
Review Series

PATHOPHYSIOLOGY AND TREATMENT OF ACUTE GVHD

Immunopathology and biology-based treatment of
steroid-refractory graft-versus-host disease
Tomomi Toubai1 and John Magenau2

1Division of Hematology and Cell Therapy, Department of Internal Medicine III, Faculty of Medicine, Yamagata University, Yamagata, Japan; and 2Division of
Hematology and Oncology, Department of Internal Medicine, University Michigan Medical School, Ann Arbor, MI

Acute graft-versus-host disease (GVHD) is 1 of the major
life-threating complications after allogeneic cell trans-
plantation. Although steroids remain first-line treatment,
roughly one-half of patients will develop steroid-refractory
GVHD (SR-GVHD), which portends an extremely poor
prognosis. Many agents that have shown encouraging re-
sponse rates in early phase 1/2 trials for prevention and
treatment have been unsuccessful in demonstrating a sur-
vival advantage when applied in the setting of SR-GVHD.
The discovery of novel treatments has been further com-
plicated by the absence of clinically informative animal

models that address what may reflect a distinct patho-
physiology. Nonetheless, the combined knowledge of
established bone marrow transplantation models and re-
cent human trials in SR-GVHD patients are beginning to
illuminate novel mechanisms for inhibiting T-cell signaling
and promoting tissue tolerance that provide an increased
understandingof the underlyingbiologyof SR-GVHD.Here,
we discuss recentfindings of newly appreciated cellular and
molecular mechanisms and provide novel translational op-
portunities for advancing the effectiveness of treatment in
SR-GVHD. (Blood. 2020;136(4):429-440)

Introduction
Despite significant progress in allogeneic cell transplantation (HCT;
allo-HCT) for the treatment of malignant and nonmalignant dis-
orders, acute graft-versus-host disease (GVHD) remains a major
driver of nonrelapse mortality. For decades, high dosages (1-
2 mg/kg per day) of prednisone or methylprednisolone have
remained a pillar of frontline treatment in the 30% to 50% of allo-
HCT recipients who develop GVHD.1 Unfortunately, roughly one-
half of patients receiving therapy will not demonstrate an initial
response; even fewer (;30%) will exhibit a durable response that
can facilitate withdrawal from glucocorticoids.2,3 Thus, scenarios of
nonresponse, progression, or prolonged dependence broadly
define steroid-refractory GVHD (SR-GVHD). Overall survival (OS) in
SR-GVHD is poor, historically,50% at 6 months, and survival after
failure to respond to second-line therapy is dismal (OS , 30%).4,5

Many agents have shown encouraging phase 2 response rates, but
none have demonstrated a survival advantage in randomized
trials.6,7 The lack of high-quality clinical evidence in the form of
controlled trials is compounded by our incomplete understanding
of SR-GVHD pathophysiology. To better understand the mecha-
nistic underpinnings of SR-GVHD, we discuss the molecular and
intracellular functions of steroids in modulating innate and adaptive
immune responses. Second, we discuss potential mechanisms of
steroid-mediated regulation of alloreactivity based on our current
understanding of GVHD pathophysiology. Here, potential mech-
anisms of corticosteroid resistance as well as results from basic and
translational studies highlight emerging themes in modification of
T-cell function, regulation of immune tolerance, and protection of
host tissues. Finally, we discuss implications for the prediction,
treatment, and prevention of SR-GVHD in the clinic.

Current understanding of the
pathophysiology of acute GVHD
Acute GVHD progression can be categorized into 3 phases.8

Host tissue injuries caused by conditioning regimens mediate
release of damage-associated molecular patterns (DAMPs),
such as adenosine triphosphate,9,10 from injured tissues and
pathogen-associated molecular patterns (PAMPs), such as
lipopolysaccharide,11 from microbiomes. DAMPs and PAMPs
activate recipient and/or donor-derived antigen-presenting
cells (APCs), such as dendritic cells (DCs), macrophages
(MFs), and host-derived nonhematopoietic cells in epithelial
surfaces that in turn produce numerous proinflammatory cytokines
(tumor necrosis factor a [TNF-a], interleukin 6 [IL-6]).12-15 Pattern
recognition receptors, such as Toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain, leucine-rich repeat
and pyrin domain–containing 3 (NLRP3), recognize PAMPs and
DAMPs.16,17 Specific subsets of DCs (CD1031DCs, CD8a1DCs) are
capable of alternating roles in either promoting or ameliorating
GVHD depending on the inflammatory milieu.18,19 This contrasts
certain committed populations such asmyeloid-derived suppressor
cells and granulocyte colony-stimulating factor (G-CSF)–induced
CD341 regulatory monocytes that exclusively function to constrain
GVHD severity.20,21 More recently, activated neutrophils stimulated
by bacteria may also function as APCs in an inflammasome-
dependent context.22,23 Taken together, activated APCs stimu-
late newly infused donor-derived naive T cells to respond to host
antigens/tissues that characterize GVHD.
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The diversity of gut microbiota and viromes has been shown to
be dramatically altered after conditioning and may participate in
the development of GVHD, especially in the gastrointestinal (GI)
tract.24-27 IL-22 produced by innate lymphoid cells protects in-
testinal stem cells (ISCs) and ameliorates GVHD.28 The ISC
compartment located at the crypt base is the primary target of
allogeneic donor T cells regulated by mucosal addressin cell
adhesion molecule 1 (MAdCAM-1), which is an important ad-
hesion molecule for T-cell migration into the gut.29 In addition,
regenerating islet-derived 3a (REG3a) from Paneth cells, in-
duced by IL-22, has been demonstrated to prevent crypt apo-
ptosis and decrease GVHD.30 Moreover, metabolites, such as
butyrate or indole, play an important role in protecting ISCs and
maintaining tissue homeostasis.31-33 Therefore, host target
tissue–intrinsic mechanisms may be crucial for ameliorating
GVHD. We and others have demonstrated that, in intestinal
epithelial cells, several molecules and pathways, such as in-
hibitor of apoptosis proteins, NLRP6, retinoic acid–inducible
gene I (RIG-I)/mitochondrial antiviral signaling, and stimulator of
interferon genes, act as tissue-intrinsic mechanisms that regulate
GVHD pathogenesis.27,34-37

