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KEY PO INT S

l T-PLL cells resemble
activated
T-lymphocytes with
augmented memory-
type effector
functions including a
marked anergy to
apoptotic triggers.

l Specific co-opting
loss of inhibitory
receptors and the
overexpressed signal
enhancer TCL1A lower
thresholds toward
permissive TCR input.

T-cell prolymphocytic leukemia (T-PLL) is a poor-prognostic neoplasm. Differentiation stage
and immune-effector functions of the underlying tumor cell are insufficiently characterized.
Constitutive activation of the T-cell leukemia 1A (TCL1A) oncogene distinguishes the (pre)
leukemic cell from regular postthymic T cells. We assessed activation-response patterns of the
T-PLL lymphocyte and interrogated themodulatory impact by TCL1A. Immunophenotypic and
gene expression profiles revealed a unique spectrum of memory-type differentiation of T-PLL
with predominant central-memory stages and frequent noncanonical patterns. Virtually all
T-PLL expressed a T-cell receptor (TCR) and/or CD28-coreceptor without overrepresentation
of specific TCR clonotypes. The highly activated leukemic cells also revealed losses of negative-
regulatory TCR coreceptors (eg, CTLA4). TCR stimulation of T-PLL cells evoked higher-than-
normal cell-cycle transition and profiles of cytokine release that resembled those of normal
memory T cells. More activated phenotypes and higher TCL1A correlated with inferior clinical
outcomes. TCL1Awas linked to the marked resistance of T-PLL to activation- and FAS-induced
cell death. Enforced TCL1A enhanced phospho-activation of TCR kinases, second-messenger
generation, and JAK/STAT or NFAT transcriptional responses. This reduced the input

thresholds for IL-2 secretion in a sensitizer-like fashion. Mice of TCL1A-initiated protracted T-PLL development resembled
such features.When equippedwith epitope-defined TCRs or chimeric antigen receptors, these Lckpr-hTCL1Atg T cells gained
a leukemogenic growth advantage in scenarios of receptor stimulation. Overall, we propose amodel of T-PLL pathogenesis
in which TCL1A enhances TCR signals and drives the accumulation of death-resistant memory-type cells that use amplified
low-level stimulatory input, and whose loss of negative coregulators additionally maintains their activated state. Treatment
rationales are provided by combined interception in TCR and survival signaling. (Blood. 2020;136(24):2786-2802)

Introduction
T-cell prolymphocytic leukemia (T-PLL) is the most common ma-
ture T-cell leukemia.1 Characterized by the expansion of peripheral
T cells, T-PLL typically presents with exponentially rising tumor
burden in peripheral blood (PB) paralleled by splenomegaly,

lymphadenopathy, and bone marrow (BM) infiltration.2,3 T-PLL
shows poor responses to conventional cytostatics. The induced
remissions after anti-CD52 Alemtuzumab are rarely sustained.4-6

With a median overall survival (OS) of ,3 years, T-PLL patients still
face adismal prognosis.2,4,5 T-PLL cells display a classical CD21,51,71
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Figure 1.
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post-thymic immunophenotype and bear no autoaggressive
features.3,7,8

The most characteristic molecular hallmark of T-PLL are the
rearrangements inv(14)(q11q32) and t(14;14)(q11q32) that jux-
tapose the T-cell leukemia 1A (TCL1A) oncogene locus under
control of enhancers of T-cell receptor (TCR)a or TCRd genes.9

The resulting aberrant expression of TCL1A is found in the
majority of T-PLL.2,10 As peripheral T cells lack TCL1A, this ab-
rogation of physiological TCL1A silencing is considered causal in
the initiation towards T-PLL. Transgenic (tg) TCL1A is oncogenic
in mice by inducing mature T-cell leukemias that resemble
human T-PLL.9

Apart from a synergism of TCL1A with the frequently perturbed
damage checkpoint kinase ataxia telangiectasia mutated
(ATM),11 an oncogenic concept around the T-cell receptor (TCR),
the most central receptor in growth and differentiation of T cells,
is still elusive in T-PLL. We had shown that, in T-PLL cells, TCL1A
is recruited to TCR-induced protein complexes involving the
signaling components ZAP70, LCK, and AKT.9 A physical in-
teraction of TCL1A with the prosurvival Ser/Thr kinase AKT
enhances its catalytic activity.10,12,13 Given our observation that
TCL1A expression itself is inefficient in penetrating the tight
homeostatic control in polyclonal settings,14 we postulated a
cooperativity of TCL1A with TCR signals to promote clonal es-
cape and leukemic outgrowth.

Moreover, the maturation stage and effector profile of T-PLL are
insufficiently established and cannot be inferred from the clinical
presentations. We phenotypically and functionally characterized
the T cells of 188 well-annotated T-PLL and interrogated the
modulatory impact of TCL1A. The memory-type tumor cells of
no obvious clonotypic bias differed from normal T cells by high
activation levels and aberrant TCR-elicited intracellular and ef-
fector responses. We show a competitive advantage by tonic
TCR signals enhanced by kinase-coactivating and antiapoptotic
TCL1A.

Methods
Samples
PB was obtained from 188 T-PLL patients (details in the sup-
plemental Methods, available on the Blood Web site; supple-
mental Table 1) and age-matched healthy donors after informed

consent according to GCP guidelines and review-board ap-
proved protocols (#11-319). PB mononuclear cells (PBMCs) from
T-PLL patients and healthy volunteers were isolated by density
gradient centrifugation (Histopaque; Sigma-Aldrich).

Mice
Procedures were approved under 2012.A166, 2012.A394,
FK/1050, 8.87-50.10.35.08.071, 84-02042012A417, and 84-
02042012A339. TCRtg OT-1, RAG1-deficient, and Lckpr-hTCL1Atg

mice were obtained from Jackson Laboratories (Bar Harbor, ME)
and CARCEA mice were obtained from the Patterson Institute
(Manchester, UK).15 CARCEA and Lckpr-hTCL1Atg mice were cross-
bred for 10 generations toward double-tg animals (CARCEAxLckpr-
hTCL1Atg). In vivo bioluminescence imaging was performed in
murine recipients ofOT-1 T cells transduced with luciferase vectors
using the IVIS Imaging SystemLumina II (PerkinElmer; supplemental
Methods). Magnetic resonance imaging on anesthetized animals
(Isofluran; AbbVie) was performed using an Ingenia 3.0T magnetic
resonance imaging system (Philips) with a small rodent solenoid coil
(Philips Research). Magnetic resonance images were acquired as
described.16 Spleen volumetry was conducted using OsiriX lite
(Pixmeo).

Magnetic-bead–based cell enrichment
Healthy T-cell populations were enriched from PBMCs by
negative selection using the following kits according to the
manufacturer’s instructions (Miltenyi Biotec): pan-T-cell isolation
kit, naı̈ve CD41 T-cell isolation kit II, memory CD41 T-cell iso-
lation kit, and CD41 central memory (CM) T-cell isolation kit.
Required target purities of .98% were determined by flow
cytometry.

