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KEY PO INT S

l Coronavirus-specific
polyfunctional T cells
can be expanded from
convalescent
individuals for use for
patients after bone
marrow transplant.

l SARS-CoV-2 T-cell
products target
structural viral
proteins, including
commonly recognized
regions in the C
terminus of membrane
protein.

T-cell responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have
been described in recovered patients, and may be important for immunity following in-
fection and vaccination as well as for the development of an adoptive immunotherapy for
the treatment of immunocompromised individuals. In this report, we demonstrate that
SARS-CoV-2–specific T cells can be expanded from convalescent donors and recognize
immunodominant viral epitopes in conserved regions of membrane, spike, and nucleocapsid.
Following in vitro expansion using a good manufacturing practice-compliant methodology
(designed to allow the rapid translation of this novel SARS-CoV-2 T-cell therapy to the clinic),
membrane, spike, and nucleocapsid peptides elicited interferon-g production, in 27 (59%),
12 (26%), and 10 (22%) convalescent donors (respectively), as well as in 2 of 15 unexposed
controls. We identified multiple polyfunctional CD4-restricted T-cell epitopes within a highly
conserved region ofmembrane protein, which inducedpolyfunctional T-cell responses,which
may be critical for the development of effective vaccine and T-cell therapies. Hence, our
study shows that SARS-CoV-2 directed T-cell immunotherapy targeting structural proteins,
most importantly membrane protein, should be feasible for the prevention or early treat-

ment of SARS-CoV-2 infection in immunocompromised patients with blood disorders or after bone marrow trans-
plantation to achieve antiviral control while mitigating uncontrolled inflammation. (Blood. 2020;136(25):2905-2917)

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
a novel coronavirus first reported in December 2019 from
Wuhan, China, is responsible for the ongoing pandemic of
coronavirus disease 2019 (COVID-19).1 The adaptive immune
response to SARS-CoV-2 remains ill-defined and there is an
urgent need to fill this gap in knowledge to enable the devel-
opment of effective vaccines and therapies. Antibody responses
to the spike and nucleocapsid proteins are well described,2,3 and
recently the characterization of T-cell responses to SARS-CoV-2
predominantly to spike, membrane, and nucleocapsid proteins
has also been reported.4-11 Recent studies have reported that
both CD41 and CD81 T-cell responses to SARS-CoV-2 are

detectable in convalescent patients, as well as in a proportion of
unexposed individuals, albeit at lower levels. Recent reports
have also suggested that immunocompromised patients may be
at high risk of severe and potentially prolonged disease, sug-
gesting that T-cell immunity is essential for overcoming COVID-
19.12,13 Studies of the related virus SARS-CoV demonstrated that
T cells recognizing viral epitopes within SARS-CoV structural
proteins were integral in viral clearance, and remained detect-
able for .10 years after exposure.14,15

Knowledge of T-cell epitopes recognized in other viruses such as
Epstein-Barr virus (EBV), cytomegalovirus (CMV), andadenovirus have
successfully led to thedevelopment of adoptive immunotherapywith
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ex vivo expanded virus-specific T cells (VSTs). This approach has
been highly successful in preventing or treating viral infections in
high-risk patients after bone marrow transplant (BMT) with
minimal risk of graft-versus-host disease.16,17 To date, .1000
patients have been treated internationally in phase 1/2 protocols
using VSTs.18-24 Importantly, expansion of VSTs in vivo correlates
strongly with antiviral efficacy.23,25,26 Hence, the expansion of
such approaches to include SARS-CoV-2–specific T cells may
also offer protection from COVID-19 to these vulnerable indi-
viduals. Here, we define the immunodominant T-cell epitopes
within conserved regions of SARS-CoV-2 structural proteins,
including the novel discovery that SARS-CoV-2–specific T cells
predominantly recognize regions in the C terminus of the
membrane protein, which represents a critical “hot spot” for
CD4-restricted T-cell epitopes. We also noted an association
between SARS-CoV-2 seropositivity and the breadth of T-cell
responses to structural viral proteins in patients who recover
from COVID-19. These data suggest that patients who mount an
antibody response to SARS-CoV-2 are more likely to have a
broader T-cell response following COVID-19, which may have
implications for protective immunity in recovered patients. It also
provides proof of concept for optimal donor section for the rapid
manufacture of good manufacturing practice (GMP)-compliant
SARS-CoV-2–specific T-cell therapeutics, with the potential to
prevent or treat COVID-19 in immunocompromised patients
with blood disorders and/or after BMT.

Methods
Donors
Peripheral blood mononuclear cells (PBMCs) from volunteers,
both healthy and those with presumed or documented COVID-
19 infection, were obtained from Children’s National Hospital
(Washington, DC) and the National Institutes of Health under
informed consent approved by the Institutional Review Board of
both institutions in accordance with the Declaration of Helsinki.

