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PLATELETS AND THROMBOPOIESIS
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KEY PO INT S

l FcgRIIA, an IC
receptor, promotes
nephritis and
thrombosis in lupus.

l FcgRIIA expression
modifies the platelet
transcriptome and
accelerates platelet
activation in lupus.

Systemic lupus erythematosus (SLE) is an autoimmune inflammatorydisease characterizedby
deposits of immune complexes (ICs) in organs and tissues. The expression of FcgRIIA by
human platelets, which is their unique receptor for immunoglobulin G antibodies, positions
them to ideally respond to circulating ICs. Whereas chronic platelet activation and throm-
bosis are well-recognized features of human SLE, the exact mechanisms underlying platelet
activation in SLE remain unknown. Here, we evaluated the involvement of FcgRIIA in the
course of SLE and platelet activation. In patients with SLE, levels of ICs are associated with
platelet activation. Because FcgRIIA is absent inmice, andmurine platelets do not respond to
ICs in any existingmousemodel of SLE, we introduced the FcgRIIA (FCGR2A) transgene into
the NZB/NZWF1 mouse model of SLE. In mice, FcgRIIA expression by bone marrow cells
severely aggravated lupus nephritis and accelerated death. Lupus onset initiated major

changes to the platelet transcriptome, both in FcgRIIA-expressing and nonexpressing mice, but enrichment for type I
interferon response gene changes was specifically observed in the FcgRIIA mice. Moreover, circulating platelets were
degranulated and were found to interact with neutrophils in FcgRIIA-expressing lupus mice. FcgRIIA expression in lupus
mice also led to thrombosis in lungs and kidneys. The model recapitulates hallmarks of human SLE and can be used to
identify contributions of different cellular lineages in the manifestations of SLE. The study further reveals a role for
FcgRIIA in nephritis and in platelet activation in SLE. (Blood. 2020;136(25):2933-2945)

Introduction
Systemic lupus erythematosus (SLE) affects ;1 in 1000 indi-
viduals, mostly women.1 Autoimmunity in SLE involves aberrant
activation of the immune system in response to circulating
autoantigens (eg, nuclear proteins and DNA) and is character-
ized by increased levels of type I interferon (eg, IFN-a).2-4 Cir-
culating autoantibodies recognize autoantigens and form
immune complexes (ICs). IC formation leads to their deposition
in tissues, thus promoting the breakdown of immune tolerance
and the initiation of cellular activation.5-7 Hence, inflammation
affects the connective tissues and blood vessels of many organs
and systems, such as the kidneys, lungs, skin, joints, and central
nervous system.2 Patients with SLE are also more prone to
thrombosis (pulmonary embolism and deep vein thrombosis)

and to lethal cardiovascular diseases.8,9 Up to 15% of patients
develop persistent thrombocytopenia,10-12 which is generally
associated with a poor prognosis.

Platelets are anucleate cells released by megakaryocytes. They
patrol the blood circulation to ensure blood vessel integrity13 but
are also equipped with a complex network of immune receptors
and inflammatory molecules that are packaged into their granules
and released upon platelet activation, suggesting an active role
for platelets in inflammatory diseases.14,15 In SLE, platelets present
surface P-selectin and have a reduced content of serotonin, in-
dicating the release of alpha (a) and dense (d) granule compo-
nents by activated platelets.9,14 Extracellular vesicles (EVs), small
membrane-bound vesicles that can transport platelet-derived
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mediators (eg, cytokines, RNA, enzymes, lipid mediators), are pro-
duced by activated platelets and are increased in blood of patients
with SLE.16 Furthermore, soluble platelet-derived inflammatory
mediators are detectable in the blood of patients with SLE,17-22 and
their content in S100A8/A923 and interleukin-1b,24 pro-inflammatory
molecules, increases in SLE platelets.23,24 Moreover, a type I IFN
signature is identifiable in both the platelet transcriptome and
proteome during SLE, especially in patients with a history of vascular
diseases.25

Immunoglobulin G (IgG)-containing ICs represent the main form
of ICs found in SLE.26 Humans express 6 members of the FcgR
family (FcgRI, FcgRIIA, FcgRIIB, FcgRIIC, FcgRIIIA, and FcgRIIIB
[the latter lacking an intracellular signaling domain]).27 FcgR
display different affinities for IgG subclasses and can all trans-
duce activating signals except FcgRIIB, which is considered an
inhibitory FcgR.28 Ablation of the common FcRg chain,29 or
murine FcgR,30 protects against SLE in mice, whereas ablation of
FcgRIIB exacerbates SLE.31 However, the exact contribution of
each individual FcgR to SLE, and whether they play a protective
or a deleterious role in SLE, remains unknown.

