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LYMPHOID NEOPLASIA

Impaired condensin complex and Aurora B kinase underlie

mitotic and chromosomal defects in hyperdiploid
B-cell ALL
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B-cell acute lymphoblastic leukemia (ALL; B-ALL) is the most common pediatric cancer, and
high hyperdiploidy (HyperD) identifies the most common subtype of pediatric B-ALL.
Despite HyperD being an initiating oncogenic event affiliated with childhood B-ALL, the
mitotic and chromosomal defects associated with HyperD B-ALL (HyperD-ALL) remain
poorly characterized. Here, we have used 54 primary pediatric B-ALL samples to char-
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chromosome-segregation defects and nonmodal karyotypes. Mechanistically, biochemical,
functional, and mass-spectrometry assays revealed that condensin complex is impaired in
HyperD-ALL cells, leading to chromosome hypocondensation, loss of centromere stiffness,
and mislocalization of the chromosome passenger complex proteins Aurora B kinase
(AURKB) and Survivin in early mitosis. HyperD-ALL cells show chromatid cohesion defects
J and an impaired spindle assembly checkpoint (SAC), thus undergoing mitotic slippage due
to defective AURKB and impaired SAC activity, downstream of condensin complex defects. Chromosome structure/
condensation defects and hyperdiploidy were reproduced in healthy CD34+ stem/progenitor cells upon inhibition of
AURKB and/or SAC. Collectively, hyperdiploid B-ALL is associated with a defective condensin complex, AURKB,
and SAC. (Blood. 2020;136(3):313-327)
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molecular markers.! Importantly, different biological subtypes of
B-ALL have distinct causal mechanisms and show different
clinical outcomes.’3

Introduction

B-cell acute lymphoblastic leukemia (B-ALL) is characterized by
the accumulation of abnormal immature B-cell precursors (BCPs)
in the bone marrow (BM), and is the most common pediatric

cancer.” B-ALL is a heterogeneous disease with distinct bi-
ological prognostic subgroups classified according to the stage
at which BCPs are stalled in differentiation and cytogenetic/
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High hyperdiploid (HyperD) B-ALL (HyperD-ALL) is the most com-
mon subtype of childhood B-ALL and is characterized by the pres-
ence of 51 to 67 chromosomes in leukemic cells.*” HyperD-ALL
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comprises ~30% of pediatric B-ALL and usually has a favorable
clinical outcome.>8? Of note, the distribution of chromosome
gains is not random and preferentially shows gains of chromo-
somes X, 4, 6, 10, 14, 17, 18, and 21.5'° Hyperdiploidy is an
initiating oncogenic event in B-ALL and secondary alterations
necessary for clinical B-ALL accumulate subclonally and
postnatally.>71"12 Despite hyperdiploidy being the most com-
mon B-ALL in children, very little is known about its etiology and
pathogenesis, and many questions about the biology of
HyperD-ALL remain unanswered. Despite its favorable clinical
outcome, precise knowledge of the physiopathogenic mecha-
nisms underlying HyperD-ALL is necessary because, in absolute
numbers, the morbidity/mortality associated with HyperD-ALL
still represent a clinical challenge.

HyperD-ALL is proposed to arise in a BCP in utero.” However,
the causal molecular mechanisms of hyperdiploidy in BCPs re-
main elusive. In this sense, faithful chromosome segregation is
essential for maintaining the genomic integrity of eukaryotic
cells, and deficient chromosome segregation leads to aneu-
ploidy and cancer.”*'® Three main and nonmutually exclusive
mechanisms, interconnected with mitosis,'® underlie chromo-
some missegregation: (i) defects in bipolar spindle formation, (ii)
defects in chromosome structure and function, and (iii) defects in
the spindle assembly checkpoint (SAC), which controls proper
mitosis until chromosomes are properly attached to the
spindle.’ ¢ Indeed, SAC defects have been proposed to be an
underlying pathogenic mechanism in rare cases of ETV6/
RUNX1* B-ALL with near-tetraploid karyotypes.'” Therefore,
abnormal mitotic control in BCP could be at the origin of
hyperdiploidy in B-ALL.

Here, we used a large cohort of primary pediatric B-ALL samples
(n = 54) to gain insights into the cellular and molecular mech-
anisms underlying mitotic/chromosome defects predicated to
be at the origin of pediatric HyperD-ALL. Our data reveal that
HyperD-ALL blasts show robust condensin-complex defects and
defective Aurora B kinase (AURKB) activity, leading to abnormal
mitotic progression and chromosome missegregation. Func-
tional inhibition of AURKB and the SAC in normal hematopoietic
stem/progenitor cells (HSPCs) reproduced hyperdiploid karyo-
types with abnormal chromosome structure. We conclude that
defects in the condensin complex, AURKB, and SAC are associated
with HyperD-ALL, likely representing a pathogenic mechanism.

Methods

Pediatric B-ALL leukemic samples and cell lines

Diagnostic BM samples from B-ALL pediatric patients were
obtained from collaborating hospitals. B-ALL diagnosis was
based on French-American-British (FAB) and World Health Or-
ganization (WHO) classifications. Supplemental Table 1 (avail-
able on the Blood Web site) summarizes main clinico-biological
data of the patients. Fetal tissue was collected from developing
embryos aborted at 18 to 22 weeks of pregnancy, obtained from
the Medical Research Council (MRC)/Wellcome Trust Human
Developmental Biology Resource upon informed consent and
approval by our local ethics committee. The B-ALL cell lines
SEM, REH, and MHH-CALL-2 (German Collection of Microor-
ganisms and Cell Cultures [DMSZ], Braunschweig, Germany)
were used for confirmatory studies. This study was approved by
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the Barcelona Clinic-Hospital Institutional Review Ethics Board
(HCB/2014/0687), and patient samples were accessed upon
informed consent.