Flow cytometry
Applied antibodies are listed in the supplemental Methods. TCR
Vb expression was assessed by the human IOTest b Mark Kit
(BeckmanCoulter) and the Mouse Vb TCR Screening Panel (BD
Pharmingen) on a Gallios cytometer using the Kaluza software
(BeckmanCoulter).

Gene expression profiling (GEP)
RNAwas extracted from 13 107 PBMCs of T-PLL patients (.95%
T-cell purity) and healthy-donor PB T-cell populations (see
"Magnetic-bead–based cell enrichment") using the mirVana Kit
(Invitrogen) or ReliaPrep (Promega). Hybridization and reading
on Illumina HumanHT 12 v4 BeadChip arrays or Illumina TrueSeq
libraries with PE sequencing was done according to the

Figure 1. The TCR-positive T-PLL cells comprise a spectrum of memory phenotypes with a predominant CM fraction and frequent unconventional patterns. (A-B)
Surface (s) marker expression (flow cytometry) in PB-derived primary T-PLL cells. (A) Distribution of sTCRa/b, sCD3, sCD28 across 143 T-PLL with no case lacking all 3 receptors. (B)
Spectrum of naı̈ve/memory differentiation on the basis of expression of CD45RA, CD45RO, CCR7, and CD62L (n5 115; see supplemental Table 2 for marker-defined subsets). A
70% cutoff was used to classify the predominant differentiation. Exemplary cases (including gating strategies) for each conventional and noncanonical pattern are illustrated in
supplemental Figure 1A-B. Most cases (95 of 115, 83%) had a dominant T-memory subpopulation (CD45RO1). Within these CD45RA2/RO1 or CD45RA1/RO1 cases, a CCR71/
CD62L1 CM pattern was most frequent. Composite cases comprised 2 distinct populations with at least 1 showing a CD45RO1 phenotype (12 of 115 cases, 10%). Of the few
CD45RA1/RO2 cases (6 of 115, 5%), 3 (3% of total) resembled classical CCR71/CD62L1 naı̈ve T cells. A small number of cases had transitional phenotypes of EM-like or of
terminally differentiated EM T cells with CD45RA (T-EMRA). Alignments with (co)expression of CD4 and CD8 revealed no association with CD45 isoform patterns. (C-D) Array-
based GEP on 70 primary T-PLL and of healthy PB-derived naı̈ve, pan-memory, and CM T cells (10 donors each). UMAP analysis used gene signatures identified in comparative
algorithms (25 most differentially expressed genes per comparison; 1 fold-change sorted; P value cutoff, 0.05; supplemental Methods). The gene lists are in supplemental
Table 3, and the most informative genes are illustrated in supplemental Figure 2A. For heatmaps showing signature gene expression in T-PLL vs control samples (unsupervised
clustering), see supplemental Figure 2B-C. (C) UMAP on the basis of signature genes identified in the pan-memory vs naive T-cell comparison. Circles and a separator line
highlight distinct clustering of healthy-donor T cells vs T-PLL cells. (D) UMAP based on signature genes identified by pan-memory vs CM T-cell comparison. (E) Clustering of
77 T-PLL vs 373 T-cell/natural killer–cell lymphomas using UMAP (5000 most differentially expressed genes over all entities). (F) Accumulation of EM T cells in TCL1A-driven
murine (pre)leukemic expansions (flow cytometry). T-splenocytes from young (10 weeks) or old (10 to 16 months) Lckpr-hTCL1Atg mice vs age-matched C57BL/6J wild-type
controls (n 5 5 each). (G) Frequency-ranked TRBV gene usage in dominant TRB clonotypes of 90 T-PLL on the basis of TRB NGS.
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Figure 2. Increased activation state of the T-PLL cell includes losses of immune regulatory receptors. (A) Significantly increased percentages of T cells (flow cytometry)
expressing activation/proliferationmarkers (CD38, CD40L, CD69, Ki-67) as well as cytokine (IL-2, -4, -7) and chemokine receptors (CCR3, CXCR4) in T-PLL samples (up to 75 cases)
and CD3-gated healthy-donor PBMCs (n 5 10; unpaired Student t test with Welch’s correction). Cutoffs for percentage of positive cells of the first 6 markers: CD122 (.10%),
CD25 (.50%), CD38 (.50%), CD40L (.5%), CD69 (.5%), and Ki-67 (.20%). A sum score entails the counts of individual markers that are expressed above these thresholds
(positive) for the 7-tier (0-6) activation score: low (green; 0 or 1 marker) vs high (red;$2 markers). (B) Higher number of CD691 T cells at basal (no TCR crosslinking) conditions in
leukemic Lckpr-hTCL1Atg and no more increase after TCR engagement compared with age-matched C57BL/6J mice (flow cytometry; P 5 .0036, unpaired Student t test, SEM).
T cells of both strains did not show differences in CD69 positivity in young animals and similar responsiveness to anti-CD3/CD28 stimulation. (C-D) Significantly reduced
expression of negative TCR-regulatory coreceptors in T-PLL cells over PB-derived normal T cells (unpaired Student t test with SEM). (C) Heatmap on the basis of coreceptor gene
transcript abundances (array-based GEP) in the 3 isolated normal T-cell subsets (each from 10 healthy donors) compared with 70 T-PLL. Alignment with TCL1AmRNA expression
as well as genomic lesions in ATM and JAK/STAT genes.11 (D) Flow cytometry confirms immune coreceptor downregulation in CD5 gates of healthy-donor naı̈ve and pan-
memory T cells (each n 5 6) vs 20 T-PLL (unpaired Student t test, SEM). See supplemental Figure 4D for impaired TCR-induced increases of these coreceptors in T-PLL cells.
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manufacturer’s instructions. Data were submitted to the Gene
Expression Omnibus (GEO) database under accession number
GSE107397 and gene set enrichment (GSE) uploading.11 The
published dataset GSE58445 was used for comparative analy-
ses.17 Validations were performed by quantitative reverse
transcription polymerase chain reaction (qRT-PCR). Detailed
information on the bioinformatic algorithms (eg, normal T-cell
subsets, literature-based memory T-cell signatures, or metadata
integration) or gene lists are in the supplemental Methods.

Cell culture
All cell lines as well as human and murine primary cells were
cultured in RPMI-1640 medium including L-glutamine (Gibco)
supplemented with 10% fetal bovine serum (Sigma-Aldrich) and
penicillin/streptomycin (100 U/ 0.1 M). For TCR crosslinking,
plate-bound anti-CD3e (OKT3; BioLegend) and/or anti-CD28
(15E8; BioLegend) antibodies were used at various concentra-
tions; phorbolmyristylacetate with ionomycin (Sigma-Aldrich)
was used for generic T-cell activation.