In particular, FcgRIIA is a low-affinity activatory receptor and its
polymorphism was suggested to increase susceptibility to renal
manifestations in SLE.32,33 FcgRIIA is expressed by platelets (and
megakaryocytes), neutrophils, monocytes, macrophages, mast
cells, and dendritic cells in humans.34,35 FcgRIIA is the sole FcgR
expressed by platelets in humans and, as a consequence of
platelet surplus in the circulation, is themost abundantly expressed
FcgR in blood.34 Studies on human platelets show that ICs from
patients with SLE can activate platelets through FcgRIIA.17

Moreover, human platelets efficiently endocytose ICs, suggesting
that they may contribute to the clearance of ICs and may thereby
dampen inflammation in SLE.36,37

FcgRIIA is absent inmice, and thusmurine platelets are devoid of
any FcgR capable of recognizing IgG and are completely irre-
sponsive to ICs.27,35 This contrasts with murine leukocytes, which
do express other members of the FcgR family and can therefore
still respond to ICs.35,38,39 Thus, the sequence of events in current
murine models of circulating ICs is biased, as it strongly favors
leukocytes and dismisses platelets, arguably the most important
cell population capable of recognizing ICs in humans. The
comprehensive impact of platelets in murine SLE has therefore
not yet been fully explored, as previous studies found them to
solely play a supporting role in response to later-stage events
such as organ damage and complement cascade activation.2,40

Transgenic expression of FcgRIIA (FcgRIIATGN) was introduced in
C57BL/6J mice.41 FcgRIIA in platelets in these mice signals
through spleen tyrosine kinase42,43 and requires the activities of
guanine nucleotide exchange factor CalDAG-GEF144 and 12-
lipoxygenase.38 FcgRIIATGN mice were successfully used to study
the role of FcgRIIA in acute models of ICs, such as heparin-
induced thrombocytopenia,45 anaphylaxis,46 and sepsis.47 These
studies showed that platelets play a lead role during acute
exposure to ICs when the FcgRIIA transgene is expressed.46,47

By adding the FCGR2A transgene to an SLE lupus model, we
were able to examine its role in lupus pathogenesis, thereby
providing an outstanding model for the study of cell activation
through this receptor in SLE. We used the model to evaluate
platelet activation in SLE.

Methods
Guidelines of the Canadian Council on Animal Care were
followed in all mouse studies, and the protocol was approved
by the Animal Welfare Committee at Laval University (2017-
122-2). Human participants were recruited with an approval
from the CHU de Québec Ethics Committee (#B14-08-2108).
The study was conducted in accordance with the Declaration of
Helsinki.

Mice
FcgRIIATGN (C57BL/6J) hemizygous mice, NZW/LacJ and NZB/
BINJ, were purchased from The Jackson Laboratory. NZW/LacJ
and FcgRIIATGN mice were backcrossed to obtain NZW/LacJ mice
expressing FcgRIIA (NZW/LacJ.FcgRIIATGN). F1 progeny were
obtained by crossing the NZW/LacJ.FcgRIIATGN and NZB/BINJ
strains. Guidelines of the Canadian Council on Animal Care were
followed in all mouse studies.

Additional methods are presented in the supplemental Materials
(available on the Blood Web site).

Results
Platelet activation in human SLE
In vitro stimulation of platelets from healthy donors with ICs
resulted in the change of aIIbb3 to its activated conformation
(aIIbb3*) and to the release of CD62P1 EVs (Figure 1A-B). The
monoclonal antibody anti-FcgRIIA (clone IV.3) completely blunted
the activation, suggesting that upon FcgRIIA signaling, platelets
are activated and CD62P translocates from a-granules and is
thereby expressed on EVs.

