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KEY PO INT S

l Using a novel mouse
model mimicking MCL
patient mutations, the
loss of HECT domain
of UBR5 causes
alterations in B-cell
development.

l UBR5 mutations lead
to stabilization of
UBR5 and spliceosome
components.

Coordination of a number of molecular mechanisms including transcription, alternative
splicing, and class switch recombination are required to facilitate development, activation,
and survival of B cells. Disruption of these pathways can result in malignant transformation.
Recently, next-generation sequencing has identified a number of novel mutations inmantle
cell lymphoma (MCL) patients including mutations in the ubiquitin E3 ligase UBR5. Ap-
proximately 18% ofMCL patients were found to havemutations in UBR5, with the majority
of mutations within the HECT domain of the protein that can accept and transfer ubiquitin
molecules to the substrate. Determining if UBR5 controls the maturation of B cells is
important to fully understand malignant transformation to MCL. To elucidate the role of
UBR5 in B-cell maturation and activation, we generated a conditional mutant disrupting
UBR59s C-terminal HECT domain. Loss of the UBR5 HECT domain leads to a block in
maturation of B cells in the spleen and upregulation of proteins associated with messenger

RNA splicing via the spliceosome. Our studies reveal a novel role of UBR5 in B-cell maturation by stabilization of
spliceosome components during B-cell development and suggests UBR5 mutations play a role in MCL transformation.
(Blood. 2020;136(3):299-312)

Introduction
Mantle cell lymphoma (MCL) is a rare, aggressive form of non-
Hodgkin lymphoma (NHL).1 Although MCL represents only;6%
of NHL lymphoma cases, it has one of the highest mortality rates
of all lymphomas with only a 50% 5-year survival.2 Given the high
mortality rate and propensity for recurrence, understanding
mutations found in MCL and disease development in B cells will
open avenues for identifying new therapies. Recently, mono-
allelic mutations in the ubiquitin protein ligase E3 component
n-recognin 5 (UBR5) were found in;18%of patients withMCL.3,4

Approximately 60% of mutations identified in UBR5 were frame
shift mutations within its HECT domain, which can accept and
transfer ubiquitin molecules to the substrate, leading to a pre-
mature stop codon before the cysteine residue associated with
ubiquitin transfer.

UBR5 is a large ;300 kDa protein HECT E3 ligase with a con-
served carboxyl terminal HECT domain. In HECT E3 ligases,
the N-terminal portion (N-lobe) of the enzyme interacts with
E2 ubiquitin-conjugating enzymes and determines substrate
specificity, whereas the C-terminal HECT domain (C-lobe)
contains a catalytic cysteine residue that binds ubiquitin.5 The
2 lobes are connected by a flexible linker that allows for shifting
orientation between N- and C-lobes during ubiquitin transfer to

allow for efficient movement of ubiquitin from the E3 ligase
to the substrate protein. UBR5 regulates a number of cellular
processes including metabolism, apoptosis, angiogenesis, gene
expression, and genome integrity.6-11 Overexpression of UBR5
has been found in a number of cancers including ovarian, breast,
hepatocellular, squamous cell carcinoma, and melanoma.12-15

Determining if, and at what stage (transcriptional, translational,
or proteomic) UBR5 controls maturation of B cells is important for
fully understanding B-cell development and lymphoma trans-
formation. To elucidate the role of UBR5 in B-cell maturation and
activation, we generated a conditional mutant disrupting the
C-terminal HECT domain mimicking mutations found in MCL.
Loss of the HECT domain leads to a block in maturation of B cells
with follicular B cells that are phenotypically abnormal with low
expression of immunoglobulin D (IgD) and high expression of
IgM. Upon immune stimulation, B cells lacking the HECT domain
show decreased germinal center (GC) formation and reduced
antibody producing plasma cells, suggesting functional defects.
Proteomic studies reveal upregulation of proteins associated
with messenger RNA (mRNA) splicing via the spliceosome and
indicates that UBR5 interacts with splicing factors (SF3B3, PRPF8,
DHX15, SNRNP200, and EFTUD2). Our studies reveal a novel
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role of UBR5 in B-cell maturation and suggest UBR5 mutations
in MCL contribute to disease initiation.

Methods
Mice
Ubr5HECTmutant (Ubr5DHECT) mice were developed in C57BL/6
mice using Easi-CRISPR as previously published16 and crossed
with E2ACRE mice (Jackson Laboratory, Bar Harbor, ME) or
Mb1CRE mice (kind gift of Dr. Michael Reth) on C57BL/6 back-
ground. Em-CyclinD1 mice were a kind gift from Dr. Samuel
Katz.17 Targeted alleles were validated by polymerase chain
reaction (PCR). For immune stimulation, mice were injected
intraperitoneally with 1 3 108 sheep red blood cells (SRBC)
(Innovative Research, Novi, MI). All mice were housed in a
pathogen-free facility and procedures were approved by In-
stitutional Animal Care and Use Committee of University of
Nebraska Medical Center in accordance with National Institutes
of Health guidelines.