Transfection and transduction
The human mature T-cell line HH (TCL1A-negative) was trans-
fected with a doxycycline-inducible TRMPVIR vector containing
TCL1A.18 TCL1A expression in these iHH-TCL1A cells was in-
duced by addition of doxycycline (Sigma-Aldrich) for 24 hours.
The cell line pairs Jurkat-GFP/-TCL1A, Hut78-GFP/-TCL1A,
Hut78-empty-vector (EV)/-TCL1A, CTLL-2-GFP/-TCL1A, and A5-
NFAT-GFP19 without or with (2/1) TCL1A were established as
described previously10,20 or as in the supplemental Methods.
OT-1 T cells were transduced by retroviral vectors coexpressing
human TCL1A cDNA10 with GFP (MP91-GFP14) or with a lucif-
erase reporter (K. Cornils, Hamburg, Germany).

Immunoblotting
Western blots were performed on whole-cell lysates as
described.21 Antibodies are listed in the supplemental Methods.
Signals were visualized by Western Bright ECL (Advansta) and
recorded on autoradiography films (Santa Cruz Biotechnology).
Densitometry used the ImageJ software (http://rsb.info.nhi.gov/
ij/).

Immunohistochemistry
Staining for murine CD81 splenic T cells was performed on
cryosections as described.22 Biotinylated primary antibodies
(BioLegend), streptavidin-POD conjugate (Roche Diagnostics),
and DAB chromogen (Vector Laboratories) were used. Sections
were counterstained by hematoxylin (Carl Roth). Slides were
digitalized using the VENTANA DP200 scanner (Roche Diag-
nostics). Signal quantification used the open source software
QuPath.23

Immunofluorescence
Stainings for murine CD3, phospho (p)CD3z, and the chimeric
antigen receptor (CAR) were performed on cryosections as
described.22 Fluorescent-dye labeled primary antibodies (CD3;
BioLegend), secondary antibodies (BioLegend), or streptavidin
were used for detection. Signal quantification used the open
source software ImageJ (http://rsb.info.nih.gov/ij).

Statistics
Results are presented with standard descriptive parameters (eg,
mean 6 standard error of the mean [SEM]) and the specific
tests to assess difference probabilities (GraphPad Prism, v5.0).
P , 0.05 were considered significant.

Results
T-PLL cells retain TCR expression and display a
memory-phenotype spectrum
Multi-parameter immunophenotyping of T-PLL cells showed
surface (s) TCRa/b positivity in 90% (129 of 143 cases). Coex-
pression of sTCRa/b, sCD3, and sCD28 was observed in 120
cases (84%). Although losses of sTCRa/b were paralleled by the
absence of sCD3 (14 cases, 10%; Figure 1A), no case lacked all 3
receptors. CD4 single positivity was observed in 62% (Figure 1B).

Despite the existence of nonconventional patterns (supple-
mental Figure 1A-B; supplemental Table 2 for phenotypic cat-
egories), the majority of cases was composed of a dominant
memory T-cell population (95 of 115 cases, 83%; Figure 1B),
indicated by single CD45RO (71 of 115 cases, 62%) or by
CD45RO/RA coexpression (24 of 115 cases, 21%). Most frequent
within both CD45RA2/RO1 and CD45RA1/RO1 cases was a
CCR71/CD62L1 central-memory (CM) pattern (42 of 95 cases,
44%). Automated spanning-tree progression analysis of density-
normalized events,24 confirmed these results (supplemental
Figure 1C).

Array-based GEP of healthy-donor PB-isolated T cells (pan-
memory [CD45RO1/RA2] T cells, CM [CD45RO1/RA2, CCR71]
T cells, and naı̈ve [CD45RA1/RO2] T cells [10 donors each])
allowed the identification of signatures that best discerned these
normal T-cell subsets (supplemental Figure 2A; supplemental
Table 3; supplemental Methods). Guided by these most in-
formative gene sets, uniform manifold approximation and pro-
jection (UMAP) analyses showed that transcriptomes of primary
T-PLL cells (70 cases) revealed a higher similarity to pan-memory
T cells as compared with naı̈ve T cells (Figure 1C; supplemental
Figure 2B), and to CM T cells as compared with pan-memory
T-cells (Figure 1D; supplemental Figure 2C). Quantitative reverse

Figure 3. The TCR competent T-PLL cell shows aberrant effector responses. (A) Patterns of Ca21 efflux upon CD3/28 crosslinking in 12 primary T-PLL; 4 representative
examples (and number/cohort): TP017 (strong response, CD28-enhanced), TP093 (strong response, CD28-inhibited), TP018 (weak response, CD28-enhanced), TP046 (weak
response, CD28-inhibited). (B) ITK inhibition blocks the stimulation-induced (CD3/CD28 crosslinking, phorbolmyristylacetate/ionomycin) increase in cell viability (CellTiter-Glo)
in T-PLL cells (unpaired Student t test, SEM). Inhibitors: PRN-694 (covalent binding; relevant IC50s: ITK 0.3nM; RLK 1.4nM; JAK3 30nM) and BMS-509744 (reversible binding; IC50:
ITK 15nM).52 C) Cytokine secretion of anti-CD3/CD28-stimulated healthy-donor derived CD41 naı̈ve and CD41 memory T cells (each n5 5) vs T-PLL cells (n5 10) in relation to
their unstimulated controls (11-analyte human cytokine array). Overall, secretory responses of healthy memory T cells and T-PLL cells were more similar and higher as compared
with healthy-donor CD41 naı̈ve T cells. Particularly, releases of IL-2, TNFa/b, GM-CSF, IL-10, IFNg, and IL-1bwere strongly increased (unpaired Student t test, SEM). (D) Upon TCR
crosslinking T-PLL cells (5 cases) enter the cell cycle (propidium iodide (PI) staining and flow cytometry) more readily than pan–T cells (n5 4) or CD41 memory T cells (n5 5) from
healthy donors, which was more pronounced in conditions of combined CD3/CD28 costimulation (unpaired Student t test, SEM). (E) Enhanced pERK1/2 response to TCR
crosslinking in leukemic Lckpr-hTCL1Atg mice upon enrichment of TCL1A-transgene expressing memory T cells (see Figure 1F) as compared with preleukemic mice (and each to
age-matched C57BL/6J wild-type controls); pooled splenocyte lysates of 3 mice; for sample purities see supplemental Figure 6D.
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Figure 4. T-PLL cells show a marked defect in the execution of AICD. (A) Apoptosis induction (Annexin V/7AAD flow cytometry) upon repeated T-cell activation. Healthy-
donor pan–T cells (n5 3), healthy-donor CD41 memory T cells (n5 7), and T-PLL cells (n5 7) were cultured in the presence of 10 U/mL IL-2 and stimulated once with 1 mg/mL
PHA (either on day 1 or day 6) or repeatedly on day 1 and day 6. T-PLL cells and normal CD41memory T cells show a similarly diminished capacity to undergo AICD as compared
with age-matched healthy-donor pan–T cells (unpaired Student t test, SEM). (B) CD95L (n5 70 T-PLL) and CD95 (n5 68 T-PLL) expression detected by flow cytometry in healthy-
donor T cells (n 5 10) and T-PLL cells. Although heterogeneously distributed, CD95L-positive cells are increased in T-PLL samples (P 5 .0011, unpaired Student t test, SEM).
sCD95 (right) reveals a broader range in T-PLL than in healthy controls, with an obvious clustering of cases at the low and high percentages. Color-coded low (,50% cells, blue) vs
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transcription polymerase chain reaction analyses confirmed the
T-cell subset-specific expression of 6/6 best-classifier genes in 12
representative T-PLL (supplemental Figure 2D). Moreover, simi-
larities of T-PLL cells to CM T cells were confirmed by applying
published25 T-memory signature gene sets (supplemental
Figure 2E). Finally, when integrating GEP data of 77 T-PLL with
reanalyzed metadata from 373 cases of other mature T-cell/nat-
ural killer–cell malignancies covering frequent World Health Or-
ganization categories,17 T-PLL showed a distinctly close proximity
to (central) memory T cells (Figure 1E).