The levels of ICs and circulating platelet EVs were then assessed in
a cohort of patients with SLE and healthy individuals (supple-
mental Table 1), and the CD62P marker was used to distinguish
platelet-derived EVs from those derived from megakaryocytes.48

IgG-containing ICs were higher in patients with SLE (Figure 1C).
The levels of CD62P1 platelet EVs (CD411CD62P1 EVs) were also
increased in the blood circulation of patients with SLE, consistent
with the previously reported increase in platelet EVs in SLE49

(Figure 1D). Principal component analysis basedon theexpression
of aIIbb3* and the presence of plasma ICs and of IgG at the
platelet surface showed that although healthy donors formed a
homogeneous cluster, patients with SLE clearly segregated from
healthy donors and displayed a higher variability, consistent with
the heterogeneity of this disease (Figure 1E). Interestingly, the
number of aIIbb3* platelets correlated with the concentrations of
circulating ICs and with the presence of IgG on platelets (Figure
1G-H). Thus, the data support a significant role for ICs in platelet
activation and the interaction of activated platelets with the
prevailing ICs in SLE.

Generation of an SLE model expressing FcgRIIA
Malemice from the previously reported transgenic strain on the
C57BL/6 background (C57BL/6.FcgRIIATGN), which expresses
human FcgRIIA on myeloid cells (as in humans),41 were back-
crossed with NZW/LacJ female mice. Offspring closest to the
NZW/LacJ ($95%) (supplemental Table 2) were selected and
backcrossed for further generations to reach 99% NZW/LacJ
background. The resulting male NZW/LacJ mice were used for
breeding with NZW/BINJ female mice to generate the F1
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generation composed of mice expressing FcgRIIA (B/WF1.
FcgRIIATGN) or not (B/WF1.FcgRIIANull). Analysis of the F1 con-
firmed that FcgRIIA was transmitted according to Mendelian
segregation.

As in humans and in C57BL/6.FcgRIIATGN mice,41 FcgRIIA was
detected in the bone marrow on the surface of myeloid cells
(CD11b1), whereas its expression was low/undetectable on B
and T lymphocytes (supplemental Figure 1A). Analysis using an
antibody cocktail to exclude differentiated lineage progenitors
(lymphocytes, monocytes/macrophages, NK cells, erythrocytes,
and granulocytes) showed that FcgRIIA was also expressed by a
fraction (3.16 1.3%) of Lin– cells. The latter population included
megakaryocyte progenitors, which represented 23.5 6 7% of
the total Lin– FcgRIIA1 cells (supplemental Figure 1B). FcgRIIA
was found on the surface of all circulating platelets (99.96 0.1%),
with a stable intensity (supplemental Figure 1C). Whole mouse
immunofluorescence analysis of B/WF1.FcgRIIATGN mice con-
firmed the presence of FcgRIIA1CD411 and FcgRIIA1CD11b1

cells in the bone marrow but also in lymph nodes, liver, kidneys,
the intestine, and in the meninges surrounding the brain
(Figure 2A).

FcgRIIA is dispensable in autoantibody production
and immune cell proliferation
B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN mice developed
comparable levels of total circulating IgG (Figure 2B) and similar
levels of splenic plasma B (CD191 CD1381) cells at 28 weeks
(Figure 2C), by which time both strains displayed the highest
level of serum IgG. Moreover, both strains equally developed
IgG autoantibodies that targeted double-stranded DNA and
nuclear proteins Ro/SSA (anti–Ro/SSA) and La/SSB (anti–La/
SSB), except those targeting ribonuclear proteins (anti–Sm/RNP)
and anti-Smith (anti-Sm) that were higher in B/WF1.FcgRIIATGN

mice at 28 weeks (supplemental Figure 2A-E).

The proportions of bone marrow T and B lymphocytes and
neutrophils were also comparable (supplemental Figure 2F),
suggesting that FcgRIIA is not involved in the proliferation of a
particular immune cell population.

