
Given the effect of continuity of dosing and nonlinearity of elimi-
nation, pharmacokinetic evaluations should accompany new dosing
strategies for this drug.
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TO THE EDITOR:

Combinatorial treatment with menin and FLT3 inhibitors
induces complete remission in AMLmodels with activating
FLT3 mutations
Hongzhi Miao,1,* EunGi Kim,1,* Dong Chen,1,* Trupta Purohit,1,* Katarzyna Kempinska,1 James Ropa,2 Szymon Klossowski,1 Winifred Trotman,3

Gwenn Danet-Desnoyers,3 Tomasz Cierpicki,1 and Jolanta Grembecka1

1Department of Pathology, University of Michigan, Ann Arbor, MI; 2Department of Microbiology and Immunology, School of Medicine, Indiana University,
Indianapolis, IN; and 3Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA

The interaction betweenmenin and themixed lineage leukemia 1
(MLL1) protein plays an important role in aggressive acute leukemia
with translocations of theMLL1 (KMT2A) gene1,2 and with mutations
in the nucleophosmin (NPM1) gene.3 We and others have recently
shown that small-molecule inhibitors of the menin-MLL1 interaction
can effectively block leukemia progression in these leukemia
subtypes.4-11 This resulted in phase 1 clinical trials with menin
inhibitors, including KO-539 (registered at www.clinicaltrials.gov

as #NCT04067336), in acute myeloid leukemia (AML) patients.
Activating mutations in FLT3 kinase, including internal tandem
duplications (FLT3-ITDs), are found in a substantial fraction ofAML
patients, leading to poor clinical outcomes.12-17 Because over-
expression or mutations in FLT3 often cooccur with MLL1
translocations (16%) orMLL1 partial tandem duplications (.50%)
15,18-21 and NPM1 mutations (.40%),16,22,23 we hypothesized that
the antileukemic activity of menin inhibitors may synergize with
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FLT3 inhibitors, paving the way for clinical translation of such drug
combinations in leukemia.

To pursue combination studies, we selected our recently de-
veloped subnanomolar menin-MLL1 inhibitor MI-3454 (sup-
plemental Figure 1A, available on the Blood Web site), a close
structural analog of KO-539,9 and the US Food and Drug
Administration–approved FLT3 inhibitor gilteritinib or AC220
(quizartinib)17 and performed studies in leukemia cell lines
harboring both MLL fusions and FLT3-ITDs (MV4;11 and
MOLM13). Indeed, simultaneous treatment with MI-3454 and
gilteritinib or AC220 resulted in much stronger cell growth in-
hibition vs single agents in both cell lines, but not in control cells
(Figure 1A-B; supplemental Figures 1B-E and 2A-E). Further-
more, combination of MI-3454 with gilteritinib resulted in much
more pronounced apoptosis (60% to 80% of annexin V1 cells),
differentiation (increased levels of CD11b and CD14 and ele-
vated expression of MNDA), and stronger reduction in FLT3
protein level over single agents (Figure 1C-D; supplemental
Figures 3A-D and 4A-B). Next, we assessed the expression levels
of HOXA9 and MEIS1, the key genes implicated in MLL1-
rearranged leukemia,9 and found that the combination of MI-
3454 and gilteritinib led to significantly stronger downregulation
of MEIS1 in both cell lines and HOXA9 in MV4;11 cells than the
single-agent treatment (Figure 1E; supplemental Figure 4C).

To explore themechanism of the enhanced antileukemic effect of
combining MI-3454 and gilteritinib, we performed RNA se-
quencing studies in MOLM13 cells. We observed that the com-
bination resulted in a doubling of the number of down- and
upregulated genes when comparedwith single agents (Figure 1F;
supplemental Figure 5A; supplemental Table 1). Using k-means
clustering,24 differentially expressed genes were grouped into 5
clusters of genes with similar expression profiles (Figure 1G). Gene
ontology analysis showed that clusters 1 and 4 comprised genes
upregulated in all treatment conditions vs dimethyl sulfoxide
control, with the combination showing a more pronounced effect
than single agents, particularly in cluster 4 (Figure 1G-H). Cluster 1
comprised genes associated with leukocyte or myeloid cell ac-
tivation and pathways involved in immune response, including
differentiation genes MPO, CEBPE, and MAPK14 (supplemental
Tables 2 and 3). Genes in cluster 4 also suggested activation of
signal transduction pathways, including TLR8, IL10RB, and IL16. In
contrast, clusters 3 and 5 contained genes downregulated in all
treatment conditions, with the combination inducing a markedly
more pronounced effect over single agents, particularly in cluster
5 (Figure 1G-H). This cluster comprised genes associated with
proliferation and apoptosis (FLT3, MEF2C, BCL2) as well as
with development (supplemental Tables 2 and 3), in agreement
with the enhanced antiproliferative effect and apoptosis induced
by combinatorial treatment. Finally, cluster 2 involved genes
differentially changed by single agents: upregulated by gilteritinib
and downregulated byMI-3454, but demonstrating even stronger
downregulation by combinatorial treatment. This cluster included
genes critical for leukemogenesis, such as MEIS1, HOXA3,
HOXA7, HOXA11, and RUNX2 (Figure 1G-H; supplemental Ta-
bles 2 and 3), providing evidence of an enhanced antileukemic
effect of the combination. Gene set enrichment analysis revealed
that the combination of gilteritinib and MI-3454 strongly affected
many gene programs, including those related to loss of stemness
and induction of differentiation as well as suppression of onco-
genic MYC pathways (Figure 1I-J; supplemental Figure 5B;

supplemental Table 4), further rationalizing the enhanced anti-
leukemic effect observed with the combination.