After donor T cells engage APCs they become activated to
proliferate. Activated donor CD41 T cells differentiate into a
variety of subsets, such as T-helper 1 (Th1), Th2, Th9, Th17, and
Th22 cells whereas CD81 T cells differentiate into cytotoxic
T cells.38 In addition, several transcription factors (TFs) and their
regulators, such as MAPK/extracellular signal-regulated kinases,
Aurora kinase A/Janus kinase 2 (JAK2), as well as metabolic
pathways (glycolysis and mitochondrial oxidative phosphoryla-
tion), have been reported to be important in the activation of
T cells.38,39 These T cells then migrate into the primary GVHD
target organs (intestine, liver, skin) to attack the host. Thus,
donor immune cells and host tissue tolerance both emerge as
key concepts in regulating GVHD. Because this system uses
counterregulatory mechanisms to avoid an excessive immune
response, dysfunction in certain cell populations such as regu-
latory T cells (Tregs), invariant natural killer (NK) T (iNKT) cells,
or immune check points (programmed cell death 1 [PD-1]/
programmed cell death ligand 1 [PD-L1], CD28/CTLA-4, and
CD24/Siglec-G) can disrupt peripheral tolerance and amplify
GVHD.40 Decreasing Treg/T effector cell ratios has especially
been shown to exacerbate GVHD.39,41,42 Therefore, a major
thrust of therapeutics in GVHD has emphasized enhancing Tregs
by using ex vivo or in vivo expansion techniques.

How do steroids regulate GVHD?
The mechanisms leading to steroid-induced suppression of in-
flammation remain to be elucidated in SR-GVHD.43,44 Immuno-
regulatory functions of synthetic glucocorticoids (dexamethasone,
prednisolone) are initiated through binding glucocorticoid recep-
tors (GRs).43 Cytoplasmic GR activation promotes release from
chaperones (heat shock protein 90 [HSP90]) and translocation to
the nucleus to interact with DNA and proteins that mediate ge-
nomic and nongenomic functions.43-45 GRa is the canonical re-
ceptor that binds steroids and modulates immune responses. In
contrast, GRb is a splice variant that binds to DNA to antagonize
GRa. Steroid-induced immune regulation can be divided into
effects that are genomic and nongenomic.44,45 Genomic effects
occur in the nucleus and alter geneexpression by 3mechanisms: (1)
direct binding to glucocorticoid response elements tomodify gene

expression, (2) protein-protein interactions (tethering) with other TFs
to alter gene expression of nuclear factor kB (NF-kB) and the signal
transducer and activator of transcription (STAT), and (3) binding to
composite elements containing a glucocorticoid response element
and a response element of another TF. Genomic effects are per-
sistent whereas nongenomic effects arise almost immediately after
stimulation, are transient, and do not modify gene expression.46

Thus, steroids regulate inflammation-associatedTFs in amanner that
can reduce the production of proinflammatory cytokines, chemo-
kines, and adhesion molecules.43,44

In GVHD, the primary anti-inflammatorymechanism of steroids is
mediated by inhibiting NF-kB pathways in APCs and T cells as
well as TLR-mediated signaling.47-50 In addition, glucocorticoids
can directly regulate activated DCs andMFs by modulating their
differentiation and maturation.51-54 Steroids have been shown to
decrease expression of major histocompatibility complex (MHC)
class II, costimulatory molecules (CD80, CD40) and production
of proinflammatory cytokines while enhancing the production of
anti-inflammatory cytokines, such as IL-10 in DCs.55 In T cells,
steroids suppress activation and proliferation of T cells by
dampening key signaling pathways, such as nuclear factor of
activated T cells, STAT, lymphocyte-specific protein tyrosine
kinase, and mitogen-activated protein kinase/extracellular
signal-regulated kinase.56-59 Also, steroids preferentially repress
Th1 and Th17 differentiation60,61 but promote Th2 and
Tregs.62-64 Finally, steroids reduce the production of chemokines
and expression of adhesion molecules in a manner that de-
creases the migration of donor T cells into target tissues.65