Generation of SARS-CoV-2–specific T cells
Evaluated T-cell products included SARS-CoV-2–specific T cells
(CSTs), manufactured from PBMCs of seropositive and sero-
negative volunteers. VSTs were produced using a rapid ex-
pansion protocol previously described. Briefly, PBMCs were
pulsed with a mix of overlapping peptide pools encompassing
viral structural proteins (1 mg/antigen per 15 3 106 PBMCs) for
30 minutes at 37°C. Peptide libraries of 15-mers with 11 amino
acid overlaps encompassing the spike, membrane, nucleocap-
sid, and envelope proteins were generated (A&A Peptide,
San Diego, CA) from the SARS-CoV-2 reference sequence
(NC_045512.2), and were pooled equally by mass and recon-
stituted to a working concentration of 1 mg/mL. After incubation,
cells were resuspended with interleukin-4 (IL-4; 400 IU/mL; R&D
Systems, Minneapolis, MN) and IL-7 (10 ng/mL; R&D Systems) in
CTL media consisting of 45% RPMI (GE Healthcare, Logan, UT),
45% Click medium (Irvine Scientific, Santa Ana, CA), 10% fetal
bovine serum (FBS), and supplemented with 2 mM GlutaMax
(Gibco, Grand Island, NY) according to our GMP-compliant
standard operating procedures. Cytokines were replenished
on day 7. On day 10, cells were harvested and evaluated for
antigen specificity and functionality. A subset of samples was
restimulated with autologous PBMCs that were pulsed with the
viral peptide libraries, irradiated at 75 Gy, and cocultured with
the CSTs at a ratio of 1:4 (CSTs to PBMCs). These restimulated

cells were incubated in IL-4 (400 IU/mL) and IL-7 (10 ng/mL), with
cytokines replenished at day 17, and harvested at day 21 for
further testing.

Isolation and maintenance of SARS-CoV-2–specific
T-cell clones
Membrane and spike-specific T cells were isolated from frozen
VSTs using an interferon-g (IFN-g) capture assay protocol pre-
viously described. Briefly, VSTs were thawed, washed in warm
X-VIVO-15, and resuspended at a concentration of 13 107 cells/
mL. VSTs were stimulated for 3 hours with overlapping peptide
pools encompassing viral antigens to spike and membrane to a
final concentration of 1 mg/mL. T cells producing IFN-g in re-
sponse to this stimulation were enriched using the IFN-g Sec-
tretion Detection and Enrichemnt Kit (130-054-201; Miltenyi
Biotec, Bergisch Gladbach, Germany) in accordance with the
manufacturer’s instructions. These T cells were plated at a series
of dilutions in 96-well plates with irradiated feeder medium
(RPMI 1640 supplemented with 10% FBS, L-glutamine, and
PenStrep [R-10]) with 13 106 cells/mL 5000 rad irradiated PBMC
1 50 U/mL IL-21 10 ng/mL IL-151 0.1 mg/mL each of anti-CD3
(Ultra-LEAF purified anti-human CD3 antibody clone OKT3;
BioLegend, San Diego, CA) and anti-CD28 (Ultra-LEAF purified
Anti-human CD28 antibody clone 28.2; BioLegend). Membrane
and spike-specific T-cell clones were expanded biweekly with
irradiated feeder medium. One month later, colonies were se-
lected from the lowest dilution plates with positive wells (,1/3 of
wells positive) and screened for responsiveness to membrane or
spike peptide pools by intracellular cytokine staining for IFN-g
and tumor necrosis factor-a (TNF-a).

IFN-g ELISpot assay
Antigen specificity of T cells was measured by IFN-g enzyme-
linked immunospot (ELISpot; Millipore, Burlington, MA). T cells
were plated at 1 3 105/well with no peptide, actin (control), or
each of the individual SARS-CoV-2 pepmixes (200 ng per
peptide per well). Plates were sent for IFN-g spot-forming cells
counting (Zellnet Consulting, Fort Lee, NJ).

Flow cytometry
VSTs were stained with fluorophore-conjugated antibodies
against CD4, CD8, TCRab, TCRgd, CXCR3, CXCR5, CCR6,
CD127, CD25, and CD56 (Miltenyi Biotec; BioLegend). All
samples were acquired on a CytoFLEX cytometer (Beckman
Coulter, Brea, CA). Intracellular cytokine staining was performed
as follows: 1 3 106 VSTs were plated in a 96-well plate and
stimulated with pooled pepmixes or individual peptides (200 ng
per peptide per well) or actin (control) in the presence of brefeldin
A (Golgiplug; BD Biosciences, San Jose, CA) and CD28/CD49d
(BD Biosciences) for 6 hours. T-cells were fixed, permeabilized
with Cytofix/Cytoperm solution (BDBiosciences), and stainedwith
IFN-g and TNF-a and IL-2 antibodies (Miltenyi Biotec).