FcgRIIA accelerates SLE
Despite the comparable levels of autoantibodies, B/WF1.FcgRIIATGN

mice exhibited impaired survival, and 50% of B/WF1.FcgRIIATGN

female mice died at 28 weeks, compared with 38 weeks for
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Figure 1. IC-FcgRIIA mediated platelet activation in human SLE. ICs induce platelet activation (A) and CD62P1 microvesicle release (B) in vitro (n 5 5). (C) Quantification of
serum ICs in patients with SLE (n 5 73) and healthy volunteers (n 5 30). (D) Quantification of CD411CD62P1 circulating vesicles in the plasma of patients with SLE (n 5 68)
and healthy volunteers (n 5 30). (E) Principal component (PC) analysis based on 3 variables: platelet activation, IC levels, and IgG1 platelets in patients with SLE and
healthy volunteers. Correlation between the levels of activated platelets (aIIbb3*1) with ICs (F) and with IgG1 platelets (G) in patients with SLE (n 5 73). Data are presented as
the mean 6 SEM. Statistical analyses: 1-way analysis of variance (A-B), Wilcoxon test (C-D), and Spearman’s rank correlation (F-G). *P , .05, **P , .01. NS, nonstimulated.
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B/WF1.FcgRIIANull mice (Figure 3A). Similar results were observed in
male mice (Figure 3B), although the difference between the 2 strains
was less striking (50% survival, 41 weeks in B/WF1.FcgRIIATGN and
46 weeks in B/WF1.FcgRIIANull littermates). In both female and male
mice, death occurred in mice showing severe urine protein (pro-
teinuria), a marker of kidney failure (supplemental Figure 3A). Thus,
FcgRIIA accelerates SLE-relatedmorbidity but preserves the sex bias
toward females as in human SLE and the B/WF1 model.2 Consistent
with these observations, further analyses were restricted to fe-
male mice.

Analysis of proteinuria over time revealed that alterations in kidney
function appeared at 20 weeks in B/WF1.FcgRIIATGN mice,
;8 weeks earlier than in their B/WF1.FcgRIIANull littermates
(Figure 3C). It is noteworthy that the apparent fluctuations in

proteinuria in B/WF1.FcgRIIATGN mice (eg, weeks 26 and 32) are
due to the death of mice with the most severe kidney damage.

Proteinuria concurred with impaired kidney histology at 28 weeks
(Figure 3D). Extracapillary glomerulonephritis (cell proliferation and
immune infiltrate in Bowman’s space),50 endocapillary glomerulo-
nephritis (cell proliferation and immune infiltrate in the glomerular
basement membrane) (Figure 3E), and signs of interstitial nephri-
tis (Figure 3F) were only present in B/WF1.FcgRIIATGN mice at
28 weeks. These mice also displayed other lesions characteristic of
nephritis, such as tubular dilatation and epithelial atrophy (Figure
3G-H), which were absent in age-matched B/WF1.FcgRIIANull mice.
An IgG infiltrate was observed in the kidneys of B/WF1.FcgRIIATGN

and B/WF1.FcgRIIANull mice. However, although IgG was equally
present in the kidney mesangial zone of both strains (Figure 3I), it

a: whole mouse section, b: brain, c: lymph node, d: salivary gland, e: lung, f: liver, g: kidney, h: intestine, i: bone marrow. Scale bars 50 m
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Figure 2. SLEmurinemodel expressing human FcgRIIA. (A)Whole body sagittal-section of a B/WF1.FcgRIIATGNmouse (female, 28 weeks) with SLE showing FcgRIIA staining in
CD11b1 cells (white arrows) and in CD411 megakaryocytes (white arrow heads) in the brain (b), lymph node (c), salivary gland (d), lungs (e), liver (f), kidney (g), intestine (h), and
bone marrow (i). Scale bars, 5 mm (A); 50 mm (b-i). The illustrated image is a composite of all scanned tissue areas automatically generated. Areas not presenting tissues were
automatically filled in black to generate a clearer image. (B) Levels of total serum IgG in B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN femalemice from 10 to 30 weeks. N5 5 to 8 per
group and per time point. (C) Plasma B cells in the spleen of B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN mice at 28 weeks of age (n5 5). Data are presented as the mean6 SEM.
Statistical analyses: 2-way analysis of variance. (B) Šı́dák’s multiple comparisons test for comparing B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN, then Dunnett’s multiple com-
parisons test to compare each strain to 10 weeks. (C) Mann-Whitney U test (comparing B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN). *P , .05, **P , .01.
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was only visible in the endothelial and glomerular zones in
B/WF1.FcgRIIATGN mice (Figure 3J-K), suggesting that the disease
progressed to end-stage nephritis in the presence of FcgRIIA. It is
worth noting that B/WF1.FcgRIIANull mice aged between 35 and
45 weeks exhibited impaired kidney histology and kidney IgG
similar to that of B/WF1.FcgRIIATGN mice (supplemental Figure 3B),
which suggests that FcgRIIA in fact accelerated nephritis man-
ifestations. Circulating IFN-a, a pro-inflammatory cytokine highly
pathogenic in human SLE,2 was detected in the plasma of
B/WF1.FcgRIIATGN mice but was undetectable in B/WF1.FcgRIIANull