In vivo expansion of B-ALL blasts

All experimental procedures were approved by the Animal
Care Committee of the Barcelona Biomedical Research Park
(DAAM7393). Primary blasts (5 X 10%) were expanded in vivo in
sublethally irradiated 8- to 14-week-old nonobese diabetic/LtSz-
scid IL-2Ry~~ mice (NSG) upon intra-BM transplantation.'®
Peripheral blood (PB) was monitored by fluorescence-activated
cell sorting (FACS) for leukemia engraftment. Primografts were
sacrificed when engraftment reached 10% to 15% in PB, typically
representing >80% engraftment in BM. Blasts were isolated
from BM and spleen by density-gradient centrifugation for
downstream analysis. For FACS analysis of leukemic engraftment,
PB mononuclear cells were stained with anti-human HLA-ABC
fluorescein isothiocyanate (FITC), CD19-phycoerythrin, and
CD45-allophycocyanin antibodies (BD Biosciences), and an-
alyzed using a FACSCantoll cytometer.

Indirect immunofluorescence

B-ALL cells were spun on poly-L-lysine-coated coverslips (500g,
3 minutes) before fixation. Cells were fixed and permeabilized
with Triton X-100-containing buffer (5 minutes). Cells were
blocked with permeabilization buffer containing 1% to 3% bo-
vine serum albumin (1 hour, 37°C), and incubated overnight at
4°C with primary antibodies (supplemental Table 2). Cells were
washed with permeabilization buffer, and incubated (45 minutes)
with fluorophore-conjugated secondary antibodies (The Jackson
Laboratory). All antibodies were diluted in blocking buffer. Slides
were mounted with Vectashield 4',6-diamidino-2-phenylindole
(DAPI; Vector Laboratories). Details of chromosome spreading
forimmunofluorescence are provided in supplemental Methods.

Confocal microscopy and image acquisition
Microscope images were captured using a fully equipped Zeiss
LSM880 laser-scanning spectral confocal microscope equipped
with an AxioObserver Z1 inverted microscope. DAPI, Alexa 488,
Alexa Fluor 555, and Alexa Fluor 647 images were acquired
sequentially using 405, 488, 561, and 633 lasers, dichroic beam
splitters, emission detection ranges of 415 to 480 nm, 500 to 550
nm, 571 to 625 nm, and 643 to 680 nm, respectively, and the
confocal pinhole was set at 1 Airy unit (AU). An acoustic optical-
beam splitter was used at the same emission detection ranges.
Spectral detection was performed using 2 photomultipliers and
1 central GaAsP detector used for the acquisition of Alexa 647.
Images were acquired in a 1024- X 300-pixel format, zoom was
set at 2, pixel size at 53 X 53 nm, and dwell time at 0.51 mi-
croseconds. Z-stacks were acquired at a 300-nm step size to
reconstruct the entire nuclei volume. Immunofluorescence signal
quantification was performed using FlJI-imageJ (NIH). Details of
image quantifications are provided in supplemental Methods.

Details for in vitro culture/expansion of B-ALL cells and HSPCs,
chromosome function and cytogenetic analysis, fluorescence
quantification, western blot (WB) and protein analysis, mass-
spectometry (MS) assays, cell cycle and phosphor-H3S10
quantification, reverse transcription—polymerase chain reaction
(PCR), chromatin immunoprecipitation, and RNA sequencing (RNA-
seq) are provided in supplemental Methods and supplemental
Tables 3 and 4.
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Figure 1. HyperD-ALL cells are low proliferative and show a delay in early mitosis. (A) Heat map of the top 50 genes more differentially expressed between HyperD (n = 58)
and non-HyperD (n = 30) B-ALL samples. (B-C) Top 20 statistically significant upregulated (B) or downregulated (C) biological pathways identified using GSEA for the genes
differentially expressed in HyperD vs nonHyperD-ALL patients. Colored bars represent normalized enrichment scores (NES). P values are shown. (D) Sixteen-day proliferation
curves for the indicated cell lines; n = 3 independent experiments. (E) SubGo/SubG; apoptotic levels identified by FACS for the indicated cell lines; n = 3 independent
experiments. (F) Cell cycle analysis for the indicated cell lines. Left, representative cell cycle FACS analysis. Right, frequency of cells in Go/M analyzed; n = 3 independent
experiments. (G) Representative DNA-Kinetochore-spindle IF staining (DNA, ACA, tubulin, and pericentrin) identifying the different mitotic phases in B-ALL cell lines. The SAC
identifies the transition from early to late mitosis. Scale bar, 10 um. (H-I) Mitosis progression in B-ALL cell lines. Progression from early to late mitosis (H), and frequency of cells at
the indicated mitotic phases (I); n = 4 independent experiments. Graphs represent the mean, and error bars represent the standard error of the mean. *P < .05, **P < .01 (2-way
analysis of variance [ANOVA)). A, anaphase; CK, cytokinesis; M, metaphase; P, prophase; PM, prometaphase; T, telophase.
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Figure 2. HyperD-ALL primary blasts show a delay in early mitosis associated with chromosome-alignment defects in prometaphase. (A) Schematic depicting the
experimental design for ex vivo growth of primary B-ALL blasts onto Nestin-positive hBM-MSCs. (B) Left, representative images of primary non-HyperD and HyperD-B-ALL ex vivo cultures
on Nestin-positive hBM-MSCs at the indicated time points. Right, absolute counts of B-ALL primary blasts at the indicated time points; n = 2. (C-D) Frequency of apoptotic (SubGo/SubGy)
(C) and Go/M (D) non-HyperD and HyperD-ALL primary cells from BM samples; n = 3 patients of each. (E) Schematic depicting the PDX model used to expand primary B-ALL blasts in vivo.
(F) Representative DNA (blue)-Kinetochore (purple)-spindle (red-green) IF staining identifying the different mitotic phases in PDX-expanded B-ALLs. The SAC identifies the
transition from early to late mitosis. (G) Mitosis progression of PDX-expanded B-ALL primary cells. Left, progression from early to late mitosis. Right, frequency of cells at the
indicated mitotic phases; n = 3 non-HyperD and n = 5 HyperD PDX-expanded B-ALLs. (H) Left, representative images of mitotic cells with nonaligned and aligned chromosomes at the
metaphase plate. Right, frequency of PDX-expanded B-ALL primary blasts showing chromosome alignment at prometaphase/metaphase; n = 4 non-HyperD and n = 4 HyperD PDX-
expanded B-ALLs. (I) Schematic depicting the chromosome-biorientation assay. (J) Representative images of the DNA-Kinetochore-spindle staining in monastrol/MG132-treated cells
with O (left), 1 (middle), and >2 (right) misaligned chromosomes. (K) Quantification of metaphase cells showing misaligned chromosomes; n = 3 non-HyperD and n = 3 HyperD PDX-
expanded B-ALLs. Graphs represent the mean, and error bars represent the standard error of the mean. *P < .05, **P < .01; ***P < 0001 (2-way ANOVA). Scale bars, 10 um.