To assess phenotypic kinetics during disease evolution, we took
advantage of the early-stage access provided by the T-PLL
model of Lckpr-hTCL1Atg mice with thymic onset of TCL1A
overexpression.9,11 In spleens of leukemic animals, we observed,
in resemblance of overt human T-PLL, a predominance of
memory T cells (CD441/CD62L2; means, 94.1% [Lckpr-hTCL1Atg]
vs 28.7% [wild type (WT)]) with a near-complete exhaustion of the
naı̈ve T-cell compartment (Figure 1F). T-splenocytes of pre-
leukemic Lckpr-hTCL1Atg mice showed no differences in sizes of
major T-cell populations to age-matched WT controls (means,
25% naı̈ve and 65% CM T cells), implicating a lack of a major
differentiation block in early T-PLL pathogenesis. Murine T cells
retained CD3/CD28 expression throughout leukemic evolution
(supplemental Figure 2F).

The constitutional TCR profile of T-PLL is diverse
High-throughput sequencing of TRBV gene loci in 90 T-PLL by
consensus primers26 revealed a broad distribution of rearranged
Vb-chains, with TRBV20-1 (9%) and TRBV27 (8%) as the most
prevalent (Figure 1G). The detected TRBV was usually mono-
clonal, but a small subset of cases (5%) showed a polyclonal
composition. These data corroborate the spectral characteristics
of expressed TCR domains that we previously observed by a
flow-cytometric kit for limited Vb-species.27

Whole-transcriptome sequencing in 15 T-PLL confirmed the
productive expression by the rearranged TCRs (supplemental
Figure 3A). Compared with the TCRa and -b diversities of
healthy-donor pan-CD31 T cells (mRNAseq of 4 donors),
monoclonality was evident in all 15 cases. Translating the tri-
nucleotide code of the TCRa/bCDR3 into amino acid sequences
showed no intercase overlap (supplemental Table 4).

A broad and heterogeneic TCR clonotypic repertoire was also
observed in leukemic Lckpr-hTCL1Atg mice in which chronologic
assessments suggested evolution from a polyclonal background
(supplemental Figure 3B-D). Young Lckpr-hTCL1Atg animals
showed the same polyclonal Vb-spectrum (flow cytometry) as
young and old WT controls. The T-cell expansions of leukemic

Lckpr-hTCL1Atg mice revealed oligo/monoclonal Vb-chain ex-
pression; however, similar to human T-PLL, without obvious Vb-
chain biases.

T-PLL cells display a markedly activated phenotype
Assessing the basal T-cell activation status of 75 T-PLL compared
with healthy-donor T cells, T-PLL cells showed an overall ele-
vated expression of established T-cell activation and pro-
liferation markers (CD38, CD69, CD40L, Ki-67; Figure 2A). This
was also observed for the cytokine receptors CD25 (IL-2Ra),
CD122 (IL-2Rb), CD124, and CD127 (Figure 2A). Samples from
3 T-PLL patients were also assessed for changes in T-cell acti-
vation between the initial diagnosis and clinical progression (eg,
illustrated by increasing PB lymphocytosis). There was no uni-
form association of altered cellular activation (CD25, CD38,
CD69) or secretory IL-2 responses to TCR stimulation upon
disease progression, and the preexisting memory pattern
(CD45RA/RO) remained unaffected (supplemental Figure 4A;
supplemental Table 5).

An increased baseline expression of chemokine-receptors was
seen for CCR3 and CCR4, but not for CCR5, CXCR3, or CXCR4
(Figure 2A; supplemental Figure 4B). These patterns of marker
expression were not associated with specific T-cell (differenti-
ation) subsets (supplemental Figure 4C; supplemental Table 6).
In further support of a leukemia-associated elevated T-cell ac-
tivation state, basal T-cellular CD69 expression was significantly
(P 5 .0036) increased, and saturated towards further TCR
stimulation, in leukemic T-PLL mice as compared with age-
matched WT controls (Figure 2B).

T-cell activation by (constant) TCR triggers also involves counter-
regulation by coreceptors. Of those, CTLA4, LAG3, PD1, PD-L1,
OX40, and 4-1BB were generally downregulated in T-PLL as
compared with healthy-donor naı̈ve and pan-memory T cells,
both at the mRNA and protein level (Figure 2C-D). Upon
stimulation T-PLL cells upregulated these coreceptors to a lower
degree than normal T cells (supplemental Figure 4D). This
suggests that the transformed T cells have escaped autor-
egulatory programs to ensure an elevated net level of acti-
vation. Although genes encoding TCR pathway components
are rarely subject to mutations or copy-number alterations in
T-PLL,11 their mRNA level was congruently deregulated here in
human and murine T-PLL (eg, downregulated CTLA4; sup-
plemental Figure 5A-C). Major histocompatibility complex
(MHC) molecules, as further parts of a T-cell immune synapse,
were more often downregulated at the global transcript level in
T-PLL vs healthy-donor pan-memory T cells (supplemental
Figure 5D).

Figure 4 (continued) high ($50%, red) sCD95 expression is reiterated in panels C, D, andH. (C) Apoptotic response of T-PLL cells (12 cases) to CD95 engagement by an agonistic
antibody (Annexin V/7AAD staining, flow cytometry). T-PLL cells are resistant to extrinsically induced apoptosis via Fas ligation, irrespective of FasR (sCD95) expression status.
Positive controls: Hut78 mature T-cell lymphoma line and healthy-donor pan–T cells (n 5 3; unpaired Student t test, SEM). (D) Lack of Caspase-3 cleavage in T-PLL cell lysates
upon CD95-ligation (agonistic antibody), whereas Venetoclax (targeting the intrinsic apoptosis pathway) induced processing of this distal apoptotic executioner. (E) Viability
(MTT-basedmetabolic activity) of Hut78 and Jurkat T cells (functionally Fas/L competent) upon exposure to the CD95 agonistic antibody was decreased to a lesser degree in the
presence of TCL1A (unpaired Student t test, SEM). (F) Introduction of TCL1A in Jurkat cells reduced the CD95-ligation induced levels of processed Caspase 3 and PARP. (G)
TCL1A-mediated resistance to apoptotic CD95-ligation was alleviated by steric antagonization of the prosurvival TCL1A-AKT interaction (similar susceptibility to anti-CD95
agonistic antibody between Hut78-TCL1A cells and Hut78-GFP controls; unpaired Student t test, SEM). TCL1A surface model (yellow, hydrophobic; green, hydrophilic) with the
aligned stretch of interphase-mimicking decoy peptides (red) that were linked to a TAT protein transduction domain. (H) Levels of soluble Fas in plasma of patients with T-LGL
(n 5 5)and T-PLL (n 5 30) were higher than in healthy-donor plasma samples (n 5 4; P 5 .032 and P , .0001, respectively, unpaired Student t test with Welch’s correction),
irrespective of CD95 expression (blue/red).
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TCR activation in T-PLL triggers aberrant
signal responses
Postulating (auto)antigen/MHC–mediated differentiation of the
T-PLL precursor, we assessed the preservation of TCR signal
competence in leukemic T-PLL cells. Cell viability increased,
particularly in response to CD3/CD28 crosslinking (as compared
with IL-2; supplemental Figure 6A). Although CD3 engagement
evoked a strong Ca21-efflux in most T-PLL (8 of 12 cases; 67%)
and CD28-costimulation enhanced this second-messenger re-
lease in 9 of 12 (75%) cases (Figure 3A), there was a small
proportion of weak responders. Pharmacologic inhibition of the
central TCR-signaling kinase interleukin-2-inducible T-cell kinase
(ITK) suppressed the activation-induced stimulation of T-PLL cell
viability (Figure 3B).