B-cell isolation and culture
Total bone marrow (BM) and splenocytes were isolated from
6-week-old mice. B2201 or CD231 cells were isolated using
MojoSort Streptavidin Nanobeads (BioLegend, San Diego, CA)
following manufacturer’s protocol. B cells were cultured in
RPMI1640 (Hyclone/GE Healthcare, Chicago, IL), 10% fetal
bovine serum, 2mM L-glutamine (Corning, Corning, NY), 50mM2-
mercaptoethanol (Corning), 20 mM N-2-hydroxyethylpiperazine-
N9-2-ethanesulfonic acid (Hyclone/GE Healthcare), 1X penicillin/
streptomycin, and 10 mg/mL lipopolysaccharide (MilliporeSigma,
Burlington,MA). Cells were treatedwith 200mg/mL cycloheximide
(MilliporeSigma) and/or 20 mg/mL MG132 (Cell Signaling Tech-
nologies, Danvers, MA) for 4 hours. For irradiation experiments,
CD231 splenocytes were given 10 Gy X-ray and collected after
1-hour recovery.

Flowcytometry analysis
For flow cytometry, cells were stained for 1 hour in 3% fetal
bovine serum in phosphate-buffered saline (PBS). For cell-cycle
analysis, cells were fixed and permeabilized following Bio-
Legend intracellular staining protocol and stained with Ki67 and
DAPI (49,6-diamidino-2-phenylindole).

ELISA and ELISpot
Mice were bled on days 0 and 8 following immune stimulation.
For enzyme-linked immunosorbent assay (ELISA), serum was
collected following Abcam ELISA sample preparation guide,
diluted 1:10 with PBS. SRBC was diluted 1:10 as a control. ELISA
was performed with positive reference antigen mixture and PBS
as a negative control according tomanufacture (BD Pharmingen,
San Jose, CA). ELISpot was performed using MabTech Kit for
mouse IgG ELISpotBASIC (ALP; Cincinnati, OH) following manu-
facturer’s protocol. A total of 1.76 3 106 SRBC and 75 000
splenocytes were plated on polyvinyl fluoride plates. BCIPNBT
substrate was from Promega (Madison, WI).

Histological staining
Spleen sections were stained with UBR5 antibody and Ki67. For
GC analysis, spleen sections from immunized mice were stained
with biotinylated peanut agglutinin (PNA) antibody.

Nuclear fractionation
Nuclei from 293Ts (ATCC, Manassas, VA) were collected as
described previously.18 Nuclei were lysed in 10 mM Tris-HCl
pH7.4, 0.2 mMMgCl2, and 1% Triton-X 100 containing protease
and phosphatase inhibitors for 15 minutes at 4°C. Continuous
10% to 30% glycerol gradients were prepared as previously
described.19 Samples were spun at 28 000g for 13 hours at 4°C.

Quantitative real-time PCR
Total RNA was harvested using QIAGEN RNeasy Kit (QIAGEN,
Hilden, Germany). Complementary DNA (cDNA) was synthe-
sized using High Capacity RNA-to-cDNA Kit (Thermo Fisher
Scientific, Waltham, MA), followed by quantitative real-time
PCR (qRT-PCR) using iTaq Universal SYBR Green (BioRad,
Hercules, CA).

Mass spectrometry
For global proteome quantification, B2201 splenocytes were
isolated from 3 mice per genotype. Samples were prepared and
tandem mass tag (TMT) labeled (TMT10plex Mass Tag Labeling
Kits; Thermo Fisher Scientific) as previously described.20 Data are
available via ProteomeXchange with identifier PXD014307.

For immunoprecipitation, cells were lysed in 20 mM Tris pH 7.5,
150 mM NaCl, 1 mM EDTA, and protease and phosphatase
inhibitors. Immunoprecipitation was performed overnight at
4°C using anti-UBR5 antibody (Abcam, Cambridge, MA) or
rabbit IgG control (Cell Signaling Technologies, Danvers, MA)
and using protein A agarose beads (Cell Signaling Technologies)
for IgG pulldown.

Statistical analysis
All experiments were performed in triplicate unless noted and
statistical analyses were performed using an unpaired, 2-tailed
Student t test. *P , .05, **P , .01, ***P , .001, ****P , .0001.

Additional materials and methods
Antibodies, primers, and additional methods are provided in
supplemental Data, available on the Blood Web site.

Results
Ubr5 mutations are specific to MCL
Meissner et al originally identified UBR5 mutations in ;18% of
MCL patients.4 In recent cross-sectional genomic profiling of
multiple lymphoma subtypes, we identifiedUBR5 as 1 of 8 genes
that had a significantly higher frequency of mutation in MCL
compared with other lymphoma subtypes. These monoallelic
mutations were observed in 34 of 196 MCL tumors (15.8%) and
15 of 559 tumors (2.7%) of other subtypes. However, mutations
within the HECT domain were found only in MCL tumors
(Figure 1A).3 Patients with UBR5 mutations had between 4 and
12 additional mutations, but did not significantly cooccur with
other mutations (Figure 1B).3 These findings suggest that HECT
domain mutations of UBR5 are a disease-specific genetic feature
of MCL.