Statistical analysis test indicated in the appropriate figure legends on the indicated
Statistical comparisons were performed using GraphPad Prism. number of experiments. Non-HyperD were compared with
Mean values and their standard error of the mean were calcu- HyperD B-ALLs. A value of P < .05 was considered statistically
lated for each variable. All data were analyzed according to the significant.
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Figure 3. Chromosome-segregation defects and nonmodal karyotypes in HyperD-ALL blasts. (A) Representative DNA (blue)-Kinetochore (purple)-spindle (green and red)
IF staining identifying lagging and bridge chromosomes. Yellow arrowheads depict the indicated chromosome-segregation defect. (B) Frequency of blebbistatin-treated mitotic
PDX-expanded primary blasts with lagging and bridge chromosomes; n = 151 mitosis from 3 non-HyperD and 96 mitosis from 3 HyperD-ALLs. (C) Comparison of modal
karyotypes from 50 metaphases from primary HyperD (n = 6) and non-HyperD (n = 6) B-ALL samples. (D) Frequency of cells showing modal karyotype. (E-F) FISH analysis using
DNA probes for chromosomes 12 (green) and 21 (red) of 200 interphase nuclei from n = 3 non-HyperD and 4 HyperD-ALL primary samples. (E) Frequency of cells representing
the modal clone vs minor clones. (F) Representative FISH analysis for a primary non-HyperD and a HyperD-ALL. Graphs represent the mean and error bars represent the standard
error of the mean. *P < .05, **P < .01; ***P < .0001 (2-way ANOVA). Scale bars, 10 pm.

Results

HyperD-ALL cells are low proliferative and show a
delay in early mitosis

Aneuploid cells typically display a gene signature characterized
by an upregulation of genes involved in oxidative stress re-
sponse, membrane functions, and immune response regulation
coupled with a downregulation of genes involved in cell pro-
liferation and nucleic acid metabolism.’®2" We first analyzed
the transcriptomic signature of HyperD-ALL blasts using an
RNA-seq data set from HyperD-ALL patients (n = 58) and non-
HyperD B-ALL patients (n = 30, nonaneuploid; supplemental
Methods).?? A gene ontology analysis of the 26239 genes dif-
ferentially expressed between primary HyperD-ALL and non-
HyperD B-ALLs confirmed an aneuploidy-like gene expression
signature characterized by the upregulation of pathways associ-
ated with oxidative stress, protein turnover, cell death, immune
system activation, and membrane functions (Figure 1A-B), and
downregulation of pathways associated with nucleic acid me-
tabolism and transfer RNA biology (Figure 1A,C). Consistent with
this, we found that the aneuploid pediatric B-ALL cell line CALL-2
(doubled-up hypodiploid karyotype: 51XX,+X,+18,+der(18)t(15;
18),+21,+21)?* exhibits a significantly lower proliferative rate
than the non-HyperD-ALL cell lines SEM and REH (Figure 1D).
Mechanistically, CALL-2 cells revealed a fivefold increase in

AURKB AND CONDENSIN DEFECTS IN HYPERDIPLOID B-ALL

apoptosis coupled to an accumulation in Go/M (Figure 1E-F),
indicating cell division/mitotic defects in aneuploid B-ALL cells.

To further characterize the mitotic progression of HyperD-ALL
cells, we stained CALL-2, SEM, and REH for DAPI, tubulin,
pericentrin, and the anti-centromere antibody (ACA) to un-
equivocally identify the different mitotic phases?* (Figure 1G).
Consistent with the FACS data, immunofluorescence (IF) analysis
revealed that CALL-2 cells accumulated in early mitosis, spe-
cifically at prometaphase/metaphase, with a concomitant delay
in late mitosis (Figure TH-I).

Chromosome-alignment defects in prometaphase
underlie the mitotic delay of HyperD-ALL

primary blasts

Cancer cell lines do not faithfully phenocopy the molecular
complexity of the disease. Furthermore, despite CALL-2 being
the only childhood HyperD-ALL cell line available, it actually
represents a doubled-up hypodiploid B-ALL cell line.?* We thus
aimed to analyze the proliferation/mitotic defects in childhood
HyperD-ALL primary blasts. Because leukemic primary cells fail
to expand ex vivo,>>%” we cocultured B-ALL blasts with Nestin-
positive fetal BM (FBM)-derived mesenchymal stem cells
(MSCs), which support short-term proliferation of primary B-ALL
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blasts without compromising clonal composition?® (Figure 2A;
supplemental Figure 1a-b). Similar to cell lines, non-HyperD-ALL
primary cells grown on Nestin-positive FBM-MSCs expanded
fivefold over a 6-day period whereas HyperD-ALL primary blasts
failed to expand at all ex vivo (Figure 2B). FACS analysis using
BM-diagnostic samples also showed an increase in both apo-
ptosis and frequency of G,/M cells in primary HyperD-ALL cells
(Figure 2C-D). To further link proliferative impairment with mi-
totic defects, we analyzed the mitotic progression in dividing
B-ALL primary blasts expanded in vivo in NSG mice (Figure 2E;
supplemental Figure 2a). Xenografted blasts were processed
and [F-stained for the DNA-Kinetochore-Spindle staining to
unambiguously identify each mitotic phase (Figure 2F). Con-
sistent with cell lines, HyperD-ALL primary blasts accumulated in
early mitosis, at prometaphase/metaphase, with a concomitant
delay in late mitosis (telophase and cytokinesis; Figure 2G;
supplemental Figure 2b).