For intracellular flow cytometry of T-cell clones, cells were
stimulated with membrane and spike peptide pools to a con-
centration of 1 mg/mL, and incubated at 37°C 5% CO2. After
1 hour, 1 mg/mL of brefeldin A was added to each well, and
plates were incubated for another 5 hours. Cells were then
washed in 2% FBS phosphate-buffered saline and surface
stained with fluorochrome-conjugated antibodies to CD3-
Brilliant Violet 785 clone OKT3, CD4-Alexa Fluor 700 clone
RPA-T4, CD8-FITC clone RPA-T8, OX40-Brilliant Violet 711
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clone Ber-ACT35 (ACT35) (all from BioLegend), CD69-APC-
eFluor 780 clone FN50, and Fixable Aqua Viability Dye (both
from Invitrogen). Cells were fixed, permeabilized using BD
Cytofix/Cytoperm solution and stained with anti-IFN-g Brilliant
Violet 421 clone 4S.B3, anti-TNF-a PerCP-Cyanine5.5 clone
Mab11 (both from BioLegend). Cells were analyzed on an Attune
NxT flow cytometer. Data were analyzed with FlowJo X (FlowJo
LLC, Ashland, OR).

Epitope mapping
CSTs were tested for specificity to minipools containing 8 to 24
peptides spanning the SARS-CoV2 antigens by IFN-g ELISpot.
Cross-reactive pools were analyzed and individual peptides
were tested to confirm epitope specificity. In silico predictions of
major histocompatibility complex (MHC) restrictions was per-
formed using MARIA (http://maria.stanford.edu) and NetMH-
CIIPan (http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/).27,28

MHC restrictions were narrowed through use of blocking anti-
bodies targeting MHC class II proteins. Briefly, CSTs were in-
cubated were pulsed with 1 mg/mL of spike or membrane
peptide pools and blockedwith 10mg/mL of either anti-HLA-DR,
anti-HLA-DQ, or anti-HLA-DR,DP,DQ (BioLegend) for 30 min-
utes. Cells were washed 3 times with R10, and then blocked
again with the same concentration of antibodies. After 1 hour,
1 mg/mL of brefeldin A was added to each well, and plates were
incubated for another 5 hours. Cells were then washed and
stained for surface markers and intracellular cytokines as de-
scribed previously.

To confirm the restricted HLA allele, CSTs were plated at 1 3
105 per well with partially HLA-matched phytohemagglutinin-
treated lymphoblasts (phytohemagglutinin blasts, 25 Gy irradi-
ated) either alone or pulsed with peptide (1 mg/mL), and tested
via IFN-g ELISpot.

Luciferase immunoprecipitation systems for
measurement of SARS-CoV-2 antibodies
Testing for antibodies to spike and nucleocapsid proteins were
performed using a luciferase immunoprecipitation system assay,
as recently described.3 Briefly, plasma samples were incubated
with spike and nucleocapsid proteins fused to Gaussia and
Renilla luciferase, respectively, protein A/G beads were added,
themixture was washed, coelenterazine substrate (Promega) was
added, and luciferase activity was measured in light units with a
Berthold 165 LB 960 Centro Microplate Luminometer. Antibody
levels were reported as the geometric mean level with 95%
confidence interval. Cutoff limits for determining positive anti-
bodies in the SARS-CoV-2–infected samples were based on the
mean plus 3 standard deviations of the serum values derived
from uninfected blood donor controls or by receiver operator
characteristics analysis. For some of the data percentages for
categorical variables, mean and range, geometric mean, and
95% confidence interval were used to describe the data. Wil-
coxon signed-rank tests were used for statistical analysis.

Multiplex cytokine assay
CSTs were plated at 13 105 per well in 96-well plates, stimulated
with pooled pepmixes (200 ng/peptide/well) or control actin
peptide, and incubated 48 hours. Supernatants were harvested
and the cytokine profile analysis was performed using the

Bio-plex Pro Human 17-Plex Cytokine Assay Kit (Bio-Rad, Her-
cules, CA), and read on a MAGPIX system (Luminex, Austin, TX).

Chromium release assay
Phytohemagglutinin blasts were labeled with chromium-51
(Perkin Elmer, Waltham, MA) at 10 mCi per 5 3 105 cells. CST
were coplated with 51Cr-labeled, MHC-mismatched irradiated
phytohemagglutinin blasts at effector:target ratios between 40:1
and 5:1, and incubated at 37°C for 4 hours. Maximal release was
evaluated by lysis of 51Cr-labeled targets with Triton-X-100.
Supernatants were transferred to lumiplates and read on a
MicroBeta2 Plate Reader (Perkin Elmer). Specific lysis was cal-
culated as follows: (experimental counts per minute [CPM] –
background CPM)/(maximal CPM – background CPM).

Statistical analysis
Statistical analysis was performed in SAS (SAS Institute, Cary,
NC). Pearson/Speakman calculations were used for correlations
of T-cell and antibody responses of individual antigens, and
Pearson x2 test was used for binary correlations of T-cell and
antibody responses. Graphs were produced in Prism (GraphPad,
San Diego, CA). Immunodominance was defined as antigens
and/or epitopes that induce statistically significant responses on
IFN-g ELISpot and/or intracellular cytokine staining in compar-
ison with control peptides, and are recognized by multiple
individuals.