Generation of a conditional UBR5 HECT mutant
Because the role of Ubr5 in lymphopoiesis is unknown, we
evaluated the expression of Ubr5 in B-cell subgroups during
development by purifying pro-, pre-, and immature B cells from
BM of C57/BL6 wild-type (WT) mice. Additionally, transitional,
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Figure 1. Expression of Ubr5 in B cells and generation of conditional Ubr5 HECT domain knockout model. (A) UBR5 domain map (blue5 UBA, black5 NLS, red5 UBR,
blue 5 MLLE, and purple 5 HECT) showing the frequency of UBR5 mutations in lymphoma patients. Orange 5 nonsense/frameshift; green 5 missense. (B) Frequency of all
genes mutated in addition to UBR5 mutations in MCL patients. (C) Relative qRT-PCR and (D) western blot expression of UBR5 within different B-cell populations: pro-B cells
(B2201IgM2ckit1), pre-B cells (B2201IgM2CD251), immature B cells (B2201IgMloIgD2) from the BM, and transitional (B2201CD931), marginal zone B cells (B2201CD211CD232),
and follicular B cells (B2201CD211CD231) isolated from the spleen of 6-week-oldWTC57Bl6mice. (E) Schematic of targeting strategy used to insert loxP sites flanking exon 58 of
Ubr5. (F) Relative expression of Ubr5 and Ubr5HECT domain by qRT-PCR in spleen B2201 cells. (G) Sequencing data of exons 57-59 ofUbr5 from Ubr5WT andUbr5 HECTmice.
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follicular, and marginal zone B-cell populations were purified
from spleens. The pro B-cell population showed lowest ex-
pression of Ubr5 at both the RNA and protein level, whereas the
highest expression of Ubr5 was found in mature splenic pop-
ulations (follicular and marginal) (Figure 1C-D). These studies
imply a role for UBR5 during B-cell development.

To understand the role of UBR5 mutations in B-cell develop-
ment, we generated a conditional allele targeting exon 58 that
would lead to a truncated protein lacking the cysteine required
for ubiquitin conjugation in the HECT domain and mimicking
mutations found in MCL patients (Figure 1E).21 We first crossed
our Ubr5DHECT mice to E2ACRE mice that delete in early
embryogenesis.22,23 E2ACRE;Ubr5DHECT/WT mice were fertile and
showed no physical abnormalities. In contrast to Ubr5-null mice
that are not viable past E10.5,22 3 of 49 pups found at birth were
E2ACRE;Ubr5DHECT/DHECT; however, the pups were not viable, in-
dicating the HECT domain is not required for embryogenesis
and fetal hematopoiesis (supplemental Figure 1A-B).

Because E2ACRE;Ubr5DHECT/DHECT mice die before or at birth, to
study B-cell development we crossed Ubr5DHECT/DHECT mice to
Mb1WT/CRE, which truncates UBR5 in early B-lymphocytes (sup-
plemental Figure 1C).24 qRT-PCR showed no decrease in Ubr5
expression, but significant decrease in Ubr5 HECT domain
expression (Figure 1F). Because of the size of UBR5 protein
(;300 kDa) we are unable to determine changes in protein size
of the HECT mutant (;290 kDa); therefore, we isolated RNA
from splenic B cells from Mb1WT/CRE;Ubr5DHECT/DHECT mice and
WT littermates and amplified cDNA followed by Sanger se-
quencing. Sequencing confirmed loss of exon 58 along with
expected frame shift and early stop codon (Figure 1G).

Impaired B-cell maturation following deletion of
UBR5 HECT domain
Early B-cell development occurs within the BM. In Mb1WT/CRE;
Ubr5DHECT/WT and Mb1WT/CRE;Ubr5DHECT/DHECT mice, the number of
total BM cells and frequency of B2201B cells showed no significant
difference compared with WT littermates (Figure 2A-C). Further
analysis of specific subtypes of B cells revealed a strikingdecrease in
IgD1 mature B-cell populations in both Mb1WT/CRE;Ubr5DHECT/DHECT

and Mb1WT/CRE;Ubr5DHECT/WT mice (Figure 2D-F). Decreases in
mature B cells were compensated in BM by a slight increase in pro/
pre B-cell population, specifically in pro-B cells in the Mb1WT/CRE;
Ubr5DHECT/DHECT cohort (Figure 2G-I). These studies demonstrate an
impact tomature cells within BM, as well as changes to composition
of pro-B cells following loss of HECT domain.