Because chromosomes align at the metaphase plate in the
prometaphase-to-metaphase transition, we then inspected dividing
cells in early mitosis to distinguish between prometaphase
(nonaligned chromosomes) and metaphase (aligned chro-
mosomes) cells. We observed a robust decrease of HyperD-
ALL blasts with aligned metaphase plates (Figure 2H), confirming
chromosome-alignment defects in early mitosis in HyperD-ALL
cells. Chromosome alignment relies on the dynamics of chro-
mosome biorientation to the spindle poles.?? We thus analyzed
the dynamics of chromosome biorientation in primary B-ALL
blasts by generating monopolar spindles and prometaphase
arrest with monastrol (a spindle bipolarity inhibitor), followed
by treatment with the proteasome inhibitor MG132, which
further arrests dividing cells in metaphase® (Figure 2I).
Strikingly, non-HyperD-ALL primary blasts properly aligned
chromosomes at the metaphase plate in ~90% of the meta-
phases (Figure 2J-K). However, HyperD-ALL samples showed
a massive decrease in the number of cells with aligned
chromosomes at the metaphase plate (~45%) (Figure 2J-K). It
is noteworthy that the defective chromosome biorientation in
HyperD-ALL cells was confirmed in B-ALL cell lines (supplemental
Figure 3a). Thus, the impaired proliferation of HyperD-ALL
blasts may result from mitotic defects in prometaphase-
metaphase due to aberrant chromosome alignment at the
metaphase plate.

Chromosome-misalignment defects result in
chromosome missegregation and nonmodal
karyotypes in HyperD-ALL blasts

Because defects in chromosome alignment often result in
chromosome missegregation,?* we next analyzed the rates of
chromosome-segregation defects, mainly lagging chromo-
somes and anaphase bridges, in B-ALL blasts (Figure 3A). To
overcome the accumulation of HyperD-ALL cells in early mi-
tosis, B-ALL primary blasts were treated with the cytokinesis
inhibitor Blebbistatin.®" We found that HyperD-ALL primary
blasts displayed a significantly, approximately fourfold, higher
number of late mitosis with chromosome-segregation defects
(Figure 3B).

Because chromosome missegregation leads to aneuploidy, we
analyzed the modal karyotype distribution in 12 diagnostic
B-ALL samples. We found high chromosome stability in non-
HyperD B-ALL samples, with a modal chromosome number of
46 in >80% of the metaphases analyzed (Figure 3C-D; sup-
plemental Figure 4). However, HyperD-ALL blasts showed an
increased karyotype instability defined by the presence of a
major clone (40% of the cells) and minor clones with nonmodal
chromosome distributions (Figure 3C-D; supplemental Figure 4).
These results were confirmed by fluorescence in situ hybrid-
ization (FISH) analysis for chromosomes 12 and 21 (Figure 3E-F).
Chromosome instability in HyperD-ALL cells was further confirmed
in B-ALL cell lines (supplemental Figure 3b-c). Collectively,
chromosome-alignment defects result in chromosome-segregation
defects and subsequent nonmodal karyotypes in HyperD-ALL
blasts.

HyperD-ALL blasts show chromosome
hypocondensation and loss of centromere stiffness
due to condensin-complex defects

We next investigated the mechanisms leading to these mitotic/
chromosome defects. IF analysis of the spindle using
the DNA-Kinetochore-Spindle staining showed similarly low
frequency of mitotic blasts with spindle abnormalities such
as multipolar or disorganized spindles in non-HyperD and
HyperD-ALL (Figure 4A). Moreover, defects in bipolar spindle
formation frequently lead to cytokinesis defects and
tetraploidization.?? Because no (near)-tetraploid cells were