We then assessed the in vivo effect of combining menin and
FLT3 inhibitors. First, we used the aggressive MOLM13
xenotransplantation model and found that both single-agent
(MI-3454 and AC-220) and combinatorial treatment blocked
leukemia progression during the treatment period, reflected by
a very low level of leukemic blasts (human CD451 [hCD451]) in
peripheral blood (PB; Figure 2A; supplemental Figure 6A-C).
However, once the treatment was stopped, the single agent–
treated mice developed leukemia, resulting in a doubling of
survival over vehicle (Figure 2A-B). Remarkably, 6 of 8mice in the
combination group did not show any signs of leukemia and had no
measurable disease even 9 months after stopping the treatment
(Figure 2B; supplemental Figure 6D). These mice had also small
spleens and demonstrated highly differentiating phenotypes of
bone marrow cells (Figure 2C-D; supplemental Figure 6E). Im-
portantly, the complete remission observed in this aggressive
model of MLL1-rearranged leukemia was achieved only in the
combination group, with a majority of mice cured of leukemia.

Next, we developed and used a PDX model derived from the
AML patient sample harboring MLL-ENL, FLT3 S451, and NRAS
mutations (MLL-6315 PDX; supplemental Table 5). Treatment of
mice withMI-3454, gilteritinib, or their combination was initiated
when the level of hCD451 cells in PB reached ;2% and was
continued for 28 days, resulting in no substantial toxicity (sup-
plemental Figure 7A-B). Interestingly, during the treatment
period, the blast level in PB initially increased in all treatment
groups (day 8 of treatment), but later, it dropped substantially in
MI-3454 and combination groups (Figure 2E). The vehicle- and
gilteritnib-treated mice developed terminal leukemia, with no
significant difference in survival (Figure 2H; supplemental
Figure 7C). Interestingly, despite a strong reduction in the blast
level of MI-3454–treated mice (days 8-28 of treatment), these
mice eventually developed leukemia, with survival double that of
vehicle control (Figure 2E-F,H). Remarkably, complete remission
was achieved in the combination group, with no blasts detected
in PB even at 7.5 months after completion of treatment, sup-
porting no measurable disease (Figure 2E-H; supplemental
Figure 7D), and with all mice cured of leukemia.

To assess whether combinatorial treatment with menin and an
FLT3 inhibitor is effective in NPM1-mutated leukemia with an
FLT3-ITD, we used a PDX model derived from the AML primary
sample harboring bothmutations (NPM1-5577 PDX; supplemental
Table 5). Gilteritinib as a single agent did not show a significant
effect on leukemia progression in this PDX model (Figure 2I-J).
Interestingly, although MI-3454 was initially very effective in re-
ducing leukemia progression, after 40 days of treatment, the level
of hCD451 cells increased in this group, likely because of the
reduced dose (from a twice- to once-daily schedule) administered
as a result of limited tolerability in the combination group (Figure 2I-
J; supplemental Figure 8A-B). Remarkably, in the combination
group, the blast level remained very low (,0.5%) over the entire
course of the experiment, demonstrating a superior effect of
combination over menin or FLT3 inhibitors in the NPM1-mutated
leukemia model (Figure 2I-J; supplemental Figure 8C-D).

In summary, our study demonstrates the strong synergistic effect
of the combination of menin and FLT3 inhibitors. Although
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Figure 1. Effect of combinatorial treatment with menin and FLT3 inhibitors in leukemia cells. (A-B) Growth inhibition in MOLM13 (expressing MLL-AF9 and FLT3-ITD) (A)
and MV4;11 cells (expressing MLL-AF4 and FLT3-ITD) (B) treated with MI-3454, gilteritinib (Gilt), or their combination. (C) Flow cytometric analysis of apoptosis (annexin V1 cells)
induced after 8 days of treatment ofMOLM13 andMV4;11 cells withMI-3454, Gilt, or their combination. (D) Flow cytometric quantification of differentiationmarkers (CD11b1 and
CD141) in MV4;11 cells after single-agent or combinatorial treatment with MI-3454 and Gilt. (E) Gene expression studies in MV4;11 cells after 8 days of treatment with MI-3454,
Gilt, or their combination. (A-E) Graphs are representative of 2 independent experiments performed in triplicate. (F-H) Comparison of differentially expressed (DE) genes
(adjusted P, .05; fold change.|1.5|) from RNA sequencing (RNA-seq) studies in MOLM13 cells after 8 days of treatment with dimethyl sulfoxide (DMSO), MI-3454, Gilt, or their