However, although glucocorticoids have numerous effects that
mitigate the allogeneic T-cell response, their impact on wound
healing and tissue regeneration44,66 and on ameliorating tissue
tolerance may in some contexts antagonize recovery from
GVHD.40,67

Cellularmechanismsof steroid resistance:
implications for GVHD
The pathophysiology of SR-GVHD is complex and enigmatic.
The concept of “glucocorticoid resistance” in immunology was
first described in the 1970s68 and remains an important area of
investigation in autoimmune disease.43,69 Because steroids im-
pair not only effector T cells but also regulatory cells, it is
conceivable that their effects may also limit long-term tolerance
mediated by immune-suppressor cells.70 Donor alloreactive
T cells play a central role in the development of GVHD. However,
one possibility is that donor T cells are less crucial in SR-GVHD
than in initiation of GVHD due to previous exposure to the
suppressive effects of steroids and/or calcineurin inhibitors
(Figure 1A). This reasoning is supported by the results of some
clinical trials in which broadly depleting donor T cells (antithy-
mocyte globulin [ATG]) and CD251 activated T cells (inolimo-
mab) did not show benefit in the treatment of SR-GVHD.7 This is
also supported by our data that donor T cells are dispensable in
murine SR-GVHD.71 Another possibility is that certain subsets,
such as Th17 cells,72,73 may not be sufficiently suppressed,64,74

especially glucocorticoid-resistant pathogenic Th17 cells that
express the efflux transporter P-glycoprotein75 or glucocorticoid-
induced TNF receptor family-related protein. Activation of
glucocorticoid-induced TNF receptor family-related protein
mediates the opposite effect on the regulation of alloreactive
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CD41 and CD81 T cells in GVHD.76 A recent study suggests that
activated steroid-resistant allogeneic donor T cells in the inflamed
tissues also undergo markedly altered gene-expression profiles
resulting in upregulation of genes involved in T-cell activation
(CD28, Tnfrsf9), migration (Cxcr6), and metabolic reprograming
(Hif1a) that facilitate increased glycolytic demands.77

Although the initiating factors of steroid resistance remain ob-
scure, cytokine-induced mechanisms are well investigated in
chronic inflammation. Inflammatory cytokines, such as interferon
g, which upregulate the expression ofMHC class II and increased
antigen presentation in the intestinal epithelium, may be cor-
related with SR-GVHD.15,78 IL-6, a potential mediator of SR-
GVHD, is elevated in the serumduringGVHD79 and is also known to
directly damage intestinal epithelial tissues80 with IL-6/IL-6 receptor

levels enriched in the colonic microenvironment.81 Downstream of
IL-6, JAKs possess pleomorphic functions in regulating the immune
response and have demonstrated strong rationale in the therapy of
SR-GVHD.82-85 The representative cellular mechanisms of SR-GVHD
are summarized in Figure 1A.

Molecular mechanisms of SR-GVHD
Compared with cellular mechanisms, relatively less is un-
derstood about the underlying molecular features of SR-GVHD.
However, recent insights into the immunological impact of
steroids, some that paradoxically are immune enhancing, have
shed light on these processes (Figure 1B). For example, the TLR4
agonist lipopolysaccharide (LPS) regulates the expression of
GRa and b isoforms that prevent the inhibitory effects of
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Figure 1. Mechanisms of SR-GVHD. (A) Cellular mech-
anisms. Steroids regulate the majority of Th1 responses
but can paradoxically increase Th2 and pathogenic Th17-
mediated immune responses that may promote GVHD.
The role of steroids in CD81 T cells is uncertain. The
combination of steroids with calcineurin inhibitor (CNI)
may unintentionally blunt induction of Tregs based on
their requirement for IL-2 resulting in loss of peripheral
tolerance. (B) Molecular mechanisms. Steroids repress
expression of TFs necessary for production of proin-
flammatory cytokines (IL-6, TNFa). In addition, steroids
promote induction of regulatory cell subsets, such as
CD1031 DCs and M2 MFs that induce immune tolerance.
In refractory disease, long-term use of steroids may
paradoxically increase expression of TLRs and NLRP3
that perpetuate inflammation. (C) Target tissue–intrinsic
mechanisms. In the GI tract, steroids can impede the re-
parative processes of the host following T-cell–mediated
injury that is associated with loss of Paneth cells, ISCs, and
immune-regulatory proteins (a-1-antitrypsin [AAT]). Lim-
ited tissue regeneration from long-term suppression of
inflammation with ongoing mucosal barrier injury is as-
sociated with alterations in the intestinal microbiome and
metabolome. Dysbiosis results in loss of protective me-
tabolites (butyrate). Ongoing inflammation can eventually
stimulate APCs to increase production of proinflammatory
cytokines that further damage host tissue. AP-1, activator
protein 1; GCR, glucocorticoid receptor; ROS, reactive
oxygen species; Tc, cytotoxic T cell; TCR, T-cell receptor.
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glucocorticoids on granulocyte macrophage colony-stimulating
factor (GM-CSF) secretion.86 Proinflammatory cytokines also
induce glucocorticoid resistance by impairing phosphorylation
and function of the GR.87-89 The inflammasome, specifically
NLRP3–caspase 1 (CASP1), can deplete cellular levels of GR thus
limiting overall cell sensitivity to glucocorticoids.90 Preclinical
models suggest that intact recipient GR is necessary to restrain
the severity of GVHD,91 and GR single-nucleotide polymor-
phisms (SNPs) have been associated with clinical outcomes.92