Following development in BM, B cells migrate to the spleen
where they undergo maturation and activation.25 Mb1WT/CRE;
Ubr5DHECT/DHECT mice have smaller spleens and a reduction in
total splenocytes (Figure 3A; supplemental Figure 2A). Although
mice had a reduction of splenocytes, frequency of B2201 cells in
all genotypes was ;45% (Figure 3B), and splenic architecture
was unaltered following loss of the HECT domain (supplemental
Figure 2B). Transitional B-cell populations in the spleen had no
significant differences (supplemental Figure 2C-E). However,
there was significant impact on mature B1 and B2 subsets within
the spleen. We found in the B2 subset, marginal zone B cells
were significantly reduced from approximately 10% of B2201

splenocytes to 2% in both Mb1WT/CRE;Ubr5DHECT/WT and
Mb1WT/CRE;Ubr5DHECT/DHECT mice whereas the follicular B-cell

compartment frequency was slightly increased, despite a re-
duction in absolute number of follicular B cells in Mb1WT/CRE;
Ubr5DHECT/WT and Mb1WT/CRE;Ubr5DHECT/DHECT mice (Figure 3C-E).

The B1 population plays a key role innate immunity. The splenic
B1 population was reduced by approximately twofold in
Mb1WT/CRE;Ubr5DHECT/WT and Mb1WT/CRE;Ubr5DHECT/DHECT mice
and the reduction was exclusively in the B1a subpopulation
(Figure 3F-H). Similarly, B1 populations in the peritoneal cavity
was ;75% reduced (supplemental Figure 2F-H). These findings
demonstrate a significant loss of populations required for innate
immunity with loss of B1 and marginal zone B cells following
deletion of the HECT domain of Ubr5.

Alterations in phenotype and function of splenic
B cells following loss of the HECT domain
Evaluating cell surface markers revealed Mb1WT/CRE;
Ubr5DHECT/DHECT follicular B cells had abnormal expression with
low IgD and high IgM comparedwith theirWT littermates (Figure
4A-B). Follicular B cells also had high CD23 expression, but
normal expression of CD5 and CD1d (Figure 4A-B). To further
define alterations in the B-cell compartment, we analyzed cell
cycle. Although follicular B cells are typically in the resting state,
Mb1WT/CRE;Ubr5DHECT/DHECT cells are more quiescent with in-
creased cells in G0 (supplemental Figure 3A). Additionally,
staining with proliferation marker Ki67 showed a reduction of
Ki67 staining, specifically in white pulp of spleens in Mb1WT/CRE;
Ubr5DHECT/DHECT mice (supplemental Figure 3B). These studies
demonstrated alterations in mature spleen cells with both
phenotypic and cell-cycle alterations.

Activation of follicular B cells by T-dependent antigens leads to
formation of GC in secondary lymphoid tissues and generation
of antibody producing plasma cells. To determine if Mb1WT/CRE;
Ubr5DHECT/DHECT follicular B cells have normal function, we im-
munizedmice with SRBC. Eight days following immunization, we
performed immunohistochemical (IHC) analysis on spleens with
PNA, a GC marker. Staining revealed significant decrease in the
proportion of GC to white pulp in Mb1WT/CRE;Ubr5DHECT/DHECT

mice (Figure 4C-D). Quantification of GC B cells by flow
cytometry showed a trend of decrease in Mb1WT/CRE;
Ubr5DHECT/DHECT mice; however, it was not statistically significant
(Figure 4E). We evaluated the ability of follicular B cells to ter-
minally differentiate into plasma cells within the peripheral blood
and found a ;50% reduction of plasma cells in Mb1WT/CRE;
Ubr5DHECT/DHECT mice, whereasMb1WT/CRE;Ubr5DHECT/WT mice had
;25% reduction in plasma cells (Figure 4F-H). Correlating with
the decreased number of plasma cells, B cells isolated from
Mb1WT/CRE;Ubr5DHECT/DHECT mice showed a decrease in antibody-
producing cells (Figure 4I). Although we had a significant de-
crease in CD1381 antibody producing cells, levels of antibodies
IgG, IgM, and IgA within sera were unaltered implying that Ubr5
HECT domain deletion does not affect basal antibody levels
(Figure 4J). These studies indicate an important role of Ubr5 in
the function and activation of B cells.

UBR5 in disease initiation and transformation
MCL is characterized by t(11;14)(q13;q32) translocation that
leads to aberrant expression of CyclinD1 (CCND1).1 To deter-
mine whether Ubr5DHECT/DHECT drives lymphoma transformation,
we crossed our Mb1CRE/WT;Ubr5DHECT/DHECT mice with CCND1
B-cell specific overexpression model (EmCCND1) to obtain