Generally, the stimulation-induced kinetics in the expression of
activation markers, chemokine receptors, and CD45RO in T-PLL
cells were rather similar to those of age-matched normalmemory
T-cell subsets (supplemental Figure 6B-C). Moreover, T-PLL cells
revealed a robust (TCR-stimulated) secretion of the pre-
dominantly Th1-associated cytokines IFNg, IL-2, IL-10, TNFa/b,
and IL-8 that resembled the response of age-matched healthy-
donor CD41 pan-memory T cells, as compared with CD41 naı̈ve
T cells (Figure 3C; supplemental Figure 7; supplemental Ta-
ble 7). Furthermore, TCR crosslinking stimulated cell-cycle
progression from G1-to-S and G2-to-M was more efficient in
T-PLL than in pan–T cells or CD41 memory T cells of healthy-
donors (Figure 3D). Fittingly, the enrichment of memory-type
TCL1A-transgene expressing T cells during leukemic evolution
(Figure 1F) was accompanied by an enhanced TCR-induced
p-kinase induction as overtly leukemic Lckpr-hTCL1Atg T cells
showed higher pERK1/2 responses to CD3/28 crosslinking than
purified age-matched WT controls and T cells from preleukemic
stages (Figure 3E; supplemental Figure 6D).

Resistance of T-PLL cells to activation-induced
programmed cell death
Repeated stimulation of activated T cells physiologically triggers
activation-induced cell death (AICD) mainly by interaction of
membrane CD95 (FasR) with its ligand CD95L (extrinsic apo-
ptotic pathway).28 Importantly, T-PLL cells showed a reduced
propensity to undergo AICD as compared with healthy-donor
pan–T cells, a behavior in which they resembled age-matched
healthy-donor CD41 memory T cells (Figure 4A). Down-
regulation of FasR only partly explained this aberrant response,

because loss of sCD95 expression was observed in only 57% of
cases (39 of 68 cases, P , .001; Figure 4B).

Next, FasR functionality was assessed using the agonistic anti-
body EOS9.1. Such ligation of CD95 in 12 primary T-PLL samples
(6 CD95-high vs 6 -low expressors, Figure 4B) did not induce
apoptosis in either group, as per Annexin V expression and
cleavage of effector Caspase 3 (Figure 4C-D). To address the
potential protective effect of TCL1A against CD95-mediated
apoptosis Jurkat and Hut78 T-cell lines of introduced TCL1A
expression were interrogated. The presence of TCL1A was as-
sociated with higher cell viability as well as reduced processing
of Caspase 3 and poly-ADP ribose polymerase (PARP) upon
CD95 ligation as compared with the GFP-control–transfected
cell lines (Figure 4E-F). The protective impact of TCL1A, likely
contributing to resistance to CD95 ligation, could be partially
reversed by cellular uptake of interphase decoy peptides that
sterically inhibit the physical interaction of TCL1A with the
prosurvival kinase AKT29 (Figure 4G).

As another potential mode of resistance to Fas-induced apo-
ptosis, high plasma levels of soluble CD95 (Fas) were reported in
T-LGL.30 Indeed, Fas levels in plasma from 30 T-PLL and 5 T-LGL
patients were significantly higher (P , .0001 and P 5 .032; Stu-
dent t tests) than in healthy-donor derived samples (Figure 4H).

TCL1A enhances the intracellular and effector
responses to TCR stimulation
To specifically address the impact of high-level TCL1A on TCR
responses, we used T-cell leukemia lines (HH, Hut78, and Jurkat)
that were modified to constitutively or inducibly express a
TCL1A transgene resulting in protein levels similar to those of
human T-PLL (supplemental Figure 8A) and with retention of
comparable sCD3/sCD28/sTCR expression between each pair
(supplemental Figure 8B). Overall, we identified a proactive
impact of introduced TCL1A at the various levels of TCR-induced
responses, resembling those that we observed to be aberrant in
primary T-PLL cells (Figure 3). In detail, basal TCR-downstream
p-kinase levels were slightly increased by TCL1A expression
(Figure 5A). Moreover, TCR-induced responses were enhanced
as demonstrated by earlier and higher peaked pAKT and pERK1/
2 levels (Figure 5A; supplemental Figure 8C-D). Ca21 flux assays
confirmed the TCR signal–amplifying effect of TCL1A, affecting
the CD3 (TCR) signal more than CD28 coreceptor stimulation
(Figure 5B). This enhancer effect of TCL1A led to higher net