These findings suggest that cytokines, DAMPs, PAMPs, in-
cluding inflammasome pathways, may drive SR-GVHD.

Target tissue–intrinsic mechanisms
of SR-GVHD
Target tissue–intrinsic mechanisms are becoming increasingly
implicated in SR-GVHD (Figure 1C). Steroids administrated in
GVHD are delivered into damaged tissues infiltrated by T cells,
DAMPs, and PAMPs. As mentioned, steroids have bilateral ef-
fects, not only immunosuppressive but also immune-stimulatory
that potentiate the effects of DAMPs and PAMPs, which in turn
mediate GR modifications. In addition, steroids promote ex-
pression of TLRs, inflammasomes (NLRP3), and purinergic re-
ceptor (P2Y2R), which further sensitize cells to potently respond
to DAMPs and PAMPs.44 These results suggest that steroids
themselves, in certain contexts, may enhance tissue-specific
immune responses that perpetuate GVHD. Steroids and other
currently available pharmacologic agents have not been
shown to terminate ongoing organ damage. Increased serum
cytokeratin-18 fragments, associated with epithelial cell apo-
ptosis, can be detected as persistent organ damage occurs in
SR-GVHD.93 Angiopoietin-2 (ANG2), which regulates vessel
quiescence, is also increased in patients with SR-GVHD,94,95

suggesting that vascular endothelial injury contributes to SR-
GVHD. Interestingly, these findings appear associated with the
clinical syndrome of transplant-associated thrombotic micro-
angiopathy (TA-TMA), mediated by alternative and terminal
complement activation, which is linked with SR-GVHD.96,97

Disruption of tissue tolerance may explain why intensive
immune-suppressive strategies are often ineffective in SR-
GVHD, especially involving the GI tract.40,67 Typically, injured
tissues have the capacity to regenerate. Once tissue tolerance
has been impaired, barrier function, which protects host tissues
from invading pathogens and abnormal immune responses, is
destroyed. It has recently been recognized that the diversity of
intestinal microbiota is altered in GVHD24,27,98 and efforts to
correct this dysbiosis with fecal microbiome transplantation
(FMT) are being attempted for treatment of SR-GVHD,99-101

suggesting that the microbiota and its associated metabolites
such as butyrate may be implicated.31 Long-term exposure
to aberrant microbiomes, PAMPs, and DAMPs may mediate
prolonged mucosal barrier dysfunction and inflammation.
Therefore, disease-promoting tissue-intrinsic mechanisms are
becoming an important component to consider in the treatment
of SR-GVHD.

Predicting SR-GVHD in the clinic
In the absence of clinical progression, identifying treatment
resistance often requires 7 to 14 days of high-dose steroid

therapy.2,102 Responses are insidious, as reductions in diarrhea
may be fleeting once attempts are made to reduce steroid
dosage.6 Because SR-GVHD often reflects advanced organ in-
jury, early detection with prompt treatment intensification has
been postulated as a clinical strategy to reduce alloreactivity and
constrain organ injury. Although some studies suggest that early
institution of second-line therapy can improve outcome,103 the
premise that early prediction can improveoutcomes remains anopen
questionbeing addressed in preemptive trials (NCT03459040). In the
following sections, we emphasize biology-based markers for SR-
GVHD; other comprehensive reviews are available on the topic of
GVHD biomarkers.104,105

Clinical and histologic risk factors
Patient characteristics known to heighten the probability of
steroid resistance include donor-recipient HLA disparity, ad-
vanced age, and lower GI tract or hepatic involvement.106 Not
surprisingly, organ involvement and severity at GVHD onset
strongly predict response. Patients deemed high risk by refined
Minnesota score had a 44% probability of response by day 28
compared with 68% in standard risk, although among 1723
patients only 16% were labeled high risk.107 Despite being a
clinical diagnosis, histology at GVHD onset may suggest ad-
vanced pathobiology heralding a complicated clinical course.
For example, severe crypt loss with denudation of the GI epi-
thelium is correlated with higher clinical grade, steroid re-
sistance, and mortality.108 Paneth cells that support adjacent
ISCs in the crypt regulate epithelial regeneration and shape
microbial ecology through secretion of antimicrobial peptides
(a-defensins, REG3a). In line with these observations, loss of
Paneth cells in GI biopsies correlates with lack of response to
therapy.109 Because Paneth cell loss can influence ISC pop-
ulations (and regeneration), these findings support tissue injury
being a hallmark of clinically resistant phenotypes.