Results
The majority of convalescent patients show
antibody responses to SARS-CoV-2
Forty-six convalescent donors from the eastern and midwestern
United States with presumptive recent COVID-19 (36 poly-
merase chain reaction [PCR]-proven and 10 presumed positive
because they were: (1) symptomatic and in close contact with
PCR-positive individuals and/or (2) positive for SARS CoV-2
antibody testing) were evaluated at a median time of 36 days
after symptom onset (range, 18-111). Median donor age was
34.5 years (range, 20-69). Most patients had mild disease (83%)
and 4 were asymptomatic, whereas 4 had moderate disease and
1 had severe disease based on World Health Organization
classification, with a median of 12 days of illness (Table 1;
supplemental Figure 1, available on the Blood Web site). An-
tibody responses were detected in 33 of the 46 convalescent
donors (27/46 to spike protein and 29/46 to nucleocapsid
protein; supplemental Figure 2). None of the 15 control subjects
had detectable antibody responses.

CSTs from convalescent donors are polyfunctional
and recognize multiple viral proteins
Following stimulation and expansion of CSTs, specific T-cell
activity against SARS-CoV-2 structural proteins were detected
in 32 of 46 convalescent donors and 2 of 15 control subjects
(Figure 1) via IFN-g ELISpot. Convalescent donors pre-
dominantly responded to membrane (27/46, P5 6.243 1026 vs
control subjects), followed by spike (12/46, P 5 .16 vs control
subjects), and nucleocapsid proteins (10/46, P5 .0008 vs control
subjects). Nonamplified responses to SARS-CoV-2 viral antigens
were detectable from PBMCs via IFN-g ELISpot in only 2 of 46
patients and 0 of 15 controls (supplemental Figure 3), suggesting
that the frequency of the SARS-CoV-2 response is relatively low,
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consistent with T-cell immune responses observed against other
respiratory viruses (eg, adenovirus).29,30

Postexpansion T cells were predominantly CD41, with central
memory and effector memory subsets (supplemental Figure 4).
The predominant CD41 T-cell population was CXCR31CCR62

(mean, 42.3% of CD41 T cells) consistent with a Th1 population,
with minor populations expressing CXCR51/CXCR32 (mean,
12.95% of CD41 T cells) and CD1272/CD251 (mean, 15.18% of
CD41 T cells). These ratios were proportionate to rapidly ex-
panded virus-specific T cells targeting cytomegalovirus, EBV, and
adenovirus (supplemental Figure 4B). Comparatively, SARS-CoV-
2-specific T cells expanded using a similar protocol in 96-well
plates rather than the G-Rex10 bioreactor showed somewhat
more detectable CD8 reactivity by intracellular staining (supple-
mental Figure 5), which may suggest that strongly elicited ex-
pansion results in preferential outgrowth of the CD41 component.

Responses to spike and membrane proteins were confirmed
to be predominantly CD41 restricted in 11/11 tested patients

(Figure 2), with significant elevations in IFN-g/TNF-a-expressing
populations targeting membrane and spike proteins (P 5 .008
and P5 .0002 in comparison with actin, respectively). Following
restimulation with viral structural proteins, CSTs produced
multiple cytokines, with significant production of IL-1b, IL-2, IL-4,
IL-6, IL-7, IL-12, granulocyte-macrophage colony-stimulating
factor, IFN-g, and TNF-a (supplemental Figure 6).

CSTs expanded to 18 days following a second stimulation
showed a similar pattern of cytokine production, which was not
statistically different from the cytokine profile following the
first stimulation, with the exception of lower IFN-g production
in response to spike protein (supplemental Figure 7A).
Alloreactivity testing of CSTs via 51Cr release assay showed no
lysis of HLA-mismatched phytohemagglutinin blasts by T cells
following up to 18 days of expansion (supplemental Figure 7B).
Culture of clonal CST populations by limiting dilution and
restimulation yielded several CD41 T-cell clones, which showed
polyfunctional cytokine production on peptide restimulation
(supplemental Figure 8).

To assess cross-reactivity, CSTs were tested against peptides
corresponding to variant epitopes in circulating SARS-CoV-2
genotypes and from the NL63 and OC43 coronaviruses.31 This
testing showed moderate cross-reactivity to described variants
in the regions of SARS-CoV-2 epitopes, but minimal cross-
reactivity with 2 homologous nucleocapsid peptides from
NL63 and OC43 (supplemental Figure 9).

