modulat-
ing the splicing of the HNRNPH1 transcript. We reanalyzed
HNRNPH1 iCLIP-seq data from Uren et al.42 and confirmed
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Figure 1. Recurrent mutations are identified in MCL. (A) Mutations observed across 273 MCL samples in 18 candidate MCL genes. Mutations shown here are limited to
nonsilent mutations of all genes with the exception of HNRNPH1. For this gene, intronic and silent mutations affecting or immediately surrounding exon 4 are included. Spatial
distribution of mutations observed in (B) EWSR1, and (C) DAZAP1 in MCL compared with DLBCL.
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multiple sites of interaction between HNRNPH1 and its pre-
mRNA including exon 4 (Figure 2C), supporting amodel of direct
association at the region affected by mutation.

HNRNPH1 has multiple alternative isoforms including several
transcripts that result from skipping of exon 4, which are pre-
dicted to be targets of nonsense-mediated decay (NMD) (Figure
2D). Although they do not directly affect canonical splice signals,
we hypothesized that the mutations in these poly-G motifs
impact the splicing or skipping of exon 4. We analyzed RNA-seq
data from 103 cases with known HNRNPH1 mutation status to
evaluate splicing differences between mutated (n 5 15) and
unmutated (n 5 88) tumors. By comparing the number of reads
supporting the exon-skipping event to reads supporting in-
clusion of exon 4, we found that mutated cases exhibited a ratio
of isoforms that favors inclusion of exon 4 (P 5 1.13 3 102 5,
Wilcox rank sum; Figure 2E). We implemented a custom ddPCR
assay to separately quantify canonical and alternativeHNRNPH1
transcripts. Using this assay, we corroborated these findings in
selected cases (P , .001; Figure 2F), which showed a strong
correlation (R 5 0.66; P , .01) with splicing ratios determined
from RNA-seq data from the corresponding cases (supple-
mental Figure 4A-B). These results support the notion that
HNRNPH1 mutations favor the inclusion of exon 4, or suppress
the skipping of this exon, promoting the formation of the full-
length transcript. Based on our model, these mutations disrupt
the binding of HNRNPH1 to poly-G motifs surrounding exon 4
and dampen the normal feedback inhibition (supplemental
Figure 4C).

HNRNPH1 splicing is associated with inferior
outcomes in MCL
We examined whether any mutations identified in this study
were associated with patient outcome. This entailed 2 separate
analyses: first using all cases with available survival data and then
separately, within the subset of cases with R-CHOP treatment.
In univariate comparisons, mutations in NOTCH1 (hazard ratio
[HR]5 2.05; Q5 8.63 1022) or TP53 (HR5 3.38; Q5 2.83 1027)
were associated with shorter OS in the complete cohort. Con-
sistent with previous reports, there was also a significant prog-
nostic association of NOTCH1 (HR 5 2.38; Q 5 3.6 3 1022) and
TP53 (HR 5 3.53; Q 5 8.4 3 1026) mutations in patients treated
with R-CHOP. Notably, although KMT2D mutations have been
recently implicated as a prognostic feature in MCL,48 our analysis
did not reproduce this result (supplemental Figure 5). In addition,
in R-CHOP–treated cases EWSR1 was associated with shorter OS
(HR 5 8.71; Q 5 3.5 3 1023), although the number of mutated
cases was small. In contrast, a significant association was not
observedwhen these patients were stratifiedbymutation status of
other genes, including HNRNPH1 (supplemental Data). We
separately evaluated the effect of HNRNPH1 mutation status in
the relapsed/refractory MCL patients treated with either ibrutinib
or temsirolimus. Because of the limited number of mutated
cases, patients on both arms of the trial were considered to-
gether in this analysis. In contrast to the R-CHOP cohort, pa-
tients with HNRNPH1 mutations had significantly shorter
progression-free survival (Figure 3A), providing further support
for contribution of these mutations to the biology of MCL.

Given the strong association between HNRNPH1 alternative
splicing and mutation status, we rationalized that the proportion
ofHNRNPH1mRNAs containing exon 4 could be used as a proxy

for HNRNPH1 protein expression. We selected a conservative
threshold to assign cases with mutantlike exon skipping based
on the median value in all cases with HNRNPH1 mutations
(Figure 2E). In patients with RNA-seq data available (n 5 102),
this stratification revealed significantly shorter OS in patients
with mutantlike splicing of HNRNPH1 (Figure 3B; HR 5 2.50;
P 5 .00388). In support of the utility of this information, the splicing
ratio was also significantly associated with OS when treated as a
continuous variable. In a multivariate analysis, TP53 mutations,
HNRNPH1 mutant-like splicing, and blastoid morphology were
each independently associated with shorter OS (Figure 3C). We
conclude that the mutant-like splicing pattern of HNRNPH1,
which favors the productive isoform, is a novel biomarker of
inferior outcome in MCL and is independent of established
prognostic genetic features and morphology.