Cellular byproducts of tissue injury
Given the diagnostic challenges in GVHD, there is interest in
generating validated serum biomarkers capable of aiding clinical
decisions. The Mount Sinai Acute GVHD International Consor-
tium (MAGIC) recently assessed a validated 2-biomarker algo-
rithm involving suppressor of tumorigenicity-2 (ST2) and REG3a
to predict treatment resistance.110 High levels of REG3a (stored
in Paneth cells and GI mucous) are released into serum during
early crypt damage and soluble ST2 is released by alloreactive
T cells in the gut.111-114 Patients with high-risk biomarkers 1 week
after initiating corticosteroid treatment had significantly higher
treatment failure. Interestingly, a high-risk biomarker profile was
suggestive of treatment failure independent of early clinical
response. If prospectively validated, this information may guide
risk-adapted decision-making (tapering steroids vs second-line
therapy).

As GI injury is central to fatal GVHD (and repeat endoscopy is
challenging), there is interest in informative stool analytes. Fecal
calprotectin (CPT), expressed in MFs, monocytes, and the cy-
toplasm of granulocytes, may provide a real-time surrogate
marker of disease activity. Elevated CPT, activated in the
presence of DAMPs or PAMPs, serves as a ligand for TLR4 thus
suggesting ongoing inflammatory signaling (NF-kB) not con-
strained by steroids. CPT itself may contribute to mucosal
permeability,115 is elevated in lower GI tract GVHD, and is
correlated with histopathologic severity116; thus, longitudinal

432 blood® 23 JULY 2020 | VOLUME 136, NUMBER 4 TOUBAI and MAGENAU

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/4/429/1749043/bloodbld2019000953c.pdf by guest on 20 M

ay 2024



assessment may aid in distinguishing steroid refractoriness from
other forms of colitis (cytomegalovirus).117 Combining CPT with
analytes such as a-1-antitrypsin (AAT), lost during GVHD-
induced enteropathy, may further enhance sensitivity and pro-
vide an “actionable” protein to supplement.118

Endothelial cell dysfunction
In addition to epithelial surfaces, inflammation of SR-GVHD
involves an endothelium capable of perpetuating injury. TA-
TMA is prevalent among patients with SR-GVHD (79% vs 42%;
P 5 .001). Whether TA-TMA is an epiphenomenon of SR-GVHD
or an inciting event is unknown, however, damage to the en-
dothelium results in complement activation (BBPlus and C5b-9),
release of soluble thrombomodulin, and ANG2 that impedes
organ recovery.94,96 In 1 study, elevated levels of ANG2 were
detected before onset of SR-GVHD, which may sensitize the
endothelium to the injurious effects of proinflammatory cyto-
kines. Variant SNPs in the TM gene have been shown to predict
responsiveness to GVHD treatment, suggesting host-intrinsic
differences in vulnerability to injury.94

Evaluating treatment strategies
for SR-GVHD
At present, ruxolitinib represents the only US Food and Drug
Administration (FDA)-approved therapy for SR-GVHD, how-
ever, no agent has demonstrated superiority in head-to-head
trials.119,120 As SR-GVHD reflects complex biology, successful
treatment will likely require targeting alternative pathways or
combinatorial treatment approaches that overcome putative
mechanisms of corticosteroid resistance. Akin to a marathon,
and acknowledging inherent limitations in clinical grading sys-
tems based on quantifying stool volume, assessing a given in-
tervention will require careful interpretation of both early and
late milestones for success. This might be accomplished through
varied end points that quantify not only the frequency but depth
and durability of response.121 Most SR-GVHD studies report
overall response (overall response rate [ORR] or complete re-
sponse [CR] plus partial response) by day 28 of treatment onset
due to its association with improved treatment-related mortality
in upfront treatment settings as an early readout of promising
activity, particularly when this end point compares favorably
against historical rates (;50% in second-line therapy).4,122 ORR,
however, is imperfect as this end point may not be indicative of
improved survival if there are subsequent rises in morbidity, late
mortality, or GVHD. Thus, treatment trials should increasingly
incorporate other qualifiers of success that measure hard end
points such as overall and GVHD-free survival, infection, and
relapse to identify the most promising agents for larger con-
trolled studies.121,123

Lessons from existing therapies
Corticosteroids possess potent lymphocytic and anticytokine
properties, nonetheless, increasing dosage beyond 2 mg/kg
methylprednisolone does not increase response.6,124 T-cell re-
ceptor b (TCRb) sequencing of diagnostic GI-tract biopsies has
illuminated the persistence of glucocorticoid-resistant T-cell
clonotypes in later stages of GVHD,125 suggesting that target-
ing alternative or multiple simultaneous signaling path-
ways may be necessary. T-cell–depleting sera (ATG), CD52
direct antibodies targeting T and B cells (alemtuzumab), or

chemotherapies (pentostatin, pulse cyclophosphamide) are all
intensive approaches used as second-line therapy.126,127 However,
toxicity, namely myelosuppression, opportunistic infection, and
interstitial pneumonitis, can reduce their overall efficacy, resulting
in,10% long-termOS in some studies.128,129 Therefore, treatment
must account for adverse events that accelerate mortality. Due to
mucosal barrier injury, ongoing tissue injury from GVHD, and im-
mune suppression, patients are particularly vulnerable to bacter-
emia, often from pathogenic organisms such as Enterococcus.130,131