CSTs from seropositive donors recognize a broader
array of viral antigens than CSTs derived from
donors who lack detectable humoral responses
Of the 46 convalescent patients with history of COVID-19, 26
had demonstrable antibody and T-cell responses to SARS-CoV-
2. Seven convalescent donors had no detectable T-cell or an-
tibody responses (supplemental Figure 1). Six donors had
antibody responses without detectable T-cell responses and 6
donors had T-cell responses without accompanying antibody
responses, as has been observed with other infections such as
EBV and herpes simplex virus.32,33 A significant association was
noted between presence of an antibody response and T-cell
response to spike protein in convalescent patients (P 5 .004 via
Pearson x2 test; supplemental Figure 10). Additionally, sero-
positive subjects were also more likely to demonstrate a T-cell
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Figure 1. T-cell recognition of SARS-CoV-2 viral antigens.
Specificity of the expanded cells in response to SARS-CoV-2
antigens from convalescent patients (n 5 46) and unexposed
controls (n 5 15) was assayed by IFN-g ELISpot assay (bars 5
median). Unstimulated T cells (control [CTL] only) and stim-
ulation with actin were used as negative controls. Results are
presented as spot-forming units (SFC) per 1 3 105 cells.
Specificity was defined as $20 spots per well with signifi-
cance above background (actin) via 2-tailed Student t test.
*P 5 .0008, **P 5 6.24 3 1026.

Table 1. Convalescent patient demographics (n 5 46)

Description Value

Median age, y (range) 34.5 (20-69)

Male 21 (46%)

Disease severity
Mild 38 (83%)
Moderate 3 (7%)
Severe 1 (2%)
Asymptomatic 4 (9%)

Symptoms
Fever 24 (52%)
Respiratory symptoms 38 (83%)
Gastrointestinal symptoms 9 (20%)
Fatigue 15 (33%)
Anosmia 20 (44%)

Median length of symptoms, d (range) 12 (0-30)

Need for hospitalization 2 (4%)
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response to membrane (P 5 .00075) and nucleocapsid proteins
(P 5 .0015) (Figure 3). Although there was no detectable cor-
relation between disease severity and the magnitude of T-cell or
antibody responses (supplemental Figure 11), 14 of the 20
patients who lacked T-cell and/or antibody responses had mild
disease, and all 4 asymptomatic donors had incomplete immune
responses (3 donors had SARS-CoV-2 T-cell responses only, and
1 donor had detectable SARS-CoV-2 antibody responses only).
Evaluation of T-cell responses before COVID-19 infection was
able to be performed on 2 subjects who had previously banked
cells. Subject 4 had mild gastrointestinal disease, fever, and
shortness of breath, and developed a CD41 T-cell response to
spike protein (which was not detectable pre-illness), but no
detectable antibody response to spike or nucleocapsid. SARS-
CoV-2 immune (humoral and adaptive) responses were absent in
the prepandemic sample, and postinfection (after being con-
firmed to be PCR1 for SARS-CoV-2), a robust T-cell response to
spike protein was demonstrated, though this individual did not
have an antibody response to spike or nucleocapsid. Subject 46
had mild respiratory symptoms, anosmia, and gastrointestinal
symptoms, and developed a T-cell response targeting spike,
membrane, and nucleocapsid, as well as antibody response to
both spike and nucleocapsid, both of which were absent
2 months before his illness (supplemental Figure 12).

CSTs recognize multiple immunodominant
epitopes in membrane, nucleocapsid, and spike
proteins
Epitope mapping of the membrane protein yielded multiple
epitopes at the C-terminal domain (Figure 4A). Two epitopes at

AA 144-163 were recognized by 8 donors and were exclusively
CD4-restricted (Figure 5A). Using in silico analysis, the predicted
HLA restrictions of these responses were HLA-DRB1*11 and
DRB4*01 (Table 2).27,28 Similarly, epitopes at AA 173-192 were
recognized by 6 donors, and were also confirmed to be CD4-
restricted (Figure 5B). These epitopes lie within the C-terminal
domain which is located inside the virion and on intracellular
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Figure 2. Specificity of ex vivo–expanded CST. Fol-
lowing 10 to 12 days of culture, specificity of CD4 and
CD8 T-cell populations for membrane, spike, and nu-
cleocapsid proteins was assessed by intracellular cytokine
staining for IFN-g and TNF-a. (A) Subject 2 demonstrates
a CD4-predominant response targeting structural pro-
teins. (B-C) Summary data of the response of expanded
CD41 T cells (B) and CD81 T cells (C) in response to
membrane, spike, and nucleocapsid proteins by in-
tracellular cytokine staining was analyzed in convalescent
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of IFN-g ELISpot results from postexpansion CSTs from SARS-CoV-2 seropositive vs
seronegative convalescent patients was performed via Student t test. *P 5 .0015,
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SARS-CoV-2–SPECIFIC T CELLS FOR THERAPEUTIC USE blood® 17 DECEMBER 2020 | VOLUME 136, NUMBER 25 2909

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/25/2905/1794560/bloodbld2020008488.pdf by guest on 24 M

ay 2024



membranes of infected cells that is a conserved region within all
known strains of SARS-CoV2.34 Antibody blocking experiments
on clonal SARS-CoV-2 CD41 T cells demonstrated a HLA-DR
restriction for several clones (supplemental Figure 13). Confir-
matory restriction testing using partially HLA-matched cells
confirmed that membrane peptide 37 (AA 145-160) is bound by
HLA-DRB1*11:01 (supplemental Figure 14).