Figure 5. TCL1Aenhances TCRdownstream signaling. (A) Enforced TCL1A expression in humanHHmature T-leukemia cells enhances (earlier and higher levels) the phospho-
activation of AKT (pAKTSer473) and pERK1/2Tyr202/204 upon CD3/CD28 crosslinking (TCL1A-dose relatedness by titrated doxycycline in this inducible iHH-TCL1A system). Surface
CD3 and CD28 were expressed at similar degrees in both HH2/1 TCL1A sublines (supplemental Figure 8B). Bar charts indicate densitometric quantification of immunoblots. (B)
Single-cell and time-resolved Ca21 flux after TCR stimulation in Jurkat cells and their stable transfectants of TCL1A (fluo-4 loading). Stronger andmore extended flux signals were
detected in the presence of TCL1A, which was particularly noted for CD3/28 coligation, but also for single crosslinking of either TCR component. (C) Basal and TCR stimulation
induced surface expression of the activation markers CD38 and CD69 on Jurkat and iHH cells is increased in the context of TCL1A overexpression (unpaired Student t test, SEM).
D) Titration of TCL1A expression and TCR activation in iHH-TCL1A T cells and recording of IL-2 release (ELISA). Multi-level combinations: TCL1A (no, low, high doxycycline
dosages) each with CD3 (low, 0.1 mg/mL; high, 1.0 mg/mL) or/and each with CD28 (low, 0.2 mg/mL; high, 2.0 mg/mL) crosslinking antibodies. In a sensitizer-like fashion, TCL1A
enhanced IL-2 secretion (earlier reach of isoconcentrations) upon submaximal levels of anti-CD3 (also supplemental Figure 8E). Analyses used fitting kinetic models with a
maximum likelihood routine.Observations at 24 hours are not shown for better visibility. Illustrations of each time point are shown in supplemental Figure 8E. (E) Differential gene
expression in Hut78-TCL1A T cells (over Hut78-empty-vector controls) without or with TCR stimulation detected by RNAseq. Volcano plot resulting from the extraction of TCR-
induced genes in the TCL1A condition (over empty-vector control) with cutoffs of absolute Log2 fold-changes$ 1.5 and FDR values, 0.01. GSEA (gene set enrichment analysis)
of these genes (10 downregulated and 27 upregulated) shows, among others, a prominent enrichment for IL-2/STAT5 and IL-6/JAK/STAT3 pathway clusters. More details in
supplemental Figure 8F and supplemental Table 8. (F) The presence of TCL1A enhances TCR-inducedNFAT-coupledGFP expression in the A5 T-cell hybridoma reporter system
(unpaired Student t test, SEM). (G) IL-2-dependent murine CTLL-2 cells and their transduction with TCL1A or aGFP control followed by treatment with IL-2. (i-ii) Induced levels of
pERK1/2Thr202/Tyr204 and pAKTS473 (flow cytometry, 3 experiments) are higher in the TCL1A expressing subline (unpaired Student t test, SEM). (iii) CTLL-2 cells execute a higher
growth response (total cell number) under stimulation with increasing IL-2 concentrations upon ectopic TCL1A expression. TCL1A did not confer IL-2 independence.
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Figure 6. Competitive benefits to TCR-stimulated TCL1A-expressing T cells. (A) The experimental set-up for panels A-E is illustrated above the x-axis. Earlier and more
pronounced outgrowth of TCR-stimulated T cells in the presence of TCL1A. Blood was taken every 4 weeks from unstimulated (green, w/o stim) and repeatedly stimulated (red,
OVA stim) recipients, of either TCL1neg/GFP1 or TCL1A1/GFP1 OT-1 cells. Mean percentages (with SEM) of GFP1 cells (flow cytometry, CD31 gating) were compared between
the cohorts throughout the observation period (5 mice per group). (B) Unstimulated and stimulated recipient mice of TCL1A-Luc or T-Sapphire-Luc (control) transduced OT-1
cells were imaged 12 weeks after the first OVA/vehicle injection. Pseudocolor images were adjusted to the same threshold. (C) Quantified bioluminescence corroborates the
data of panels A and B. Signal intensities (average radiance [photons/s/cm2/sr]) are shown as relative values (untreated controls set to 100). (D) Accelerated T-cell tumor induction
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levels of cellular activation as detected by expression of acti-
vation markers (CD38, CD69; Figure 5C).

To assess a key distal effector function as well as to address
aspects of saturations and signal replacements, we recorded
kinetics of IL-2 release in experiments of titrated dosages of anti-
CD3, anti-CD28, and TCL1A in the iHH-TCL1A system. Although
maximally stimulated levels of IL-2 were independent of TCL1A,
its transfected presence potentiated IL-2 secretion in a
threshold-lowering fashion at submaximal intensities of CD3
engagement (Figure 5D; supplemental Figure 8E).

We next studied TCL1A-dictated transcriptional signatures and
its impact on IL-2 regulating genes. Analyses of global gene
expression of Hut78-TCL1A vs Hut78-EV controls with or without
TCR stimulation revealed restricted sets of differentially
expressed genes (Figure 5E; supplemental Figure 8F). Their
gene set enrichment analysis (GSEA) uncovered, among others,
enrichments in the IL-2/STAT5 and IL-6/JAK/STAT3 pathways
(Figure 5E, right). A4 T-cell hybridomas that express a GFP-
coupled NFAT (major transcription factor for IL-2) reporter,
exhibited increased GFP-MFIs upon TCR stimulation under
TCL1A overexpression (Figure 5F). This underlines the distal
effects of the TCR-signal–enhancing function of TCL1A.

As autocrine IL-2 (triggered by TCR signals) is another major
growth input of T cells, we studied the influence of TCL1A on
responses to IL-2 in the IL-2-dependent murine T-cell line CTLL-
2 (Figure 5G). Therein TCL1A conferred increased p-levels of
AKT and ERK1/2 under conditions of required and supramaximal
IL-2 dosages (Figure 5Gi-ii). This translated into a noticeable
growth advantage (Figure 5Giii).

Modeled chronic TCR stimulation facilitates
TCL1A-driven transformation
To assess for a viable cooperation of TCR signals and the impact
of TCL1A towards T-cell transformation in vivo, we used
TCL1A1/GFP1 or TCL1Aneg/GFP1 transduced ovalbumin
(OVA)–specific T cells from TCRtg (OT-1) mice, transplanted them
into RAG-/- recipients, and subjected them to defined TCR
stimulation by repeated administration of OVA peptide
(Figure 6A; supplemental Figure 9A). Importantly, numbers of
OVA-stimulated CD3-gated T cells in PB rose earlier and out-
grew all other conditions, when they expressed TCL1A
(Figure 6A). Of note, the presence of TCL1A seemed to obviate
the need for specific TCR stimulation as growth kinetics of OVA-
unstimulated TCL1A1/GFP1 cells were congruent to those of
OVA-stimulated TCL1Aneg/GFP1 cells. Considering that theOT-
1 receptor carries basal autonomous activity in the absence of

OVA ligation,31 this supports a concept of TCL1A enhancing
intrinsic TCR signaling, a low-level input which normal resting
memory T cells depend on.

Bioluminescence imaging 12 weeks after the first stimulation
revealed that transplanted cells also accumulated in spleens and
other abdominal regions. The strongest signals were recorded in
stimulated recipients of TCL1A1/GFP1 OT-1 cells (Figure 6B-C).

OVA stimulation promoted the transition of CM to effector memory
(EM) T-cell phenotypes on the basis of the changes in expression of
CCR7 and CD62L (supplemental Figure 9A, left). The most
prominent terminal EM profile was seen in TCL1A-transduced
T cells (of OVA-stimulated recipients). This resembles the pheno-
type of leukemic mice in the spontaneous model of TCL1A-driven
T-PLL development (Lckpr-hTCL1Atg; Figure 1F) and implicates
TCL1A to propel TCR-activation–induced differentiation.

Fitting these growth kinetics, the onset of T-cell tumors in the
TCL1A-transduced conditions was earlier in OVA-stimulated vs
unstimulated recipients (6.5-13.5 months vs 7-20 months, re-
spectively) and translated into shorter median OS (295 days vs
400 days, P 5 .0009; Figure 6D). Diseased mice had leukocy-
tosis, splenomegaly, and lymphadenopathy. The tumors of
stimulated mice exhibited the described EM phenotype
(Figure 6E) and more frequent CD691 T cells in the presence of
TCL1A (supplemental Figure 9A, right).