Mutations and alternative splicing influence
HNRNPH1 protein expression in MCL
We hypothesized that HNRNPH1 mutations in poly-G tracts
disrupt an autoregulatory negative feedback loop, which pre-
dicts a higher HNRNPH protein expression in HNRNPH1-mutant
tumors. To address this directly, we evaluated HNRNPH ex-
pression in 170 MCL tumors by immunohistochemistry (Figure
4A). Of these cases, all had at least 1 type of sequencing data
available and 79 had RNA-seq performed. Consistent with our
hypothesis, tissues with strong HNRNPH staining intensity were
significantly enriched for HNRNPH1 mutations (P 5 .0007214;
Fisher’s exact test). Tissues with strong staining were also enriched
for caseswithmutant-like splicing (P5 .001251; Fisher’s exact test)
and the distribution of splicing ratios was significantly different
between tissues with moderate and strong staining (Figure 4B).
Based on the RNA-seq data, the total mRNA level of HNRNPH1
was not significantly higher in samples with strong staining (Figure
4C), which suggests that the relative proportion of canonical
transcripts, rather than the total mRNA abundance, is more di-
rectly related to HNRNPH1 protein expression. Our initial finding
showing that an association between productive splicing and
survival (Figure 3A) is consistent with the trend observed here:
namely, the association between strong HNRNPH staining and
shorter survival (Figure 4D).

Common HNRNPH1 mutations disrupt productive
splicing and translation
The correlation between HNRNPH1 isoform usage and increased
protein levels only indirectly implicates NMD in this process. To
substantiate the role of NMD in vitro, we inhibited this process by
using the eukaryotic translation inhibitor cycloheximide. Cyclo-
heximide is a widely used indirect inhibitor of NMD, owing to
the essential role of translation in the NMD process.49-52 In 3
MCL cell lines (JVM2, REC-1, and Z-138) and in HEK cells, cyclo-
heximide treatment caused a significant and dose-dependent
increase in the alternative nonproductive HNRNPH1 transcript,
compared with total HNRNPH1 transcript (alternative plus ca-
nonical; Figure 5A). This was consistent with the change in splicing
pattern observed in SRSF3, which has alternative isoforms that are
targeted to NMD due to inclusion of a poison exon (Figure 5B).49

These results suggest that the HNRNPH1 isoforms lacking exon 4
are degraded in an NMD-dependent manner in MCL cells.

To functionally demonstrate that mutations found inMCL disrupt
regulation of alternative splicing, we constructed a minigene
containing the genomic sequence for HNRNPH1 from exons 2
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through 6 (HNRNPH1_ex2_6), including all intronic sequences.
Productive splicing of the minigene created a full-length, in-
frame peptide containing the hemagglutinin (HA) tag at the C
terminus. Unproductive splicing, resulting from skipping of exon
4, forced the C terminus out of frame and caused translated
peptides to lack the terminal HA tag. We first transiently
transfected the minigene in HEK cells, along with a vector
bearing the cDNA for HNRNPH1 tagged with EGFP. Ectopic
expression of HNRNPH1 notably impaired expression of the HA
tag, suggesting an HNRNPH1-dependent switch from pro-
ductive to unproductive splicing of the minigene (Figure 5C).
Subsequently, we separately generated 3 distinct mutants of
this minigene by site-directed mutagenesis (Figure 5D; Table 2)
and transiently transfected each mutant into HEK cells. The
presence of any 1 of the 3 mutations tested markedly in-
creased abundance of the HA-tagged peptide, confirming a shift

toward productive splicing (Figure 5E). This suggests that all
3 poly-G tracts are individually essential for proper regulation of
HNRNPH1 splicing and adds further support to a model in which
these mutations disrupt the autoregulatory feedback cycle and
favor HNRNPH1 protein expression (supplemental Figure 4).

Discussion
Using 272 MCL cases, we validated the incidence and pattern of
mutations in genes with known relevance to MCL, including
ATM, KMT2D, TP53, CCND1, and NOTCH1. Using clinical data
available for the bulk of these cases, we confirmed the prog-
nostic association of mutations in both TP53 and NOTCH1.
NOTCH1 was not independently prognostic in a multivariate
model that included TP53 mutations. We note that in the cur-
rent data, WHSC1 mutations were also not associated with OS,
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in contrast to another study,53 which may be attributable to
the limited sample size of that study. Motivated by the putative
role of mutations in HNRNPH1, we also identified a strong
association between HNRNPH1 splicing and outcome. Al-
though the likely consequence of an imbalance of HNRNPH1
isoforms is an increase in HNRNPH1 protein abundance, we
found a stronger association between the splicing ratio and
patient outcome. This can be attributed to a limited dynamic
range available for scoring HNRNPH expression by immuno-
histochemistry. In the absence of higher resolution methods for
quantifying this protein in tissues, our results indicate that di-
rect measurement of splicing may be a robust biomarker for
HNRNPH activity.