Epitope mapping of spike protein yielded 3 epitopes (Figure 4B)
within the S1 domain, which were also CD4-restricted (figure
within the S1 domain (Figure 5D). Epitope mapping of nucle-
ocapsid yielded CD4-restricted epitopes at AA 257-271 (Figures
4C and 5C), as well as a CD8-restricted epitope at AA 317-335
(Figure 4D; Table 3). These lie in the dimerization domain
and are also highly conserved within SARS-CoV-2 genotypes
(Figure 6).34,35

Discussion
Advancing knowledge of the immune response to SARS-CoV-2
is critical at the current juncture not only to guide candidate
vaccine studies but, importantly, also to identify novel thera-
peutic targets for the design of a robust therapeutic T-cell
product for the treatment of immunocompromised patients
with blood disorders. Multiple studies have focused on the
antibody response following COVID-19, but the persistence of
antibody is unclear. Comparatively, T-cell responses are known
to endure for years in response to SARS-CoV and Middle East

respiratory syndrome-CoV.15,36 In immunocompromised pa-
tients, including those undergoing BMT, viruses represent a
significant risk for morbidity. Though to date, relatively few
immunocompromised patients have died of COVID-19 relative
to the general population, prolonged illness and prolonged viral
shedding has also been described, which could increase risk for
other patients and staff.37,38 Furthermore, even after recovery,
this population is likely to be at risk for reinfection because of
compromised adaptive responses. Adoptive T-cell immuno-
therapy may accordingly be beneficial for prevention or early
treatment of COVID-19.

In this study, we demonstrate that ex vivo–expanded CSTs may
be easily generated from convalescent patients, following re-
covery from COVID-19, and recognize multiple immunodo-
minant epitopes withinmembrane protein, which represent class
II restricted T-cell epitope “hot spots.” Membrane, spike, and
nucleocapsid protein showed a clear hierarchy of immunodo-
minance, and were associated with significant increases in IFN-
g/TNF-a producing CD41 T-cell populations. Cross-reactivity
with described SARS-CoV-2 variant epitopes also suggests that
T-cell responses against these regions may yield protection
against circulating viral strains with these mutations. Though the
understanding of the role and biologic significance of T-cell
populations in combating SARS-CoV-2 remains limited, de-
creases in activated T-cell populations have been shown to cor-
relate with patient acuity scores.39 Furthermore, the importance of
polyfunctional CD4 T-cell responses are well-documented for
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antiviral immunity against other respiratory viruses.40,41 Moreover,
the efficacy of adoptive, predominantly MHC class II-restricted
T-cell therapies targeting adenovirus in immunocompromised
patients is a prime example of the potency of T-cell therapies for
clearance of respiratory viruses in the immunocompromised
host.25 Though T-cell immunotherapy as treatment of infections
with RNA viruses has not been attempted, the concept is sup-
ported by prior murine respiratory syncytial virus studies,42,43 and
an ongoing phase 1 study has used VSTs targeting human
parainfluenza-virus 3 as preventative therapy (NCT03180216).
Accordingly, CSTs derived from a hematopoietic stem cell
transplantation donor may be an effective preventive therapy for
patients undergoing BMT. Further, for patients who lack a donor
with immunity to COVID-19, the administration of partially HLA-
matched third-party CSTs may be a consideration as an “on-
demand” treatment of COVID-19 early in the course of infection
to prevent invasive disease, with the goal to reduce the length and
severity of illness.

However, the development of a potent “off-the-shelf” virus-
specific T-cell therapy requires extensive characterization of
the T-cell products to discover the epitope specificity and HLA
restrictions of the virus specific T cells to ensure optimal
matching between the virus-specific T-cell donor and the re-
cipient. In this study, we showed that multiple regions within the
highly conserved C-terminal domain of the membrane protein
elicited CD4-restricted responses were shared by CST products
generated from multiple individuals. The HLA restriction for
membrane peptide 37 was confirmed to be mediated by HLA-
DRB1*11:01, and in silico analysis suggested restriction of ad-
ditional epitopes through HLA-DR11, DR7, DQ3, and DQ7,
which are present in roughly 50% of the population.44 This in-
formation is therefore highly useful for the manufacture of a CST
bank for clinical use. Moreover, given the increased severity of
COVID-19 within minority populations, it is important to de-
termine if there are risk associations with specific HLA types,
which would need to be accounted for in candidate vaccines and
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understanding that these HLA restricted responses will be critical
for the development of a third-party CSTbank to treat themajority
of screened high-risk patients (including ethnically diverse pop-
ulations) as we and others have effectively achieved for other off-the-
shelf virus-specific T-cell products.24,45,46 Finally, the demonstration
of T-cell responses to described variant epitopes within SARS-CoV-2
suggests that CSTs are likely to have activity againstmany circulating
viral strains in spite of genetic variation.