To corroborate these findings in another model, we used mice
carrying CARs as TCR surrogates with specificity for carci-
noembryonic antigen (CARCEA mice).22 To mimic chronic low-
input TCR stimulation, we took advantage of CEAtg recipient
animals, which provide constant low-level intestinal and pul-
monal expression of CEA (Figure 6F). This system allows MHC-
independent CAR-mediated tissue-associated recognition of a
surface self-antigen. Moreover, autologous repopulation of the
host after lymphodepletion better mimics the T-cell homeostatic
control enforced by a competitive polyclonal setting. Spleno-
cytes of CARCEA, Lckpr-hTCL1Atg, and CARCEAxLckpr-hTCL1Atg

mice (intercrosses described in the supplemental Methods) were
transplanted into CEAtg recipients, and PB CD31 T cells were
monitored (Figure 6F). Before the eventual fast incline of only the
TCL1A1 clones, there was a protracted phase of smoldering
expansions. Importantly, already at early stages, there was a
growth advantage of CARCEAxLckpr-hTCL1Atg cells; also over
Lckpr-hTCL1Atg T cells (Figure 6G). TheCD69- and Ki-67–positive
cell fraction was higher among CARCEAxLckpr-hTCL1Atg T cells
than among CARCEA T cells (Figure 6G, insets). Late-stage
CARCEAxLckpr-hTCL1Atg expansions showed increased spleen

Figure 6 (continued) and shorter OS upon provision of OVA peptide (vs unstimulated) in mice transplanted with TCL11/GFP1 OT-1 cells (log-rank test). (E) T-cell tumors (5
animals per cohort) induced by TCL1A-transduced OT-1 cells showed medium-sized lymphoid cells with a scant basophilic cytoplasm (spleen and PB) and a memory-T
immunophenotype. (F) System of CARs as TCR surrogates: splenocytes fromCARCEA, Lckpr-hTCL1Atg, andCARCEAxLckpr-hTCL1Atgmice were transplanted into lympho-depleted
CEAtg mice. (G) Blood samples from CEAtg recipients of CARCEA (blue), Lckpr-hTCL1Atg (green), or CARCEAxLckpr-hTCL1Atg (red) cells were taken every 2 to 4 weeks and were
analyzed by flow cytometry for repopulation of GFP1 (CAR) or TCL1A1 cells (CD31 gated). Statistical significances for recipients of Lckpr-hTCL1Atg and CARCEAxLckpr-hTCL1Atg

cells (descriptive, nonparameteric 95% confidence bands computed on the basis of a normal distribution assumption with smoothed conditional bounds on the basis of local
polynomial regression fitting). Insets: activation (CD69) and proliferation (Ki-67) was enhanced in T cells of CARCEAxLckpr-hTCL1Atg, particularly over CARCEA mice (example at
42 weeks post-transplantation; unpaired Student t test, SEM). (H) Quantification of splenic CD81 T-cell content by IHC on fresh-frozen tissues. In each section 3 representative
areas were used for signal quantification (QuPath software; percentage of positive cells; unpaired Student t test with SEM. (I) Immunofluorescence on spleen sections
(representative images, 3 mice/cohort) at 621 days post transplantation. Quantified cytoplasmic pCD3z signal intensities (3 areas per section; unpaired Student t test, SEM)
implicate additive contributions by CAR and genuine TCR signals (single fluorescence channels in supplemental Figure 9E). Similar surface expression of CD3 in all 3 lines (MFIs,
bottom right).
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volumes (magnetic resonance imaging at 1 year; supplemental
Figure 9B) and higher IFNg plasma levels (supplemental
Figure 9C). Upon termination of the experiment at day 621, there
were preleukemic signs of B-cell depletion and greater per-
centages of CD81 T cells in PB of CARCEAxLckpr-hTCL1Atg

transplanted mice (supplemental Figure 9D). This was paralleled
by higher densities of CD81 spleen infiltrates (Figure 6H).

Obviously, the T-cell expansions involved the CAR-antigen de-
prived splenic and PB milieu, rather than intestinal or pulmonal
sites and the latter displayed no autoimmune phenomena, clin-
ically and histologically (not shown). Spleen sections revealed
enhanced cytoplasmic pCD3z activation (via CAR or TCR) in
conditions of TCL1A expression (Figure 6I; supplemental
Figure 9E). Quantified pCD3z intensities of CARCEAxLckpr-
hTCL1Atg cells appeared as the sum of the CAR and TCL1A
components and because expression of sCD3 (preserved endo-
geneous TCR) was similar in all 3 cohorts (Figure 6I), this indicates
that TCL1A modulates both, the CAR and the TCR signal.

Together, both in vivo systems of defined TCR stimulation with a
proliferative advantage of T-cell expansions in the presence of
TCL1A support our in-vitro–derived concept of TCL1A as an
enhancer of protumorigenic pulsed or tonic TCR signals.

Activation state and TCL1A-based disease subsets
and a treatment rationale
Finally, we assessed the correlation of differentiation phenotypes,
activation marker expression, and TCL1A levels with clinical out-
come. The rare naı̈ve-T-cell immunophenotype (6 of 61 cases, 10%)
was linked to a longer OS than cases with CM and EM-phenotypes
(P5 .0069; Figure 7A). We observed such a relationship already in
an independent cohort by CD45RA immunohistochemistry of BM
sections.32 Moreover, expression of at least 2 activation/
proliferationmarkers (31 of 53 cases; 58.0%) was associated with an
inferior OS as opposed to cases with a low cellular activation state
(20.98 months vs 58.13 months, P 5 .0012; Figure 7B). In con-
cordance to our previous data from BM specimens,10 high TCL1A
protein expression of PB tumor cells correlated with a shorter OS
(21.4 months vs 98.9 months, P 5 .017; Figure 7C).

Given our observations of active TCR signaling (Figure 3) in T-PLL
cells, but their inertia to CD95L-mediated cell death while
maintaining susceptibility to mitochondrial apoptosis (Figure
4C-D), we tested a strategy of combined application of Ibruti-
nib (targeting ITK) with the BCL2 inhibitor Venetoclax. A 78-year-
old T-PLL patient who was refractory to multiple lines of therapy
at relapse and presented with exponentially rising lymphocytosis

was given Venetoclax and Ibrutinib on the basis of in vitro
synergisms of both components (Figure 7D). The treatment
immediately stabilized and later reduced leukocyte counts.
While under this treatment, cytotoxic effects were demonstrated
by marked PARP cleavage in PB tumor cell lysates. In the ab-
sence of relevant side effects, the patient opted for cessation of
therapy, upon which lymphocytes rapidly rose again and levels
of processed PARP dropped below detection.