Although the incidence was low, we consider the mutation
pattern of EWSR1 to be a notable finding. EWSR1 is an
established cancer gene that is typically discussed in the con-
text of the EWSR1-FLI1 fusion oncoprotein that drives Ewing
sarcoma.54 The pattern of mutations observed here implies a
separate tumor-suppressor role of this gene in MCL. Notably,
EWSR1 has been implicated in regulating CCND1 by promoting
formation of the less oncogenic CCND1a isoform relative to the
shorter CCND1b isoform.55 Although the targets of EWSR1 have
not been established in MCL, our data are consistent with the
notion that loss of EWSR1 activity alters RNA metabolism and
splicing of genes relevant to MCL.

The DAZAP1 mutations described here are similar to previous
reports in a subset of DLBCLs.29,31 The existence of recurrent
EWSR1 and DAZAP1mutations in both malignancies add to the
limited genetic features shared between DLBCL andMCL, along
with inactivating mutations in KMT2D and TP53. Based on
previous mutagenesis experiments,39 we hypothesize that the
more common DAZAP1 mutations cause reduced nuclear oc-
cupancy and affect interactions with other proteins, which could
disrupt several processes, including transcription, alternative
splicing, mRNA transport, and translation.35,41,56

Although HNRNPH1 has been identified as overexpressed in
other cancer types,57-59 our description of regulatory mutations
in HNRNPH1 is novel and suggests an unappreciated role for
HNRNPH1 in B-cell development and/or lymphomagenesis.
HNRNPH1 is a member of the HNRNPH/F family of heteroge-
neous nuclear ribonucleoproteins60 and binds to various cis-
regulatory elements that, depending on the sequence context
and interacting proteins, can promote or suppress the use of nearby
splice sites.61 Our data support amodel wherein HNRNPH1 protein
normally limits its own accumulation by favoring the skipping of
exon 4, thus directing its mRNA to NMD. Self-regulation by
modulating unproductive splicing, and translation is an emerging
theme among other RNAbinding proteins, includingHNRNPA2B1,

HNRNPL, and SRSF3.46,47,62-64 We have shown, using RNA-seq and
ddPCR, that tissues with mutations near exon 4 have a biased
representation of the productive isoform containing this exon.
The effect of this on protein expression was confirmed through
immunohistochemical analysis of tumor tissue. Similar to the
predicted effects of other RNA binding proteins with a multiplicity
of targets,65-67 increased expression of HNRNPH1 is expected to
have widespread effects on the splicing landscape in MCL.42,61

The relative paucity of mutations in this region in other B-cell NHL
is consistent with a more important role of HNRNPH1 in MCL
biology. This warrants further exploration of the suite of genes and
splicing events regulated by HNRNPH1 in MCL.

The concurrent identification of 3 novel MCL-related genes
(EWSR1, DAZAP1, and HNRNPH1) with related function is
compelling, as it may implicate mRNAmaturation, splicing, and/
or trafficking as a general feature of lymphomagenesis in MCL.
Accordingly, there is growing evidence relating alterations in
RNA-binding proteins and splice factors in numerous cancers,
including other B-cell lymphomas, to various aspects of cancer
cell biology.68-70 Specifically, small changes in RNA-binding
proteins can have large downstream effects on gene expres-
sion and can thus affect multiple hallmarks of cancer.71 For
example, the splicing factor SF3B1 was identified as recurrently
mutated in chronic lymphocytic leukemia,72-74 and further de-
tailed investigations have identified widespread alternative
splicing affecting multiple cellular pathways.75,76 The identifi-
cation of pleiotropic effects downstream of SF3B1, including
DNA damage response, apoptosis, and Notch signaling, in-
dicate that widespread disruptions to RNA processing can en-
hance cancer cell survival by multiple pathways.75,77 Further work
will identify these downstream effects in MCL.

In summary, through genomic analysis of 273 MCL tumors, we
identified novel recurrently mutated genes with a range of
mutation incidences. We implicate an important role for RNA-
binding proteins and RNA processing in MCL as compared with
other B-cell lymphomas, suggesting that RNA metabolism and
splicing have a specific role in MCL pathology. We specifically
attribute mutations in HNRNPH1 to disruptions in HNRNPH1
autoregulation, leading to increased HNRNPH1 protein ex-
pression in MCL. Further work that links these mutations to
dysregulation of specific RNA molecules will highlight the rel-
evance of RNA processing in MCL.
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62. Änkö M-L, Morales L, Henry I, Beyer A,
Neugebauer KM. Global analysis reveals
SRp20- and SRp75-specific mRNPs in cycling
and neural cells. Nat Struct Mol Biol. 2010;
17(8):962-970.

63. Jumaa H, Nielsen PJ. The splicing factor
SRp20 modifies splicing of its own mRNA and
ASF/SF2 antagonizes this regulation. EMBO J.
1997;16(16):5077-5085.

64. Pervouchine D, Popov Y, Berry A, Borsari B,
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