302 blood® 16 JULY 2020 | VOLUME 136, NUMBER 3 SWENSON et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/3/299/1748402/bloodbld2019002102.pdf by guest on 18 M

ay 2024



F

H

cK
it

B220

B220

CD
25

B2
20

IgM

11.2 11.8 9.61

36.6 35.6
24.4

2.33

7.28

19.5

recirculating

immature

1.27

6.52

26.4
3.3

8.61

21.9
prepro

Ubr5WT Ubr5 HECT/WT Ubr5 HECT I

cK
it+

 P
ro

CD25
+ P

re
0

2X105

4X105

6X105

8X105

1X106

***

Pre
Pro

Im
m

at
ur

e

Rec
irc

ula
tin

g
0

1X106

2X106

3X106

Ab
so

lu
te

 n
um

be
r

***

*

Ig
D
- Ig

M
hi

Ig
D
+ Ig

M
hi

Ig
D
+ Ig

M
lo

0

2x105

4x105

6x105

****

*

Ig
D
- Ig

M
-

Ig
D
- Ig

M
lo

0

1x106

2x106

3x106

Ab
so

lu
te

 n
um

be
r

**

**

*

G

Pre
Pro

Im
m

at
ur

e

Rec
irc

ula
tin

g
0

10

20

30

%
 B

M

**

*

0

10

20

30

40

50

cK
it+

 P
ro

CD25
+ P

re

*

*******

E

IgD

Ig
M

gated on B220+

9.7
5.2

11.1 12.7
44.3

12.5
3.6

11.6 5.8
50.9

11.7
2.3

14.6 1.4
57.0

Ubr5WT Ubr5 HECT/WT Ubr5 HECT

D

Ig
D
- Ig

M
-

Ig
D
- Ig

M
lo

0

20

40

60

80

%
 B

22
0+

*

0

5

10

15

20

Ig
D
- Ig

M
hi

Ig
D
+ Ig

M
hi

Ig
D
+ Ig

M
lo

*** ** ***

C
Ubr5WT Ubr5 HECT/WT Ubr5 HECT

CD
19

B220

27.2 28.1 21.3

A B

0

10

20

30

40

50

%
 B

M

B220+
0.0

5.0x106

1.0x107

1.5x107

2.0x107
# o

f c
el

ls/
fe

m
ur

Ubr5WT Ubr5 HECT/WT Ubr5 HECT

Ubr5WT Ubr5 HECT/WT Ubr5 HECT

Ubr5WT Ubr5 HECT/WT Ubr5 HECT

Ubr5WT Ubr5 HECT/WT Ubr5 HECT

Figure 2. The loss of the HECT domain of Ubr5 leads to decreased numbers of mature B cells within the BM. (A) Bar graph of the total number of cells per femur. (B) Bar
graph of the frequency of B2201 cells in the BM. (C) Representative flow cytometry plot of total B2201 in the BM. (D) Bar graphs of B-cell populations gated on B2201 cells for pro-
and pre-B cells (B2201IgM2IgD2), immature B cells (B2201IgMloIgD2), transitional B cells (B2201IgM1IgD2), early mature B cells (B2201IgM1IgD1), and late mature B cells
(B2201IgM2IgD1). (E) Representative flow cytometry plots for populations shown in panel D. (F) Absolute number of B-cell populations from panel D. (G) Bar graph of the
population breakdown shown in panel H. (H) Representative flow cytometry plots gated for pro- and pre-B cells (B2201IgM2), immature B cells (B2201IgMlo), and recirculating
B cells (B2201IgM1) (top). A representative flow cytometry plot gated on B2201 cells gating for pro-B cells (B2201IgM2c-kit1) (middle) and pre-B cells (B2201IgM2CD251)
(bottom). (I) Absolute number of B-cell populations from G (N 5 10). *P , .05, **P , .01, ***P , .001.

UBR5 HECT DOMAIN MUTATIONS IN B-CELL DEVELOPMENT blood® 16 JULY 2020 | VOLUME 136, NUMBER 3 303

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/3/299/1748402/bloodbld2019002102.pdf by guest on 18 M

ay 2024



Mb1CRE/WT;Ubr5DHECT/DHECT;EmCCND1 mice.17 We immune stimu-
lated mice with SRBC biweekly for 4 months, and aged 12
months. Similar to Mb1CRE/WT;Ubr5DHECT/DHECT mice, Mb1CRE/WT;
Ubr5DHECT/DHECT;EmCCND1 mice had decreased mature recircu-
lating cells and plasma cells in the peripheral blood (supple-
mental Figure 4A-C). Interestingly, in the spleen, after the
addition of EmCCND1, there was no difference in weight of the
spleens or frequency of B2201 cells (supplemental Figure 4D-F).
Strikingly, the addition of EmCCND1 rescued the loss of both
marginal zone and B1 B cells (supplemental Figure 4G-H).

Although mice did not show signs of disease at 12 months,
spleen cells maintained the IgMhiIgDlo phenotype similar to
phenotype commonly seen in MCL patients (supplemental
Figure 4I).26,27 MCL patients are generally CD232; however, a
small subset are CD231.28 Mb1CRE/WT;Ubr5DHECT/DHECT;EmCCND1