Acknowledging these limitations, investigations have also focused
on approaches that might selectively block key signaling events in
GVHD. Although seemingly innocuous, monoclonal antibodies
such as daclizumab, which eliminates activated CD251 T cells, may
heighten infectious mortality or unintentionally deplete Treg
populations.132 In a cohort treated with CD251- or TNFa-directed
anticytokine therapy, infection-related mortality was 28% at a
median of 88 days.133

These observations suggest that immunologically intensive
therapies are not necessarily ideal in refractory settings, as
subtler immunomodulatory methods also illicit response. Ex-
tracorporeal photopheresis (ECP) is a commonly used technique
that limits host tissues to chemotherapy via ex vivo exposure of
apheresed mononuclear cells to the DNA crosslinking agent 8-
methoxypsoralen in the presence of UVA light.134 ECP has
pleotropic effects that include apoptosis of alloreactive lym-
phocytes, induction of tolerogenic DC subsets, and expansion of
Tregs, which may be suppressed in SR-GVHD. In a meta-analysis
of prospective studies conducted as second-line treatment, the
response rate for ECP was 69%, with the highest organ-specific
response rates observed in the skin (84%), followed by visceral
organs (65% in GI; 55% in liver).135 Although it is unclear whether
this degree of response can be recapitulated as stand-alone
therapy in highly refractory settings, early initiation of ECP is a
commonly used adjunct that can facilitate salutary steroid-
sparing effects.

New approaches: selective targeting of
alloreactive T cells
Select strategies for SR-GVHD are summarized in Table 1. Re-
cently, a phase 1/2 trial in GI and liver GHVD evaluated an anti-
CD3/CD7 antibody conjugated to ricin toxin that elicited
responses of 60% of SR–acute GVHD with 60% of patients alive
after 6 months. This molecule selectively targets activated T- and
NK-cell signaling that may enhance potency compared with
prior anti-CD3 therapies.136-138 Infectious mortality was relatively
low (;20%), possibly due to only brief periods of lymphopenia
after administration. This agent is now being evaluated in an
open-label trial for SR-GVHD (CTN 1802). Other proteins such
as CD30, expressed on activated T cells (particularly central
memory CD81CD45RO1CD62L1 subsets), are also enriched at
GVHD onset.139 In a phase 1 study of brentuximab vedotin, an
antibody-drug conjugate targeting CD30, 38% of patients
responded at day 28 with an additional 25% experiencing CRs
at day 56.140 Finally, integrin expression on lymphocytes may be
impaired in corticosteroid resistance in a manner that promotes
lymphocyte recruitment to target tissues.44 A phase 2 study of
natalizumab directed against a4-integrin chains, administered as
a single dose with steroids, produced high response rates
(;75%) in the initial treatment of GI GVHD.141 However, natali-
zumab inhibitsa4b1 anda4b7 integrins, the former via interactions
with vascular cell adhesion molecule 1 (VCAM1), which impedes
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central nervous system trafficking, thereby potentially predisposing
patients to John Cunningham virus reactivation and progressive
multifocal leukoencephalopathy. In contrast, a4b7 integrins, se-
lectively targeted by the monoclonal antibody vedolizumab, in-
teract with GI mucosal addressin MadCAM-1 expressed in Peyer
patches, and lamina propria may have a niche role in treating GI
GVHD.29 In a pilot study, 6 of 6 patients responded after 7 to
10 days with 4 experiencing durable remissions.142 A separate
retrospective study reported 60% response, however, 34% of
patients experienced grade 3-4 infection, frequently bacteremia
from Staphylococcus or Enterococcus.143 As several patients had
received multiple lines of prior therapy, it is unclear whether in-
fections were attributable to advanced GVHD or possible im-
pairments in immune trafficking.

Cytokine-based approaches
Considering the redundant roles cytokines play, antagonism
of single cytokines may be insufficient to downregulate in-
flammation in SR-GVHD.144 Antagonizing IL-6 signaling with
anti–IL-6 receptor antibody (tocilizumab) or circulating IL-6 (sil-
tuximab) may be 1 exception as this cytokine plays multiple roles
in innate and adaptive immunity and may possess tissue-

projective effects.80 Production of IL-6, which is transcription-
ally downregulated by corticosteroids, is likely to be further
elevated during SR-GVHD. Several clinical series now report
activity of tocilizumab with responses in 44% to 62% of SR-
GVHD.145-147 IL-6 antagonismmay be less impactful on immunity
because experimentally it does not perturb monocyte DC ac-
tivation or alloreactive T-cell responses.148 Another cytokine with
compelling rationale for treating SR-GVHD is IL-22, owing to its
tissue-protective effects. In HCT models, IL-22 restored REG3g
production lost after Paneth cell destruction and facilitated re-
generation of gut epithelium.30,149 An IL-22 dimer/Fc fusion
molecule (F-652) is currently undergoing testing in newly di-
agnosed lower GI GVHD (NCT02406651).