Figure 4. HyperD-ALL blasts show chromosome hypocondensation, loss of centromere stiffness, and defects in the condensin complex. (A) Analysis of spindle
abnormalities in B-ALL primary blasts. Left, representative DNA-Kinetochore-spindle IF staining of mitotic cells with bipolar, multipolar, and disorganized spindles.
Right, frequency of mitotic cells displaying spindle defects; n = 3 non-HyperD-ALLs (n = 251 mitosis) and n = 3 HyperD-ALLs (n = 251 mitosis) PDX-expanded samples.
(B) Frequency of metaphases with hypocondensed chromosomes in primary B-ALL blasts; n = 200 metaphases from 4 non-HyperD and n = 250 metaphases from
5 HyperD-ALLs primary samples. Left, representative images of normal and hypocondensed metaphase chromosomes. Insets represent X3 magnifications. (C)
Chromosome structure of formaldehyde-crosslinked PDX-expanded B-ALL samples. Left, Representative images of metaphase cells with hypocondensed chro-
mosomes. Anti-ACA staining is shown in green. Right, frequency of formaldehyde-crosslinked metaphases showing hypocondensed or hypocondensed with un-
structured chromosomes in B-ALL primary samples; n = 60 metaphases from 3 non-HyperD and n = 57 metaphases from 3 HyperD-ALLs. (D) Chromosome arm width
using PDX-expanded B-ALL samples from panel C; n = 191 chromosomes from 3 non-HyperD and n = 143 chromosomes from 3 HyperD-ALLs. (E) Representative IF
images of metaphase PDX-expanded B-ALL blasts stained with DAPI, anti-SMC2, and anti-ACA. (F) Quantification of the SMC2 total volume in metaphase chro-
mosomes from panel E; n = 30 metaphases from 3 non-HyperD and 3 HyperD-ALLs. (G) Schematic cartoon of the 2 human condensin complexes. (H) WB analysis of the
indicated condensin members in whole-cell lysates from PDX-expanded B-ALL samples. (I) Quantification of WB bands from panel H normalized to actin. (J)
Representative HPLC-ESI-MS chromatograms of the indicated peptides for HyperD and non-HyperD PDX-expanded B-ALLs. (K) Acetylation levels of SMC2 peptide
SQAASILTK (m/z = 480.8). (L) Phosphorylation levels of CAPD2 peptide GPAASTQEK (m/z = 524.7). Results depict the average of the peak areas from independent MS
experiments from 2 non-HyperD and 2 HyperD-ALL PDX-expanded blasts. (M) Representative line-scan measurements of individual centromeres in the indicated B-ALL
primary samples. DAPl and ACA are depicted as a blue and red lines, respectively. Yellow arrowheads point to the analyzed chromosome. (N) Intercentromeric distance
from MG132-treated PDX-expanded B-ALL blasts; n = 155 centromeres from 3 non-HyperD and n = 119 centromeres from 3 HyperD-ALLs. (O) Intercentromeric distance
from colcemid-treated PDX-expanded B-ALL blasts; n = 130 centromeres from 3 non-HyperD and n = 111 centromeres from 3 HyperD-ALLs. Graphs represent the mean,
and error bars represent the standard error of the mean. *P < .05, **P < .01; ***P < .001; ****P < .0001. Two-way ANOVA (A-C) or Student t test (D, F, I, N, O). Scale
bars, 10 pm.
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Figure 5. Mislocalized AURKB and Survivin from the inner centromere and loss of chromatid cohesion and SAC impairment in HyperD-ALL blasts. (A-B) Representative
IF staining for CENP-A and AURKB (A) or Survivin (B) in PDX-expanded B-ALL blasts. (C-D) Quantification of the AURKB (C) and Survivin (D) fluorescence signal at the
inner centromere; n = 30 metaphases from 3 non-HyperD and n = 30 metaphases from 3 HyperD-ALL. (E) Representative IF showing either centromeric and scattered
localization of AURKB, Survivin, and CENP-A. (F-G) Frequency of PDX-expanded non-HyperD (n = 3) and HyperD-ALL (n = 3) blasts showing centromeric vs scattered localization
of AURKB (n = 797 chromosomes from non-HyperD and n = 676 chromosomes from HyperD) (F), and Survivin (n = 964 chromosomes from non-HyperD and n = 814
chromosomes from HyperD) (G). (H) Quantification of total AURKB fluorescence signal from samples in panel C. AURKB levels are expressed relative to non-HyperD blasts,
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observed in any HyperD-ALL patient (Figure 3C-D; supple-
mental Figure 4), we ruled out defects in spindle formation in
HyperD-ALL blasts.

We next assessed whether chromosome structure and function
underlie the mitotic defects observed in HyperD-ALL. We first
examined the chromosome morphology of Carnoy-fixed pedi-
atric B-ALL blasts (supplemental Table 1). Although non-HyperD-
ALL metaphases mostly showed normal rod-shaped chromosomes,
~60% of HyperD-ALL metaphases displayed curly shaped/
hypocondensed chromosomes with irregular borders (Figure 4B;
supplemental Figure 5a). Importantly, intrapatient comparison of
diploid normal hematopoietic cells vs HyperD blasts confirmed
that chromosome hypocondensation specifically occurs in HyperD-
ALL cells (10% vs 70%; supplemental Figure 5b). Chromosome
hypocondensation defects were further confirmed in B-ALL cell
lines (supplemental Figure 5c). We next scored formaldehyde-
fixed B-ALL samples for chromosome structure/condensation,
and found significantly more metaphases containing hypo-
condensed and unstructured fuzzier and wider chromosomes in
HyperD-ALL than in non-HyperD-ALL blasts (80% vs 20%; P < .001;
Figure 4C-D; supplemental Figure 5d), excluding an impact of the
fixative on chromosome-structure/condensation defects.

Condensin complexes are major components of the chromo-
some scaffold that regulate chromosome compaction and
higher-order chromatin organization during mitosis.33-3¢ The
chromosome-structure/condensation defects observed in
HyperD-ALLs prompted us to analyze in chromosome spreads
from primary B-ALL samples the binding pattern of SMC2, a
major component of condensin complexes. Non-HyperD-ALL
blasts showed a normal beaded pattern for SMC2, spreading
along the chromatids with a centromere enrichment (Figure
4E). In contrast, SMC2 was hardly detectable in neither chromatids
nor centromeres, and showed an abnormal staining pattern in
HyperD-ALL blasts (Figure 4E). Indeed, 3-dimensional image
quantification of SMC2 staining revealed a significantly lower
volume of SMC2 in chromosomes from HyperD-ALL blasts
(Figure 4F; supplemental Figure 5e).

To further characterize the defects in condensin complexes in
HyperD-ALL samples, we analyzed by WB in primary-derived
xenograft (PDX)-expanded B-ALL cells the distinct protein
members specific for each of the 2 human condensin com-
plexes (complex | and 1), which play a differential contribution
to mitotic chromosome organization/segregation (Figure 4G).
Protein analysis confirmed the lower levels of SMC2 in HyperD-
ALL blasts, and revealed that both condensin complexes
(CAPD2 and CAPD3) were similarly affected (Figure 4H-I).
Strikingly, however, no differences were observed at the RNA
level for any of the condensin-complex members between
HyperD-ALL and non-HyperD-ALL samples (supplemental
Figure 5f), suggesting that posttranslational modifications

(PTMs) may underlie condensin-complex defects in HyperD-
ALL blasts.