mice, even when they later developed SLE (Figure 3L). This scenario

is consistent with its reported absence in chronic murine models
of SLE.51

Role of bone marrow in FcgRIIA-mediated
acceleration of SLE
Given the striking promotion of nephritis by FcgRIIA expression,
kidneys were investigated. Immuno-histochemistry revealed that
although FcgRIIA expression was nearly absent in healthy kid-
neys from B/WF1.FcgRIIATGN mice (9 weeks), FcgRIIA was de-
tectable in kidneys, notably in the glomeruli and tubules of mice
aged 28 to 29 weeks and displaying SLE symptoms (Figure 4A).
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Figure 3. FcgRIIA accelerates SLE development in the B/WF1.FcgRIIATGNmousemodel. Survival analysis of female (n5 49) (A) andmale (n5 33) (B) B/WF1.FcgRIIANull and B/
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Because FcgRIIA is expressed by the myeloid lineage, we ex-
amined the contribution of bone marrow–derived lineages to
lupus nephritis using bone marrow chimera. B/WF1.FcgRIIANull

recipients engrafted with B/WF1.FcgRIIATGN cells (TGN in
B/WF1.FcgRIIANull) exhibited the same 50% survival (34 weeks) as
control B/WF1.FcgRIIATGN mice engrafted with B/WF1.FcgRIIATGN

Survival statistics:   (a)-(c): * (P=0.0427)   (a)-(b): ** (P=0.0037)   (b)-(c): ** (P=0.0037)   (b)-(d): ** (P=0.0037)
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cells (TGN in B/WF1.FcgRIIATGN) (Figure 4B). Conversely, the ab-
sence of FcgRIIA in bone marrow–derived cells in B/WF1.FcgRIIATGN

mice engraftedwith bonemarrow fromB/WF1.FcgRIIANull mice (TGN
in B/WF1.FcgRIIANull) led to prolonged survival. An intriguing ob-
servation is that the transfer of bone marrow from B/WF1.FcgRIIANull

mice into irradiated B/WF1.FcgRIIATGN mice showed that the ex-
pression of FcgRIIA by a radioresistant cell or the mesenchymemight
protect mice from lupus.

Analysis of kidneys in these mice revealed the presence of
FcgRIIA1 cells when FcgRIIA was expressed by the bone marrow
(Figure 4C). Moreover, FcgRIIA was absent in kidneys from
B/WF1.FcgRIIATGN mice engrafted with bone marrow from
B/WF1.FcgRIIANull mice (TGN in B/WF1.FcgRIIANull), suggesting
that FcgRIIA protein identified in kidneys is principally derived
from cells originating from the bone marrow and suffice to
amplify inflammation.

Upregulation of platelet transcripts involved in a
type I IFN response by FcgRIIA
Because FcgRIIA is the exclusive receptor for ICs on the surface
of human platelets, with no functional equivalent in mice,34 the
addition of FcgRIIA to the B/WF1.FcgRIIA mouse model made it
possible to study chronic platelet response in SLE.