Overall, CSTs with specificity for $1 viral antigens could be
successfully produced from 58% of the evaluated convalescent
donors, and an association was detected between SARS-CoV-2
seropositivity and T-cell responses to non-spike antigens. It is
plausible that T-follicular helper cells play a role in this association,
and a population of CXCR51 CD41 T cells were noted in ex-
panded CSTs. Interestingly, not all convalescent donors had
detectable humoral and cellular responses, and many in-
congruous responses were noted. In particular, those with mild
disease and those who were asymptomatic appeared to have a
higher rate of seronegativity or absent T-cell responses to SARS-
CoV-2 antigens, which may have implications for long-term
protection for convalescent individuals, as well as for donor se-
lection for immunotherapy. This was similarly described in several
recent studies of humoral and T-cell responses.2,11 In our patients,
seroconversion was noted to correlate with the presence of T-cell
responses to a broader range of structural proteins. In patients
who recovered from SARS-CoV disease, severity was noted to

correlate with the magnitude of CD4 T-cell response,15 and it is
possible a similar correlation exists in subjects with COVID-19.

Recent studies evaluating the T-cell immune response to SARS-
CoV2 in unexpanded peripheral blood samples identified both
CD4- and CD8-restricted responses to viral structural proteins in
convalescent donors, as well as in a fraction of unexposed
subjects.4-11 Prior studies have postulated that this may be due to
cross-reactivity with common circulating coronaviruses. In our
study, we also observed T-cell responses to spike proteins in 2 of
15 unexposed control subjects. However, we did not observe
any responses to nucleocapsid or membrane proteins, which
also paralleled our observation that responses to these proteins
were predominantly detected in subjects with confirmed hu-
moral immunity (ie, seropositivity). Although we cannot de-
finitively rule out rare T-cell populations recognizing nonspike
proteins in virus-naı̈ve donors, the absence of these responses in
our study, even following ex vivo expansion, suggests that T-cell
reactivity in unexposed individuals is more limited than in se-
ropositive convalescent patients, which may reflect the differ-
ences in structural proteins in SARS-CoV-2 vs other commonly
circulating coronaviruses (Table 4). Larger, longitudinal studies
to analyze the cellular response to other coronaviruses and their
possible cross-reactivities with SARS-CoV-2 will therefore be
necessary to understand the clinical implications of preexisting
T-cell responses to SARS-CoV-2 antigens. Whether T-cell re-
sponses in unexposed donors may be effectively harnessed
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Figure 6. Epitope locations within SARS-CoV-2 structural
proteins. (A) Epitopes within membrane protein were
identified at the C-terminal intravirion domain. TMD, trans-
membrane domains. (B) Within spike proteins, epitopes were
found within the S1 region, including 1 epitope within the
receptor-binding domain (RBD). (C) In nucleocapsid protein,
epitopes were identified in the region of the dimerization
domain (DD).

Table 3. Identified class I epitopes in nucleocapsid and predicted HLA restrictions

Peptide sequence Amino acid location Subject HLA-A HLA-B HLA-C

MSRIGMEVTPSGTWL 317-331 18 24:02, 26:01 40:01, 44:05* 02:02, 03:04

GMEVTPSGTWLTYTG 321-335 18 24:02, 26:01 40:01, 44:05* 02:02, 03:04

Boldface type indicates a strong binder (,0.5); italic type indicates a weak binder (0.2-5).

*Predicted B*44:05 peptide: GMEVTPSGTW.
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through selection, rapid expansion, or through methods akin to
generation of CMV-specific T-cells from naı̈ve donors, will also
require study.47,48 Nevertheless, given the information currently
available, our recommendation would be that seropositivity may
not be necessary for the generation of a donor-derived CST
product to be given prophylactically in the BMT setting. In
contrast, for the development of a third party off-the-shelf CST
therapeutic for the treatment of high-risk patients with known
infection, our data suggests that using donors with confirmed
humoral immunity will enable the generation of broadly antigen
and epitope specific therapeutic T-cell products.

Limitations of this study include the sample size, the tendency
toward mild illness in the subjects, and that not all the subjects were
PCR-positive or antibody-positive for SARS-CoV-2. However, because

the vast majority of the convalescent donors had uncomplicated
disease, our data suggest that T-cell and humoral responses
measured here represent an effective adaptive immune re-
sponse to SARS-CoV-2 that can be effectively harnessed (es-
pecially from BMT donors) for the manufacture of CST products
for clinical use. We did not evaluate donors longitudinally, and
therefore the absence of T-cell responses in 42% of subjects may
relate to the timing of T-cell responses following primary in-
fection. We limited evaluation to structural viral proteins, given
their described immunodominance in related coronaviruses, but
it is possible that T-cell responses to nonstructural proteins may
have been present, as has been demonstrated in recent studies.
The study was also inadequately powered to determine if any
correlations exist between clinical severity and recognition of
specific T-cell epitopes. However, as all of the evaluated patients