mice displayed varied CD23 expression compared with
Mb1CRE/WT;Ubr5DHECT/DHECTwith somemice expressing little to no
CD23. UBR5 mutations affect the pre-GC B cells, the tumor
population in MCL, but these findings propose additional mu-
tations may be required for lymphoma transformation.
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Loss of UBR5 HECT domain leads to increased
expression of spliceosome components
The HECT domain of UBR5 is thought to be required for its
ubiquitination activity, implicating deletion could lead to increased
accumulation of UBR5 substrates targeted for degradation by the
proteasome. To quantitatively determine protein differences in
Mb1WT/CRE;Ubr5DHECT/DHECT vs WT littermates, we labeled splenic
B2201 cells with TMT, combined samples in equal concentrations,
and analyzed by mass spectrometry (MS) (Figure 5A). Proteomic
analysis identified 15584 unique peptides, 2797 quantifiable
proteins, and 1675 proteins with$3 unique peptides. A total of 153
proteins were significantly changed in Mb1WT/CRE;Ubr5DHECT/DHECT

splenocytes (Figure 5B; supplemental Table 2). Principal compo-
nent analysis plot showed genotypes clustered together, and
proteins identified were distributed throughout cellular compart-
ments (Figure 5C-D). Of the differentially expressed proteins,
104 $1.3-fold significantly overexpressed were enriched for pro-
teins associated with mRNA processing, and mRNA splicing via the
spliceosome, whereas the 49 #0.70-fold significantly decreased
from Mb1WT/CRE;Ubr5DHECT/DHECT were proteins associated with im-
mune system process and protein transport (Figure 5E-G). As
revealed by flowcytometry, IgD protein was the highest down-
regulated protein following deletion of Ubr5 HECT domain
(Figure 5E). CD22, which is associated with B-cell activation, was
also downregulated in Mb1WT/CRE;Ubr5DHECT/DHECT mice (Figure 5E).
Intriguingly, the second highest expressed protein in Mb1WT/CRE;
Ubr5DHECT/DHECT was UBR5 (Figure 5E-F). Proteomic profiling
revealed an increase in UBR5 and proteins associated with
mRNA splicing in B cells lackingHECT domain of UBR5, suggesting
a novel role of UBR5 in mRNA splicing.

To identify interacting partners of UBR5 in MCL, we performed
immunoprecipitation followed byMS using humanMCL patient-
derived cell lines, JEKO1 and MINO (Figure 6A).29,30 Of note,
sequencing of MINO and JEKO1 revealed no mutations in
UBR5. Using MCL cell lines allowed for a homogeneous B-cell
population and circumvented limitations in protein quantity in
primary cells for immunoprecipitation. We identified 115 pro-
teins with $3 unique peptides and, similar to our TMT analysis,
gene ontology analysis showed proteins enriched in mRNA
splicing via the spliceosome (Figure 6B; supplementary Table 3).
Comparing MS datasets revealed 89 proteins overlapping and
6 proteins were upregulated in the TMT study (Figure 6 C-E).
Intriguingly, all 6 of the other identified proteins are associated
with mRNA splicing (SF3B3, SMC2, PRPF8, DHX15, SNRNP200,
and EFTUD2). These proteins are classified as core spliceosome
components including U2 (SF3B3) and associated U5 small
nuclear ribonucleoprotein (snRNP) complex (EFTUD2, SNRNP200,
and PRPF8) (Figure 6E). Of the identified proteins, none have
previously been characterized as UBR5 interactors or substrates,
providing a novel pathway of UBR5 regulation.

Alterations in splicing factors in B cells
Flow cytometry validated cell-surface markers associated with
activation and maturation, CD22 and IgD, were significantly
decreased in splenocytes (Figure 6F). UBR5 was the second
highest expressed protein inMS; however, none of the identified
peptides had coverage within the HECT domain. To confirm
overexpression of UBR5 protein, we performed IHC and western
blot analysis and found higher protein expression of UBR5 in
Mb1WT/CRE;Ubr5DHECT/DHECT spleens (Figures 6G and7A). To

determine if loss of HECT domain leads to stabilization of UBR5,
we performed half-life analysis with cycloheximide. Mb1WT/CRE;
Ubr5DHECT/DHECT CD231 splenocytes had an increased protein
half-life (Figure 7B). Stabilization of UBR5 could be due to loss
of self-ubiquitination. To determine UBR5 ubiquitination,
UBR5 was immunoprecipitated in Mb1WT/CRE;Ubr5WT/WT and
Mb1WT/CRE;Ubr5DHECT/DHECT CD231 splenocytes; however,
changes in ubiquitin were not seen (supplemental Figure 5B).
Further investigation is required to determine cause of UBR5
stabilization. Phosphorylation sites have been identified by MS
on the C-terminus that are lost in the HECT mutant and may play
a role in UBR5 stabilization (supplemental Figure 5C-D).31 These
studies confirm that loss of the HECT domain leads to over-
expression and stabilization of UBR5; however, the mechanism
of UBR5 stabilization remains unknown.