Combination therapy with tyrosine kinase
inhibition
To date, attempts to combine immunosuppressive agents in
second-line therapy have been unsuccessful. No significant el-
evation in response rate was seen when duel cytokines (IL-2 and
TNFa) were interrupted, resulting in high rates of infection and
a 6-month OS of 29%.150 However, targeting downstream
cytokine-induced signal transduction via small molecule tyrosine

Table 1. Novel biology-driven strategies for SR-GVHD

Approach Mechanism Clinical responses, % References

Modification of alloreactive T cells
Anti-CD3/CD7 antibody conjugated to ricin
toxin

Apoptosis↑ in T and NK cells ORR, 60; CR, 50 136

Brentuximab vedotin CD30 inhibition, central memory ↓
(CD81CD45RO1CD62L1 T cells)

ORR, 38.2 at day 28 139,140

Vedolizumab Integrin a4b7 inhibition, donor T-cell homing
to GI tract↓

ORR, 100 142
ORR, 79 176
ORR, 64 143

Cytokines
Tocilizumab IL-6 signaling↓ (Innate/adaptive response↓) ORR, 67 147

ORR, 44 146
CR, 62.5 145

F-652 (IL-22 dimer/Fc fusion molecule) Preserved ISCs NCT02406651*
Gut regeneration↑

Combination
Ruxolitinib JAK1/2 inhibition ORR, 81.5 85

ORR, 45 177
ORR, 57 152
ORR, 78 178
ORR, 84 153

Tissue regeneration
Lithium Wnt signaling ↑ by inhibiting GSK3 CR, 50 157
AAT Serine protease inhibitor, ↑ Treg, ORR, 66.7 163

↓APC function
↓Proinflammatory cytokines (IL-6) ORR, 65 162

Microbiome
FMT Gut microbiome diversity ↑ ORR, 100 99

ORR, 75 101
Resistant starch Modification of metabolome NCT02763033,* NCT02805075*

↓, decrease; ↑, increase; AAT,a-1-antitrypsin; CR, complete response; FMT, fecal microbiome transplantation; GSK3, glycogen synthase kinase 3; ORR, overall response rate; VGPR, very good
partial response.

*Clinical trial number.
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kinase inhibitors of JAKs (and STATs) is an emerging approach to
overcoming steroid resistance. For example, depletion or in-
activation of cytoplasmic GRs may limit tethering to STAT3
proteins that limit transcriptional repression of proinflammatory
cytokines.151 After reporting impressively high response rates
(81%) in a retrospective survey, a prospective, open label,
multicenter trial (REACH1) of the JAK1/2 inhibitor ruxolitinib
resulted in FDA approval for treating SR-GVHD.85,152 Overall,
57% of SR-GVHD patients met the primary end point of day 28
overall response including 31% with CR. An impressive finding
was that a number of responses were reported to be durable,
lasting a median of 345 days. In addition to blood cytopenia,
infections were the primary adverse event (;40%). Whether the
high proportion of responses justifies this potential risk remains
to be determined.153 As ruxolitinib is applied to increasing
patients, studies are needed to guide coadministration with
CYP3A4 inhibitors (azole antifungals) that dramatically increase
drug levels and optimal withdrawal procedures given theoretical
risks for cytokine release. More selective JAK-1 inhibitors (ita-
citinib) have also similarly displayed encouraging results in pilot
studies of SR-GVHD154 and are undergoing phase 3 testing
(NCT03139604). Other kinase targets that engage signaling
distal to immunoreceptors such as spleen tyrosine kinase (Syk)
can elicit immune-suppressive effects on alloreactive T cells
and APCs in preclinical models, thus warranting study in
SR-GVHD.155,156

Regeneration of host tissues
The majority of therapies focus on modifying components of the
donor immune system. However, a greater emphasis on dam-
aged target tissues may be especially crucial in SR-GVHD, in
which profound injury likely participates in clinical pathology.
This alters the focus of treatment toward restoration of organ
function necessary for functional recovery (alimentation, re-
duced infection). In 1 study, lithium, capable of promoting Wnt
signaling, produced a 50% CR rate in patients with GI mucosal
denudation.157 In subset analysis, all patients receiving lithium
within 3 days of identifying denuded mucosa had durable CR.
Unfortunately, there is a paucity of available agents capable of
inducing Wnt signaling, as clinical development has focused on
Wnt inhibition for cancer.158