Compelling data strongly suggest that PTMs are essential for
regulating condensin loading to chromosomes.3”:38 We thus
performed MS analyses for both SMC2 acetylation and CAPD2
phosphorylation levels after immunoprecipitation of the con-
densin complexes with anti-SMC2 (supplemental Figure 5g),
and found increased levels of both SMC2 acetylation and
CAPD2 phosphorylation in HyperD-ALL samples (Figure 4J-L),
suggesting that PTMs regulating condensin activation may
represent a mechanism underlying condensin defects in
HyperD-ALL blasts.

Condensin complexes set the stiffness of the centromeric
chromatin required to withstand the spindle-pulling forces
during metaphase,? and SMC2 depletion results in increased
intercentromeric distances in metaphase chromosomes.3?4° To
analyze centromere stiffness in HyperD-ALL blasts, we measured
the intercentromeric distances between sister-kinetochore pairs
in metaphase-arrested blasts (Figure 4M). For this, B-ALL blasts
were metaphase-arrested with chromosomes under tension
(nonrelaxed length) or without tension (rest length) from the
spindle, by using either the proteasome inhibitor MG132 or the
microtubule depolymerizer colcemid, respectively. HyperD-ALL
blasts consistently displayed a significantly longer intercentro-
meric distance than non-HyperD-ALL blasts (Figure 4N-O).
Collectively, PTMs of condensin members may induce a defective
condensin complex that leads to high-order chromosome-
organization defects and impaired centromere stiffness/stretching
at metaphase in HyperD-ALL blasts.

Kinetochores are normal in HyperD-ALL blasts
The kinetochore binds microtubules at centromeres and regu-
lates chromosome segregation.*! CENP-A (centromere-specific
histone H3) and NDC80/NUF-2 are key centromere chromatin
markers of the inner and outer kinetochore plate, respectively,
which control kinetochore’s assembly. CENP-A overlaps with the
condensin complex and it is flanked by the heterochromatin
histone marks H3K9me3 and H3K27me3.4>% We thus were
prompted to study whether the condensin defects observed in
HyperD-ALL blasts are associated with centromeric chroma-
tin defects and destabilization of the kinetochore. Chroma-
tin immunoprecipitation-quantitative PCR assays showed no
differences of CENP-A, H3K9me3, or H3K27me3 levels at cen-
tromeres of HyperD-ALL blasts as compared with non-HyperD-
ALL blasts (supplemental Figure éa). Moreover, quantitative
confocal microscopy analysis revealed very similar levels of
NUF-2 between HyperD-ALL and non-HyperD-ALL blasts
(supplemental Figure 6b-c), indicating that despite impaired
centromere stiffness, the centrochromatin is not epigeneti-
cally impaired and the kinetochore forms normally in HyperD-
ALL blasts.

Figure 5 (continued) which are arbitrarily set to 100. () Left, representative FACS staining of H3510P. Right, MFl of H3S10P in 3 non-HyperD and 3 HyperD-ALL samples. (J) Left,
representative images of normal or railroad-shaped chromosomes. Right, frequency of metaphases showing the indicated number of chromosomes with PCS; n = 200
metaphases from 4 non-HyperD, n = 250 metaphases from 5 HyperD-ALLs samples. (K) Schematic depicting the workflow for functional analysis of the SAC. (L) Representative
FACS of mitotic PDX-expanded B-ALL blasts (H3510P*CD19* cells, green) in the presence or absence of nocodazole. (M) Fold-change of mitotic (H3S10P*) blasts in nocodazol-
treated (relative to DMSO-treated) non-HyperD (n = 3) and HyperD-ALL (n = 3) primary blasts. (N) Representative FACS cell cycle distribution of nocodazol- vs DMSO-treated
PDX-expanded B-ALL blasts. (O) Quantification of the cell cycle phases in nocodazol- vs DMSO-treated PDX-expanded B-ALL blasts; n = 3 non-HyperD and n = 3 HyperD-ALL.
(P) Quantitative reverse transcription—PCR analysis of SAC proteins in B-ALL primary samples; n = 9 non-HyperD and n = 11 HyperD. Graphs represent the mean, and error bars
represent the standard error of the mean. *P < .05, **P < .01; ***P < .001; **** P < .0001 (2-way ANOVA or Student t test). Scale bars, 10 um.
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The CPC proteins AURKB and Survivin are
mislocalized from the inner centromere in early
mitotic HyperD-ALL blasts

We next aimed to analyze the cellular mechanisms by which the
impaired condensin complex leads to mitotic/chromosome
defects in HyperD-ALL blasts. We first analyzed the chromo-
some passenger complex (CPC), a protein complex composed
of AURKB and the accessory subunits Survivin, Borealin,
and INCENP. The CPC regulates the SAC to ensure proper
kinetochore-microtubule attachment, and was shown mis-
localized from the inner centromere in cells with a defective
condensin complex.3*484? Prometaphase-arrested non-HyperD-
ALL primary blasts revealed a normal chromosomal distribution
of both AURKB and Survivin mainly concentrated in the in-
ner centromere (Figure 5A-B). However, HyperD-ALL blasts
showed an aberrant chromosomal distribution of both AURKB and
Survivin, diffusely distributed throughout the chromosome arms
rather than concentrated in the inner centromere (Figure 5A-B).
Quantification of both AURKB and Survivin at the inner centro-
meres confirmed a significant decrease of both CPC proteins in
centromeres of HyperD-ALL blasts (Figure 5C-D; supplemental
Figure 7a-b). To further characterize the localization of AURKB and
Survivin, we analyzed the frequency of chromosomes showing
either centromeric or scattered localization (Figure 5E), and
confirmed that HyperD-ALL blasts preferentially showed scattered
localization throughout the chromosome arms (Figure 5F-G).
These results were reproduced using B-ALL cell lines (supple-
mental Figure 7c-d). Of note, the overall chromosome-wide ex-
pression levels of both AURKB and phosphohistone H3 at serine
10 (H3S10p), the major readout of AURKB activity, were sig-
nificantly reduced in HyperD-ALL blasts (Figure 5H-I). Finally,
we generated condensin complex I-defective non-HyperD-ALL
cell lines by knocking down CAPD2, and confirmed the mis-
localization of AURKB from the inner centromere (supple-
mental Figure 7e-f). Taken together, mislocalization of the
CPC proteins AURKB and Survivin in early mitosis represents a
major mechanism linking defective condensin complex and
chromosome-alignment/segregation defects in HyperD-ALL
blasts.