To evaluate protein overexpression of RNA splicing compo-
nents, we performed western blot analysis on CD231 spleno-
cytes. Mb1WT/CRE;Ubr5DHECT/DHECT and Mb1WT/CRE;Ubr5DHECT/WT

had increased protein expression of EFTUD2, SNRNP200,
PRPF8, and DHX15 (Figure 7A). Of note,Mb1WT/CRE;Ubr5DHECT/WT

spleens had increased UBR5 expression as well (Figure 7A).
These findings are of significance because of MCL patient
having monoallelic mutations of UBR5. Interestingly, MCL cell
lines JEKO1 and MINO also express high levels of UBR5,
EFTUD2, SNRNP200, PRPF8, andDHX15 protein comparedwith
normal B cells, providing evidence that high expression is in-
dicative of MCL (supplemental Figure 5A). Because 3 of the
identified proteins (EFTUD2, SNRNP200, and PRPF8) are part of
the U5 snRNP complex, we evaluated whether UBR5 elutes with
the U5 complex. We performed a glycerol density gradient and
found that EFTUD2, SNRNP200, PRPF8, and UBR5 eluted in
fractions 15-19 alluding to components associating with 1 an-
other (Figure 7C). Similar to Mb1WT/CRE;Ubr5DHECT/DHECT leading
to increased half-life of UBR5, we determined that loss of the
HECT domain leads to increased protein half-life of EFTUD2,
SNRNP200, PRPF8, and DHX15 (Figure 7B). These combined
findings propose that UBR5 interacts with the U5 complex and
that loss of the HECT domain stabilizes the U5 complex.

To determine whether EFTUD2, SNRNP200, PRPF8, and DHX15
are ubiquitination targets of UBR5, we treated CD231 spleno-
cytes with MG132, a proteasome inhibitor. Upon MG132
treatment, accumulation of EFTUD2, SNRNP200, PRPF8, and
DHX15 was not observed in WT nor Mb1WT/CRE;Ubr5DHECT/DHECT

B cells (Figure 7D). Treatment with MG132 also did not increase
the protein half-life of U5 components (supplemental Figure 5E).
Immunoprecipitation of polyubiquitin using TR-TUBE agarose
beads demonstrated decrease in polyubiquitinated SNRPN200
Mb1WT/CRE;Ubr5DHECT/DHECT B cells; however, it is unclear whether
ubiquitin chain in K48 that would target the protein for pro-
teasomal degradation (supplemental Figure 5F). The lack of
accumulation of proteins followingMG132 treatment or changes
in protein half-life suggests UBR5 does not target the proteins for
proteasomal degradation via K48 ubiquitin chains; however,
other conjugation of K33, K63, K27, or K11 ubiquitin chains
could potentially lead to stabilization of the protein.

Although the C-terminal cysteine of UBR5 in the HECT domain is
lost in Mb1WT/CRE;Ubr5DHECT/DHECT mice, it is unclear whether
catalytic activity is required for all UBR5 functions. It is known that
UBR5 polyubiquitinates RNF168 in conjunction with E3 ligase
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TRIP12 following irradiation in the DNA damage response
pathway.7 To determine whether mutant UBR5 is required for
RNF168 ubiquitination, we irradiated CD231 splenocytes and
evaluated RNF168 expression. In Mb1WT/CRE;Ubr5DHECT/DHECT

B cells, high UBR5 expression led to lower RNF168 expression
that was further attenuated upon irradiation treatment
(Figure 7E). Additionally, RNF168 half-life was significantly re-
duced inMb1WT/CRE;Ubr5DHECT/DHECT B cells overexpressing UBR5
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following irradiation and Mb1WT/CRE;Ubr5DHECT/DHECT B cells had
increased in RNF168 polyubiquitination (Figure 7F; supple-
mental 5F). These studies demonstrate that UBR5 over-
expression yields a similar phenotype to inhibition of RNF168
deubiquitinating enzyme USP34, supporting the conclusion that
the catalytic cysteine in the UBR5 HECT domain is not required
for RNF168 ubiquitin mediated degradation.32 Taken together,

this suggests mutant UBR5 activity and function is substrate/
complex dependent.

EFTUD2, SNRNP200, PRPF8, and DHX15 are expressed in early
stages of B-cell development, predominantly in the pro/pre
B cell stage, whereas in Mb1WT/CRE;Ubr5DHECT/DHECT B cells, they
are more abundant in the immature and mature populations
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(B2201CD211CD232), and follicular (B2201CD211CD231) B-cell populations from the spleen. (H) RT-PCR of mRNA inMb1WT/CRE;Ubr5WT andMb1WT/CRE;Ubr5DHECT follicular B cells
(B2201CD211CD231).
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predicting alterations in splicing could affect B cells early in
development (Figure 7G). Expression of IgM and IgD is reg-
ulated by alternative splicing of the Ig heavy chain locus. As
shown in the follicular B-cell population, IgM and IgD have
aberrant expression, suggesting defects in splicing. To confirm
altered splicing, we isolated follicular B cells from Mb1WT/CRE;
Ubr5DHECT/DHECT and WT littermates for analysis of transcript
levels. PCR confirmed increased IgM and decreased IgD
transcripts in Mb1WT/CRE;Ubr5DHECT/DHECT (Figure 7H). It was
previously shown that mRNA of Zinc Finger Protein 318
(Zfp318) has 2 known splice variants.33 We found decreased
expression of transcript spliced from exons 7-11, and de-
creased transcript containing exons 7-9, suggesting expression
of Zfp318 splice variants may also be contributing to B-cell
defects (Figure 7H). These studies demonstrate that over-
expression of spliceosome components in UBR5 mutant B
cells promote aberrant splicing.