Platelet RNA content in all strains was compared at 2 time points:
at a predisease state (9 weeks) and at 28 weeks, when ;50% of
the BWF1.FcgRIIATGN mice died of SLE-related complications.
By this age, both B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN mice
exhibited a significantly altered platelet transcriptome com-
pared with that of 9-week-old mice (Figure 5A). Because the
platelet transcriptome often mirrors that of megakaryocytes,52,53

this finding suggests that megakaryocyte regulatory pathways
are responsive to the onset of disease but that they can also
occur independently of FcgRIIA expression. However, there
were more differentially expressed transcripts identified in
B/WF1.FcgRIIATGN mice at 28 vs 9 weeks (377 genes increased
and 389 decreased), compared with B/WF1.FcgRIIANull mice at
28 vs 9 weeks (154 increased and 97 decreased).

Although type I IFN genes increased in both B/WF1.FcgRIIATGN

and B/WF1.FcgRIIANull mice, the presence of FcgRIIA amplified
the IFN response (Figure 5B). Directly comparing 28-week-old
B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN mice confirmed a
differential increase in type I IFN pathway genes in transgenic
mice (Figure 5C), suggesting that FcgRIIA expression results in
alterations in the platelet transcriptome during SLE.

FcgRIIA amplifies platelet activation and
thrombosis in SLE
Systemic administration of ICs to FcgRIIATGN mice initiates
thrombocytopenia,46,47,54 a frequent and misunderstood manifesta-
tion of SLE in humans.10,12 B/WF1.FcgRIIATGN and B/WF1.FcgRIIANull

mice had similar platelet counts, which contrastswith acutemodels of
exposure to ICs47,54-56 (Figure 6A).

B/WF1.FcgRIIATGN mice had more numerous megakaryocyte
progenitors (CD411 Lin–) in the bone marrow at 28 weeks than
9 weeks (Figure 6B), but no differences were observed between
B/WF1.FcgRIIANull and B/WF1.FcgRIIATGN mice. Splenomegaly
was also equally observed in both B/WF1.FcgRIIATGN and
B/WF1.FcgRIIANull mice aged 28 weeks, although a significant

increase in spleen weight was observed between 9 and 28 weeks
only in B/WF1.FcgRIIATGN mice (supplemental Figure 4).

Circulating degranulated platelets and platelet-leukocyte ag-
gregates have been reported in patients with SLE.57 Transgenic
expression of FcgRIIA led to the formation of platelet-neutrophil
aggregates (Figure 6C). Moreover, platelets from B/WF1.FcgRIIATGN

mice (28 weeks) revealed an increase in the levels of surface CD62P,
indicating translocation of this molecule from a-granule to the cell
surface (Figure 6D). Plasma levels of CD411CD62P1 EVs (Figure 6E)
and serotonin (Figure 6F) were also increased, indicating platelet
degranulation in the circulation. Because blood serotonin is mainly
stored inplatelet-densegranules,44 theplatelet serotonin contentwas
investigated. B/WF1.FcgRIIATGN platelets had a reduced content in
serotonin compared with platelets from diseased B/WF1.FcgRIIANull

mice (Figure 6G).

Thrombosis ismore frequent in patients with SLE and is an obvious
manifestation in the lungs of FcgRIIATGN mice from C57BL/6
background when injected with ICs.46,47 Although thrombosis was
not detected in younger mice (Figure 7), histology sections
showed a significant increase in thrombi, visible in the micro-
vasculature of the lungs and kidneys in B/WF1.FcgRIIATGN mice
when they developed lupus (28 weeks) but not in their age-
matched B/WF1.FcgRIIANull littermates. The FcgRIIA expression
in fact accelerated thrombosis, as thrombi were observed in
B/WF1.FcyRIIANull mice at a later stage, when they too presented
kidney nephritis.

Discussion
In the current study, weprovide a newmodel of SLE that considers
FcgRIIA, and we reveal new insights into the role of FcgRIIA in
chronic SLE pathogenesis as well as changes in platelet gene
expression and platelet activation in SLE. The findings suggest
that the FcgRIIA blockade, by Fab antibodies for instance, might
improve SLE.