Defective AURKB is associated with loss of
chromatid cohesion and SAC impairment in
HyperD-ALL blasts

The confined localization of AURKB at the inner centromere is
essential for chromatid cohesion and proper SAC activity.30551
Indeed, analysis of chromosome spreads revealed that 75% of
the metaphases from HyperD-ALL blasts displayed “railroad
chromosomes,” a common phenotype reflecting premature
chromatid separation (PCS) due to reduced chromatid cohesion
at centromeres (Figure 5J; supplemental Figure 8a). These re-
sults were reproduced using B-ALL cell lines (supplemental
Figure 8b).

AURKB controls chromosome biorientation/alignment at the
metaphase plate through phosphorylation of different SAC
proteins.3059.5253 \We thus reasoned that AURKB defects may
underlie the progression toward late mitosis of HyperD-ALL
blasts with misaligned chromosomes by preventing SAC acti-
vation. To test this, we cocultured B-ALL primografts on Nestin-
positive FBM-MSCs in the presence of nocodazol, which
generates persistently unattached kinetochores leading to SAC
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activation and mitotic accumulation (Figure 5K), and found that
nocodazol-treated HyperD-ALL blasts did not accumulate in
mitosis as efficiently as non-HyperD-ALL blasts (Figure 5L-M).
These results were reproduced in B-ALL cell lines (supplemental
Figure 8c). Cell cycle analysis further confirmed that HyperD-ALL
blasts do not arrest in G,/M after nocodazol treatment but
they accumulate in Go/G1 (Figure 5N-O), strongly suggesting
mitotic slippage. Apoptosis was not different between
HyperD-ALL and non-HyperD-ALL blasts (supplemental
Figure 8d). It is noteworthy that the metaphase-to-anaphase
promoting regulator MAD2L2, whose loss leads to accelera-
ted mitosis and mitotic aberrations,® was found down-
regulated in HyperD-ALL blasts (Figure 5P). Collectively,
HyperD-ALL cells show chromatid cohesion defects and un-
dergo mitotic slippage most likely due to defective AURKB
and impaired SAC activity, downstream of condensin-complex
defects.

Inhibition of AURKB and SAC in CD34+ HSPCs
reproduces chromosome-structure defects and
hyperdiploid karyotypes

We next prompted to functionally model whether defective
AURKB and impaired SAC activity could reproduce the phe-
notype observed in HyperD-ALL primary blasts. Because HyperD-
ALL was shown to have a prenatal origin and preleukemic
hyperdiploid precursors are found at birth,>**¢ we exposed fetal
BM-derived CD34* HSPCs to the AURKB inhibitor ZM447439
and/or to the SAC inhibitor Reversine for 48 hours, and then
processed cells for cytogenetics analysis (Figure 6A-B). Both
AURKB and SAC inhibition in CD34* HSPCs reproduced
chromosome-structure defects observed in HyperD-ALL (Figure
6B; supplemental Figure 9a). They both drastically increased
(compared with controls) the frequency of CD34* HSPCs with
micronuclei, a bona fide marker of chromosome instability
(Figure 6C), hypocondensed chromosomes (Figure éD), and
metaphases with PCS reflecting loss of chromatid cohesion
(Figure 6E). Such chromosome-structure defects were main-
tained and/or slighted potentiated when both AURKB and
SAC were simultaneously inhibited (Figure 6B-E). Of note,
although we could not reliably assess the karyotypes of
reversine-treated CD34* HSPCs due to massive chromosome
damage, AURKB inhibition resulted in ~30% of the CD34~
HSPCs displaying hyperdiploid karyotypes (Figure 6F; sup-
plemental Figure 9b-c). In addition, cell cycle analysis revealed
massive alterations in DNA ploidy, confirming genomic imbal-
ances in CD34" cells upon treatment with AURKB or SAC in-
hibitors (Figure 6G). The chromosome-structure defects and
hyperdiploid karyotypes reproduced in CD34" cells reinforce
defective AURKB and SAC as an underlying cellular/molecular
mechanism in hyperdiploidy B-ALL.