Discussion
In this report, we demonstrate that ubiquitin E3 ligase UBR5
plays a key role in B-cell maturation and activation. Although
UBR5 is present in all B-cell populations, deletion ofUbr5HECT
domain impacted specifically maturation of B cells within the
spleen. The follicular B-cell population is phenotypically ab-
normal and has a reduced capacity to generate plasma cells.
The block in differentiation of pre-GC B cells corresponds to
the MCL tumor population. Although expression of EmCCND1 in
the UBR5 mutant mice did not lead to lymphoma trans-
formation, MCL patients with UBR5 mutations had between
4 and 12 additional mutations indicating additional mutations
may be required for transformation. In addition, expression of
EmCCND1 alone does not lead to lymphoma. Previous studies
demonstrated Bim deletion in EmCCND1 mice resulted in an MCL-
like disease. However, disease was found at a low frequency in
mice .12 months old, further supporting additional mutations
are required to drive disease.17 MCL is a pre-GC lymphoma
and patients can vary in phenotype but are commonly
IgMhiIgDloCD51CD232.26,27 Interestingly, pre-GC B cells express
high levels of IgD, whereas MCL is IgDlo suggesting our mouse
model, which is IgMhiIgDlo, has phenotypical characteristics of
MCL. Of note, when we cross our mouse with EmCCND1 mice, a
number of mice lose CD23 expression, similar to MCL, and the
B1 population is rescued.

Interrogation of global proteomic changes in the splenic B-cell
population suggests a novel role of UBR5 in mRNA splicing via
the spliceosome. The spliceosome plays an important role
in providing genetic diversity. In immune cells, alternative
splicing is suggested to play a key role in B-cell differentiation,
activation, and survival.34 In human B cells, ;90% of genes
with multiple exons undergo alternative splicing.35 Recurrent
splicing mutations have been found in chronic lymphocytic
leukemia (CLL) patients, another pre-GC B-cell malignancy
where approximately 10% to 15% of patients have mutations to
the U2 spliceosome component SF3B1. Interestingly, SF3B1
mutations lead to defects in B-cell development, suggesting
that the U2 complex plays a key role in proper B-cell
development.36,37 CLL patients have mutations at low fre-
quency in other splicing components including PRPF8 and
EFTUD2.38,39 The striking phenotype of IgD in HECT domain
mutants supports defects in splicing since IgM and IgD are

generated from alternative splicing of the heavy chain gene.40

It is well established that IgM and IgD play a key role in im-
munity and are required for B-cell receptor signaling and im-
mune response, but little is known regarding how alternative
splicing of IgD and IgM occur.

UBR5 has been mainly associated with ubiquitin dependent
functions, but also plays a role in ubiquitin independent func-
tions.Molecular pathways regulatedbyUBR5 includeDNAdamage
repair, microRNA silencing, transcription, and translation.6,7,11,41-43

Our findings suggestmutant UBR5 interacts with theU5 spliceosome
complex and mutations lead to stabilization of EFTUD2, SNRNP200,
PRPF8, and DHX15. Although our data allude to interaction of
UBR5 with the U5 spliceosome, we do not find alterations in ubiq-
uitination of U5 in mutant UBR5; however, this does not exclude a
direct ubiquitin dependent or independent effect of UBR5 on
U5 spliceosome components. Further investigation is required to
decipher the mechanism promoting stabilization of U5 and the role
of UBR5. UBR5 is found in complex with additional E3 ligases and
although the ubiquitin conjugating cysteine in the HECT is
lost, we found UBR5 does not always require its catalytic
cysteine for substrate ubiquitination; and in the case of
RNF168, overexpression of mutant UBR5 leads to increased
ubiquitination where the ubiquitin is potentially transfered
from another component of the complex.7,44 This suggests the
gain of function vs loss of function of mutant UBR5 is substrate/
complex dependent.

Patient mutations in UBR5 are monoallelic indicating the
Mb1WT/CRE;Ubr5DHECT/WT mouse phenotype would be more
representative to patient mutations. As with Mb1WT/CRE;
Ubr5DHECT/DHECT,Mb1WT/CRE;Ubr5DHECT/WT mice had defects in
B-cell maturation and overexpressed spliceosome components
indicating the mutant protein acts as a dominant negative over
theWT protein. UBR5 is commonly overexpressed in solid tumors
that correlates with data presented herein where HECT mutations
lead to protein stabilization and overexpression indicating
Ubr5DHECT/DHECT mouse model could provide additional clues
to the role of UBR5 in cancer.12,14,15 Overall, our findings reveal
a novel mechanism of regulation by UBR5 in B-cell maturation
and provides a key understanding of the role of UBR5 mu-
tations in MCL.
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