2960 blood® 17 DECEMBER 2020 | VOLUME 136, NUMBER 25 LETTERS TO BLOOD

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/25/2958/1794527/bloodbld2020006575.pdf by guest on 02 June 2024



the MI-3454 developed by us as well as the recently published
VTP-50469 manifested potent antileukemic activity in MLL1-
rearranged and NPM1-mutated leukemias as single agents,

they led to complete remission only in selected leukemia
models.9,10 In this study, we discovered that only the combination
of menin and FLT3 inhibitors could cure mice in aggressive

Figure 1 (continued) combination (n5 3 samples per treatment group). (F) Venn diagrams show the overlap of upregulated DE genes (right) and downregulated DE genes (left)
relative to DMSO. (G) Heatmap of DE genes after k-means clustering of DE genes using a priori–determined 5 clusters. (H) Average z scores for all treatment groups calculated
within each k-means cluster. (I) Summary of fast gene set enrichment analysis results for gene sets relating to targets of MYC, differentiation, or stemness from the RNA-seq
studies inMOLM13. Each bubble represents a gene set. Size of bubbles on the plot indicates the level of significance, and y-axis indicates the normalized enrichment score (NES)
for the gene sets. (J) Representative gene set enrichment plots for MYC targets for each treatment condition relative to DMSO for the Bild_Myc_Oncogenic_Signature gene set
from MSigDB. The heatmaps show genes comprising the leading edge of the gene set enrichment plots. Red indicates high expression; blue indicates low expression; black
arrows indicate MYC. *P , .05, **P , .01, ***P , .001, ****P , .0001 by 2- (A-B) or 1-way (C-E) analysis of variance with Tukey multiple comparison test. adj, adjusted; ES,
enrichment score.
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Figure 2. In vivo combinatorial treatment with menin and FLT3 inhibitors. (A) Flow cytometric quantification of hCD451 cells in PB of mice during treatment with vehicle, MI-
3454 (100 mg/kg orally twice daily), AC220 (10 mg/kg orally once daily), or a combination of the 2 agents (doses same as for single agents) in the MOLM13 xenotransplantation
model. Mean 6 standard error of the mean (SEM; n 5 8). (B) Kaplan-Meier survival curves in the MOLM13 xenotransplantation model. Doses as in panel A. P values were
calculated using log-rank (Mantel-Cox) test. (C) Left: flow cytometric quantification of hCD451 cells in PB, spleen, and bone marrow (BM) samples harvested from the vehicle-
treated mice (at the terminal stage of leukemia: day 16 posttransplantation) and mice treated with the combination of MI-3454 and AC220 (samples collected at day 292
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AC220 cohorts of MOLM13mice at the same time points as in panel C. (E) Flow cytometric quantification of hCD451 cells in PB ofMLL-6315 patient-derived xenograft (PDX)mice
during treatment with vehicle, MI-3454 (80 mg/kg orally twice daily), gilteritinib (Gilt; 35 mg/kg orally once daily), or the combination of MI-3454 and Gilt (doses same as for single
agents). Mean6 SEM (n5 8). (F) Flow cytometric quantification of hCD451 cells in PB fromMLL-6315 PDXmice 27 days after treatment was stopped (day 82 posttransplantation).
Doses as in panel E. Mean6 SD. (G) Flow cytometric quantification of hCD451 cells in PB of MLL-6315 PDXmice treated with the combination of MI-3454 and Gilt. Mean6 SEM
(n5 8). (H) Kaplan-Meier survival curves for MLL-6315 PDX mice (n5 8). Treatment doses as in panel E. Treatment time is indicated by the arrow. P values were calculated using
the log-rank (Mantel-Cox) test. (I) Flow cytometric quantification of hCD451 cells in PB of NPM1-5577 PDX mice during 60 days of treatment with vehicle, Gilt (35 mg/kg orally
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(n5 7). (J) Flow cytometric quantification of hCD451 cells in PB of NPM1-5577 PDX mice at the last day of treatment. Mean6 SD. *P, .05, **P, .01, ****P, .0001 by 2-tailed
Student t test (C) or 2- (E,I) or 1-way (F,J) analysis of variance with Tukey multiple comparison test. ns, not significant.
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leukemia models harboring activating FLT3 mutations in addition
to MLL1 translocations or NPM1 mutations. Mechanistically, this
combination induced stronger downregulation of MEIS1 and
HOXA cluster genes and demonstrated a more pronounced ef-
fect on MYC, stemness, and differentiation pathways over
single agents, concurring with a recent report.25 Importantly,
we found that the combination of potent menin and FLT3 in-
hibitors was particularly effective in vivo, leading to complete
and long-lasting remission of leukemia in mice. Our findings
can be directly translated to initiate clinical trials with this
combination in AML patients.
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