The B/WF1 model is one of the oldest spontaneous models of
SLE.58,59 It develops an active proliferative glomerulonephritis
mediated by ICs,58 in part due to defects in IC clearance and the
production of autoantibodies targeting double-stranded DNA
and nuclear proteins, reminiscent of those found in human SLE.2

In humans, FcgRIIA is expressed on myeloid cells and platelets
and is absent in lymphocytes.35 Although our B/WF1 mouse
model expressing FcgRIIA recapitulates the human expression
pattern well, FcgRIIA was also detected in a fraction of bone
marrow progenitors, possibly due to its expression in early
hematopoietic progenitors. As for the FcgRIIA expression in
kidneys during nephritis, we confirmed that its source was a
cellular lineage(s) from the bonemarrow that could have invaded
this organ. Both neutrophils and platelets shed FcgRIIA in the
presence of ICs.60,61 Although the platelet surface expression of
FcgRIIA was maintained throughout the duration of the exper-
iment, it was reduced on platelets in mice with severe nephritis
that required euthanasia (supplemental Figure 6). We thus
suggest that circulating soluble FcgRIIA might accumulate, to-
gether with ICs, in the kidney.

Although complement as well as coagulation factors were not
examined in the current study, their interplay may participate in
thrombo-inflammation in SLE.62 In the B/WF1 model, ablation of
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FcgR signaling29 confers complete resistance to SLE despite the
accumulation of circulating ICs, pointing to a dominant role of
FcgR in the inflammatory process in SLE or to a role for com-
plement downstream FcgRs.29,63

Our analysis reveals that in vivo expression of FcgRIIA acceler-
ates SLE and nephritis. Because the concentration of autoanti-
bodies was maintained when FcgRIIA was expressed, this further
suggests that expression in blood of themost abundant FcgR35 is
not sufficient to promote IC clearance in vivo. Nephritis was the
most obvious disease manifestation accelerated in our model as
mice died prematurely when FcgRIIA was expressed and de-
veloped severe kidney damage. However, it cannot be excluded
that FcgRIIA also modifies other manifestations that do not

immediately translate into mortality. Although FcgRIIA expres-
sion did not affect the occurrence of arthritis in B/WF1 mice
(supplemental Figure 7), FcgRIIA promoted thrombosis in the
lungs and kidneys, which suggests that FcgRIIA may contribute
to elevated risks of thromboembolism. This model may have
utility for future investigations into whether FcgRIIA expression in
lupus also affects other systems such as the skin, vasculature,
and brain.

FcgRIIA accelerated the deposition of ICs in the kidneys, sug-
gesting that cells expressing FcgRIIA might facilitate transport
and/or retention of ICs in kidneys. Another hypothesis is that
tissue damage caused by FcgRIIA-expressing cells underlies the
exposure of neoantigens and thus facilitates local formation of
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ICs in kidneys. All cells that express FcyRIIA are candidates to
amplify nephritis. For instance, the transgenic expression of
FcgRIIA in mice revealed that neutrophils as well as monocytes
release platelet-activating factor and play a role in anaphylaxis
induced by circulating ICs.64 Moreover, when neutrophils express
FcgRIIA as the sole FcgR in a transgenic mouse (FcgRIIATGN/g2/2),
they still invade kidneys when mice are injected with antibodies
directed against the glomerular basementmembrane, showing that
FcgRIIA expression suffices to recruit neutrophils in this organ.65

Dendritic cells may be prone to generate IFN-a if stimulated
through FcgRIIA,66 which may also explain the presence of IFN-a
detected in blood. In the future, this model can thus be used for the
examination of contributions of different cellular lineages in SLE.

Consistentwith the roleof FcgRIIA in amplificationof aIIbb3outside-
in signaling, activation of aIIbb3 correlated with concentrations of
ICs in SLE patients.42,67 FcgRIIA expression in platelets may thus
directly activate platelets following the accumulation of ICs,
and can amplify platelet activation due to organ and vessel
damage. Platelets may also contribute to inflammation in the
absence of FcgRIIA, but at a later stage when injury is evident,
which may explain how the depletion of platelets improved
nephritis in B/WF1.FcgRIIANull mice.17

Intriguingly, thrombosis was present in the lungs and kidneys,
with no perceptible impact on platelet levels in blood. Although
further studies are necessary to confirm the presence of platelets

in thrombi, perhaps platelets gradually accumulate in the lungs
and kidneys in this chronic disease, and mechanisms, such as
emergency hematopoiesis in spleen, compensate for the loss
of platelets in thrombi. This would be consistent with the
splenomegaly (supplemental Figure 4) we observed in lupus
mice. Because FcgRIIA did not increase thrombocytopenia, this
suggests that other mechanisms may lead to reduced platelet
number in certain SLE patients; thesemechanisms include immune
thrombocytopenia due to platelet-specific autoantibodies, T cell–
mediated platelet depletion, or accelerated deglycosylation
processes.68,69