Discussion
The functional features and signal dependencies of the T-PLL
cell need to be better defined to facilitate the development of
more effective treatments for this poor prognostic disease.33

Using a refined set of markers and methods in a cohort that is
sufficiently large to resolve for variations, we establish, in this
study, a high similarity of T-PLL cells to memory T cells in .83%
of cases, specifically to CD45RO1, CCR71 CM T-lymphocytes.
Previous descriptions also suggested a memory-stage of mat-
uration in 40% to 60% of T-PLL,3,8,10,32,34 but were solely on the
basis of CD45-isoform expression.We also reveal a continuum of
memory stages with often nonconventional profiles of postnaı̈ve
differentiation. In conjunction with an activated phenotype and
retained TCR/coreceptor expression of the T-PLL cell our data
implicate continued TCR-mediated activation and differentiation
during leukemogenesis. We also suggest that the observed
consistent loss of negative-regulatory receptors (eg, CTLA4)
in T-PLL cells (Figure 2C-D), contributes to the maintenance
of an elevated activation state. The high expression of CD7
in 94% (85 of 90) of our leukemic samples would argue
against exhaustion.35,36 These features were chronologically re-
capitulated in TCL1A-driven murine T-PLL (Figure 1F). An
expanding memory cell pool was also described for mice with
overexpression of the TCL1 family member MTCP1.37

These data also suggest (auto)antigen experience or at least
MHC-driven activation and differentiation of the TCL1A-affected
precursor during clonal outgrowth. Chronic antigen stimulation
is already implicated in other T-cell malignancies, for example,
by autoimmune triggers in the CD81 T-LGL or by (bacterial)
dermatitis in the CD41 mycosis fungoides and Sézary
syndrome.38,39 These entities also show a biased TCRb gene
usage.40-42 The stochastically rather diverse TCRb repertoire in
our cohort of T-PLL (Figure 1G) does not exclude an antigen-
dependent pathogenesis. In fact, it remains to be determined, if
the slightly overrepresented TCRbs at frequencies of 5% to 8%
constitute receptors which all facilitate more permissive sig-
naling, or which share epitopes as fully processed molecules.

Figure 7 (continued) definition of the activation score are outlined in the legend of Figure 2A. (C) Differential prognosis of T-PLL patients (n5 73) stratified by TCL1A protein
expression (percentage of positive cells in PB; flow cytometry). (D) A T-PLL patient in disease progression under cyclophosphamide (previously refractory to alemtuzumab,
bendamustine, and fludarabine) was treated with Venetoclax (800 mg/d) and Ibrutinib (420 mg/d). This treatment stabilized PB lymphocyte counts over the entire period of
exposure (middle panel). Blood sampling at the indicated (color-coded) time points reveals the cytotoxic effect of this treatment (PARP cleavage, western blots, lower panel)
fitting the synergistic in vitro relationship of both substances from samples before this treatment (top). (E) Proposed model of the proleukemogenic cooperation of TCL1A with
TCR signaling. TCL1A is normally silenced upon progression of double negative (DN) to double positive (DP) thymocytes. Physiologically (TCL1A negative peripheral T cell, left
box), activation via the matured TCR is regulated by coreceptors and only high avidity antigens mediate TCR signals and cell activation. In the T-PLL precursor, genetic
aberrations dictate deregulated expression of the antiapoptotic proto-oncogenes TCL1A or MTCP1 (t(X;14)). The resulting survival benefit is supported by the effect of
additional genomic alterations (eg, ATM). TCL1A enhances p-kinase responses (underlying physical interactions described in Herling et al10) and cellular effector functions such
as IL-2 secretion (right box) of the affected T cell and contributes to its resistance to safeguarding cell death (AICD). By enhancing TCR signals, TCL1A enables low-avidity (auto)
antigens to trigger a beneficial T-cell activation, in an MHC-dependent context or in autonomous TCR activation. By lowering the TCR-signaling threshold (sensitizer effect),
TCL1A propels the transition of naı̈ve T cells into an expanding memory T-cell pool as the origin of final T-PLL outgrowth (see also TCL1A-tg mice). Sustained activation
(increased autonomy) is further mediated by impaired control mechanisms (eg, CTLA4 downregulation).
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Moreover, even if considering T-PLL of random clonotypic ori-
gin, its TCL1A-driven development could involve enhancement
of any TCR-mediated signal (eg, variety of antigens or sole self-
MHCs). Of note, in our TCR-centric concept of T-cell lymphomas,
there are also entities in which the precursor has lost TCR ex-
pression, and survival input is provided by oncogenes acting as
TCR signaling mimics or stand-ins.39,43

Importantly, in light of their high-level activation, T-PLL cells do
not behave like physiologic CM T cells, because they show
resistance to apoptosis upon repetitive stimulation. Healthy
memory T cells increase CD95 expression to facilitate such
regulatory responses. In contrast, CD95 is downregulated or
dysfunctional in T-PLL (Figure 4). Particularly the long-lived CM
T cells have been shown to harbor stem-cell–like properties
with self-renewal capacities.44,45 Therefore, acquisition of pro-
liferative progenitor-like competence and loss of the capability
to respond to extrinsic apoptotic signals might be an oncogenic
mechanism of persistence of T-PLL cells.

At the molecular level, we show TCL1A to enhance intracellular
signaling and effector responses, particularly following submaximal
TCR stimulation. This effect was more pronounced in the context of
a CD3 (TCR) signal, as supported by a more obvious modulation of
pERK1/2, than of CD28-coreceptor restricted46 AKT activation,
which reconciles data from various model systems.10,47,48 It further
argues that inappropriate expression of TCL1A in the affected
peripheral T cells enables sustenance of an apoptosis-refractory
memory fraction via amplifications of low-level TCR input
(sensitizer principle). Fittingly, T-PLL cells show reduced TCR-
activation thresholds. The previously unrecognized Th1 pro-
gram elicited by TCR stimulation of T-PLL cells (Figure 3C) is in
agreement with reported TCL1A-mediated augmentations of
IFN-g production in primed murine TCL1A-tg Th1 cells.47

Confirming the oncogenic relevance of a cooperation of TCR
with TCL1A signaling, our in vivo models of modulated TCRs
(including CARs as powerful surrogates) and TCL1A showed an
accelerated outgrowth of T cells upon repetitive receptor
stimulation, when TCL1A was present.

Our data suggest a concept of T-PLL as an (auto)antigen/
(self)MHC-TCR–promoted disease with TCL1A acting as a TCR-
signaling enhancer (Figure 7E). It entails the accumulation of self-
sustaining memory-type cells that use low-level TCR activation
rendering this sufficient to acquire competitive advantages toward
homeostatic escape and full transformation. Initiated as a TCL1A-
affected thymic emigrant rather than being subject of a primary
maturation block at the memory-stage, the CM-like phenotype of
T-PLL likely reflects the terminal line of differentiation at which ad-
ditional oncogenic forces come to carry to completely perturb
homeostatic control. Future work needs to integrate this T-cell-
development–based model with the defined roles of aberrant
pathways instructed by the genomic lesions in ATM or JAK/STAT
signaling.11,49 Up to this point, treatment strategies that jointly target
TCR cascades and intrinsic apoptotic resistance (Figure 7D) have
promising potential.11,50,51
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