Table 4. Epitope homology with other human coronaviruses

SARS-CoV-2 epitope identified Other human coronavirus Protein name Amino acid sequence alignment

Membrane
LRGHLRIAGHHLGRC LRGHLRIAGHHLGRC

SARS coronavirus M protein RGHLRMAGHPLGRC
HKU1 Membrane glycoprotein RGHLYIQGVKLG
MERS M protein GHLKIAGMHFGAC

LRIAGHHLGRCDIKD LRIAGHHLGRCDIKD
SARS coronavirus Membrane protein LRMAGHPLGRCDIKD

SRTLSYYKLGASQRV SRTLSYYKLGASQRV
SARS coronavirus Membrane protein SRTLSYYKLGASQRV

SYYKLGASQRVAGDS SYYKLGASQRVAGDS
SARS coronavirus Membrane protein SYYKLGASQRVGTDS

LGASQRVAGDSGFAA LGASQRVAGDSGFAA
SARS Coronavirus Membrane glycoprotein LGASQRVGTDSGFAA

NL63 Orf1a protein LGAS–VTEDVKFAA

Nucleocapsid
KPRQKRTATKAYNVT KPRQKRTATKAYNVT

SARS coronavirus Nucleocapsid protein KPRQKRTATKQYNVT
OC43 Nucleocapsid protein KPRQKRSPNK
NL63 Chain A, nucleocapsid KPRWKRVPTREENV
MERS Nucleocapsid protein RHKRVATKSFNV

AFFGMSRIGMEVTPS AFFGMSRIGMEVTPS
SARS coronavirus Nucleocapsid protein N AFFGMSRIGMEVTPS

MSRIGMEVTPSGTWL MSRIGMEVTPSGTWL
SARS coronavirus Nucleocapsid protein MSRIGMEVTPSGTWL

GMEVTPSGTWLTYTG GMEVTPSGTWLTYTG
SARS coronavirus Nucleocapsid protein GMEVTPSGTWLTY

Spike
PFFSNVTWFHAIHVS — — —

NVTWFHAIHVSGTNG — — —

SKHTPINLVRDLPQG SKHTPINLVRDLPQG
OC43 Replicase polyprotein 1ab PANIV—LPQG

SARS coronavirus S1 protein PIDVVRDLPSG
PINLVRDLPQGFSAL PINLVRDLPQGFSAL

SARS coronavirus Chain A, spike PIDVVRDLPSGFNTL
OC43 Replicase polyprotein 1ab PANIV–LPQG

YNYLYRLFRKSNLKP YNYLYRLFRKSNLKP
SARS coronavirus Chain E, spike glycoprotein YNYKYRYLRHGKLRP

Boldface type indicates a strong binder (, 2).

MERS, Middle East respiratory syndrome.
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survived and recovered without significant inflammatory or
thrombotic complications, it is a reasonable assumption that the
detected T-cell responses represent beneficial adaptive cellular
responses.

We do acknowledge that a maladaptive immune response is
highly suspected to be the cause of hyperinflammatory com-
plications such as multisystemic inflammatory syndrome in
children,49 and an understanding of the role of adaptive and
innate responses in patients with inflammatory complications will
be critical in determining the characteristics of an effective and
enduring adaptive immune response to SARS CoV-2. Although
this is a consideration when developing adoptive T-cell immu-
notherapy trials for this disease, the detection of T cells in our
cohort of donors, the majority of whom had mild disease sug-
gests that judicious use of CST products, given early in the in-
fection process or given as prophylaxis (eg, early post-BMT) to
high-risk patients warrants investigation. Inflammatory compli-
cations in patients with COVID-19 have been correlated with
elevation of IL-6, IL-10, and IL-13.50,51 Because other in-
flammatory complications such as cytokine release syndrome are
very rare after virus-specific T-cell therapy,52 the risk of in-
flammatory complications after adoptive T-cell therapy for
COVID-19, particularly when used early and derived from donors
who themselves did not have inflammatory disease, are
likely low.

In summary, this is the first report to demonstrate that a broadly
specific T-cell therapeutic targeting 3 structural proteins of
SARS-CoV-2 can be reliably expanded using GMP-compliant
methodologies from the majority of convalescent donors.
Moreover, the CST products are principally comprised CD41

T cells specific for conserved regions of these proteins, andmost
frequently, the membrane protein. The immunodominance of
the membrane protein therefore also has important implications
for vaccine development to elicit cellular immune responses
becausemost current vaccine candidates are focused exclusively
on the spike protein to elicit neutralizing antibody. This work now
enables the rapid translation of this novel treatment to the clinic.
Future studies will therefore evaluate whether patient-specific
and/or off-the-shelf adoptive T-cell immunotherapies using this
novel CST product will emerge as a safe and useful treatment
modality in high-risk patients with COVID-19, as we and others
have effectively shown for the treatment of other respiratory
viruses especially in the BMT setting.53
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