The platelet transcriptome was affected by FcgRIIA expression,
suggesting that megakaryocytes may respond to ICs (in bone
marrow if accessed by ICs, or in the lungs where megakaryo-
cytes are also described).70 Notably, the top enriched pathway
in platelets when FcgRIIA was expressed was a type I IFN re-
sponse. This is consistent with the reported changes to the
human platelet transcriptome in SLE,25 which exhibits enrich-
ment in type I IFN response. Intriguingly, the comparison of the
transcriptome of the human and murine platelets in SLE
revealed significant similarities. A significant overlap was found
between genes previously reported to increase in patients with
SLE compared with genes changed in 28- vs 9-week-old
B/WF1.FcgRIIATGN mice (P 5 1.4e-6; hypergeometric test) but
not B/WF1.FcgRIIANull mice (P 5 .49). Genes that overlapped
between humans and transgenic mice were enriched in the
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type I IFN signaling pathway (P 5 1.3e-4) (supplemental Fig-
ure 8), further highlighting the relevance of the addition of the
transgene to recapitulate human features.

During viral infection, megakaryocytes produce IFN-a, which
activates bystander megakaryocytes as well as stem cells, thereby
promoting transcription of IFN-stimulated genes and promoting
antiviral immune responses.71 IFN-a detected in FcgRIIA-
expressing lupus mice may therefore affect megakaryocytes,
which would explain the upregulation of IFN-related gene ex-
pression in platelets that we observed in thesemice. Although IFN

can be produced by megakaryocytes upon stimulation, it is also
possible that CD40L, liberated by IC-stimulated platelets, triggers
IFN-a production by dendritic cells.17 Although IFN-a was found
uniquely in lupus mice expressing FcgRIIA, not all inflammatory
cytokines were increased due to the presence of the transgene.
With the exception of tumor necrosis factor and interleukin-15 (of
the 32 cytokines evaluated), which were more elevated in mice
lacking FcgRIIA, the plasma content in cytokines was similar in
both groups of diseased mice (supplemental Figure 9). Whether
more obvious variations in cytokine production would be ob-
served in diseased organs was not determined, but the data
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suggest that although FcgRIIA affects the IFN signature hallmark
in SLE, it has only a modest contribution to the overall production
of cytokines in blood.

The interactions of platelet with leukocytes and the release of
EVs are hallmarks of inflammation and occur in SLE.9 Platelets
and neutrophils interact through CD62P or glycoprotein Ib,
found on platelets, as well as P-selectin glycoprotein ligand-1
and Mac-1, found on neutrophils.72,73 Fibrinogen also con-
tributes to platelet–neutrophil interactions by bridging aIIbb3
and Mac-1.74 Activated aIIbb3 can also bind the solute carrier
family 44 member 2 on neutrophils.75 The interactions between
platelets and neutrophils observed in FcgRIIA-expressing lupus
mice may favor neutrophil migration into tissues. Although
aIIbb3 is activated and CD62P is expressed on platelets in SLE,
it remains to be established whether these molecules are
implicated in those interactions. Moreover, we revealed the
contribution of FcgRIIA in the release of EV in lupus. Because
EVs are involved in intercellular communication, the model can
be used to identify the EV content and how EVs may contribute
to the pathogenesis.

The blockade of CD40L was effective in the SLE mouse model,76

but its use in humans was halted as it triggered thromboem-
bolism in patients with SLE.77 Moreover, therapies targeting
kinase pathways (eg, JAK1/2 inhibitors) led to platelet activation
in lungs in patients with rheumatoid arthritis, thus suggesting
that improved mouse models that permit the evaluation of
potential platelet activation in rheumatic diseases are needed.
Here, we provide a new murine model of SLE that recapitulates
several features of the disease observed in humans. This model
will offer a better understanding of the involvement of chronic
platelet activation and provides a valuable tool for testing new
therapeutic molecules in SLE.
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