Dysfunction of the mucosal barrier also promotes loss of im-
munoregulatory proteins that provide tissue protection. AAT, an
acute-phase protein produced by the liver, has increased stool
clearance in GI GVHD. In addition to its role as a serine protease
inhibitor that prevents organ damage (congenital emphysema)
by inhibiting neutrophil elastase, AAT also possesses immuno-
modulatory functions that suppress proinflammatory cytokines,
attenuate DC function, and induce Tregs. Several independent
laboratories have demonstrated that exogenous AAT infusion
can reduce GVHD-related mortality.159-161 As second-line ther-
apy, 2 trials of AAT demonstrated response rates of 65% (in-
cluding 50% CR in the GI tract) with low infectious mortality (10%
at 6 months).162,163 Placebo-controlled trials of AAT are currently
under way in the treatment of high-risk GVHD (NCT04167514).
Finally, although we have focused on pharmacological means for
treating SR-GVHD, the use of cell-based therapies, Tregs, iNKT,
and mesenchymal stem cells (MSCs) hold potential to promote
tissue repair.164 Given early success in prevention,165,166 adoptive
transfer or in vivo expansion of Tregs remains an attractive
strategy, owing to their ability to mitigate GVHD without

abrogating CD81 T-cell–killing function. For example, ap-
proaches include targeting TNF superfamily receptor TNFRSF25
using the TL1A-immunoglobulin fusion protein or facilitating iNKT-
Treg interactions with a synthetic TCR ligand (a-GalCer),167,168

although generating adequate cell numbers for suppressive activity
will remain a challenge.With respect toMSCs, a largemeta-analysis
composed of nonrandomized studies reported a cumulative sur-
vival of 63% at 6 months.169 The immunosuppressive mechanisms
remain to be elucidated but may relate to MSC sensitivity to
apoptosis, which in turn can promote phagocytosis by host MFs
and releaseof indoleamine 2,3-dioxygenase.170 Furthermechanistic
and controlled trials are needed to establish the role of MSCs in
SR-GVHD.

Can we prevent SR-GVHD?
Treatment of SR-GVHD will remain a challenge despite ad-
vances, emphasizing the importance of prevention. Rates of
severe GVHD have declined due to use of high-resolution HLA
typing, use of ATG, and perhaps the recent application of
posttransplant cyclophosphamide.171,172 Although this indirectly
impacts SR-GVHD, whether such approaches improve survival is
uncertain. Extending concepts of tissue regeneration to toler-
ance (prevention) may increase thresholds for GVHD, reducing
requirements for immune suppression. Approaches that selec-
tively mitigate tissue response to sterile inflammatory mediators
(DAMPs) by targeting Siglec-10 on host APCs have been shown
to reduce GVHD in murine models.173,174 Use of a CD24 fusion
protein (CD24Fc) is now undergoing clinical testing for the re-
duction of grade III-IV GVHD (NCT02663622). Another approach
is to address microbiome-metabolome dysfunction. Here, al-
tering themicrobiome to protect vital cell populations (ISCs) may
prevent irrevocable injury. For example, preclinical data suggest
that short-chain fatty acids, specifically dietary butyrate or
butyrate-producing clostridia, are a key energy source for
ISCs that prevent GI GVHD.31 Trials testing modification of the
host microbiome metabolome through ingestion of resistant
starch (NCT02763033) and dietary fructo-oligosaccharides
(NCT02805075) are being evaluated for GVHD prevention. In-
terventions involving transfer of fecal microbiota (FMT) are also
associated with responses in SR-GVHD,99,101 but need to address
antibiotic use, repeat administrations, and infectious risks in the
preventative setting. IL-22 antagonists that induce epithelial
regeneration could be logically advanced to the prevention
setting because their function depends on intact ISCs. In the
future, exploring what combinations of agents (IL-22, Wnt ag-
onists) might best shape the host microbiome to preserve target
tissues will be interesting.175

Concluding remarks
After several decades, incremental advances in the fundamental
mechanistic underpinnings of GVHD, together with new ther-
apeutic approaches that target dysregulated immune biology,
bring renewed optimism for progress in SR-GVHD. Strategies
that selectively reshape the composition of alloreactive T cells
and APCs by targeting key inflammatory mediators (IL-6), that
influence cytokine-driven signal transduction (JAK/STAT), or that
target organ homing have displayed impressive response rates
coupled with manageable toxicity and are currently undergoing
testing in larger controlled trials. Despite these advances,
SR-GVHD will remain a vexing challenge, owing to its complex
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biology and often irreversible organ injury; thus, future directions
must continue to emphasize methods to prevent or pre-
emptively treat high-risk disease. Future innovation that can
leverage emerging knowledge of the host microbiome, tissue-
protective strategies, and cellular engineering as well as non-
invasive diagnostics to detect subclinical disease hold significant
promise for advancing the field. Finally, although common to
HCT, SR-GVHD remains an orphan disease with limited numbers
of patients to appropriately power larger efficacy trials. Given
these limitations, prioritizing the most promising strategies
based on compelling biology, rigorous preclinical data, andwell-
conducted phase 1/2 designs will be important to advance
therapies with the greatest potential for success.
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