Discussion

This is the most comprehensive study to date on the cellular
mechanisms underlying the mitotic and chromosome defects
contributing to the pathophysiology of pediatric HyperD-ALL.
Here, we have developed robust in vitro assays using Nestin-
positive fetal BM-MSCs and in vivo PDX to successfully expand
primary B-ALL leukemic samples. Such ex vivo and in vivo ex-
pansion of B-ALL leukemic samples provided enough mitotic/
dividing primary blasts to address many biological questionsina
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Figure 6. Inhibition of AURKB and SAC in CD34* HSPCs reproduces chromosome structure defects and hyperdiploid karyotypes. (A) Schematic depicting the
workflow for AURKB and SAC inhibition in CD34* HSPCs. (B) Representative images of metaphase chromosomes treated as indicated. (C-F) Frequency of metaphases with
micronuclei (n = 500 cells per experiment) (C), hypocondensed chromosomes (D), PCS (E), and hyperdiploidy karyotype (F). (G) Representative FACS analysis showing Pl staining
profiles in CD34* HSPCs treated as indicated; n = 150 metaphases analyzed per treatment from 3 independent experiments. *P < .05, **P < .01 (1-tailed Student t test).

large cohort of 54 primary B-ALL samples, thus highlighting the
clinical relevance of our work. The only available HyperD-ALL
cell line, CALL-2, was used throughout the study for confirmatory
and gain-of-function studies, and consistently phenocopied the
data generated using primary HyperD-ALL primary cells. This

AURKB AND CONDENSIN DEFECTS IN HYPERDIPLOID B-ALL

cell line originates from a doubled-up hypodiploid B-ALL,??
suggesting that the same mitotic/chromosomal defects here
reported may underlie the pathogenesis of hypodiploid B-ALL
patients. Future studies, however, should be done in HypoD-ALL
patients who are rare but clinically dismal.
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We demonstrate that, in contrast to nonHyperD-ALL, HyperD-ALL
blasts show reduced proliferative rates coupled with a delay in
early mitosis at prometaphase. Such a delay in early mitosis is
associated with chromosome-alignment defects at the meta-
phase plate, which, in fact, lead to chromosome-segregation
defects and nonmodal karyotypes. Despite karyotype heteroge-
neity, HyperD-ALL primary blasts show a major clone that most
likely represents the fittest clone after cell adaptation to aneu-
ploidy.>” These data support previous studies showing the pres-
ence of cytogenetically different subclones in HyperD-ALL 54!

Mechanistically, HyperD-ALL primary blasts and cell lines did not
show abnormalities in bipolar spindle and kinetochore forma-
tion. However, they displayed important chromosome-structure
and -function defects, a major mechanism regulating chromosome
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mosome defects contributing to the pathophysiology of pediatric HyperD-ALL.

segregation that is essential for maintaining the genomic in-
tegrity of cells.’®"® HyperD-ALL cells showed robust defects in
several members of the condensin complexes including SMC2
(levels reduced at chromosome scaffolds), CAPD2, and CAPD3.
Biochemical, functional, and MS assays revealed that PTMs of
condensin-complex proteins may represent a mechanism un-
derlying defective condensin complexes in HyperD-ALL cells. Of
note, no mutations were found in condensin complex encoding
genes in HyperD-ALL patients, ruling out genomic mutations as
the cause of the defective condensin complex in HyperD-ALL
patients.

Consequently, high-order chromosome-architecture defects

are notorious, and include chromosome hypocondensation and
loss of centromere rigidity revealed by increased intercentromeric
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distances. Consistently, a recent study has reported chromosome
architecture defects and lower expression of CTCF in HyperD-ALL
samples.®? Furthermore, AURKB, the catalytic subunit of the CPC,
and Survivin are mislocalized from the inner centromere in early
mitosis, further linking defective condensin with chromosome-
segregation defects in HyperD-ALL blasts. According to the
essential localization of AURKB at the inner centromere to
protect chromatid cohesion and for proper SAC activity, %505
HyperD blasts show chromatid-cohesion defects as observed
by PCS and impaired SAC, leading to mitotic slippage. Im-
paired SAC activity explains why HyperD-ALL blasts proceed to
late mitosis with misaligned chromosomes at the metaphase
plate, thus leading to chromosome-segregation defects. Im-
portantly, chromosome hypocondensation and hyperdiploidy
were functionally reproduced in CD34* HSPCs upon inhibition of
AURKB and/or SAC, reinforcing defective condensin complex,
AURKB, and SAC as underlying cellular and molecular mecha-
nisms in HyperD-ALL (Figure 7). Although they are likely in-
strumental in the pathophysiology of the HyperD-ALL, whether
these findings are causal or consequential to hyperdiploidy re-
mains an open question under investigation.

This is the first cellular and molecular in-depth characterization
of the mitotic and chromosomal defects of HyperD-ALL using a
cohort of 54 B-ALL primary samples. It represents a highly
relevant study because B-ALL is the most common pediatric
cancer. Studies in monozygotic twins with concordant HyperD-
ALL and retrospective analysis of HyperD clones in cord blood
indicated that HyperD clones arise prenatally,” and that hyper-
diploidy is an initiating oncogenic event generating a preleukemic
clone that then requires secondary mutations to trigger a full-
blown leukemia.®® Therefore, a better mechanistic understanding
of how hyperdiploidy occurs and how secondary alterations are
acquired becomes crucial not only to propose novel therapeutic
targets but also to prevent the progression/relapse of HyperD-
ALL. These defects in condensin complex-AURBK-SAC axis open
up new avenues for modeling HyperD-ALL by genetically engi-
neering HSPCs, which will be crucial to further address the causal
contribution of these defects to the origin of HyperD in B-ALL.

From a diagnostic-clinical standpoint, the high-order chromatin/
chromosome structural defects observed in HyperD-ALL explain
very well the difficulties that clinical cytogeneticists have his-
torically encountered to obtain metaphases of standard quality
from these patients, thus challenging the cytogenetic di-
agnostic.? In addition, despite the favorable clinical outcome of
HyperD-ALL, unraveling the physiopathogenic mechanisms
underlying HyperD-ALL is necessary because in absolute num-
bers, the morbidity/mortality associated with HyperD-ALL still
represent a clinical challenge. In sum, this study sheds light on the
mechanisms underlying the mitotic and chromosome defects
involved in the pathogenesis of HyperD-ALL and offers molec-
ular targets (condensin-complex members, CPC members,
AURKB, or the SAC) for potential pharmacological intervention in
the most frequent molecular subtype of pediatric acute leukemia.
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