
Plenary Paper

HEMATOPOIESIS AND STEM CELLS

Bone marrow regeneration requires mitochondrial transfer
from donor Cx43-expressing hematopoietic progenitors
to stroma
Karin Golan,1,* Abhishek K. Singh,2,3,* Orit Kollet,1 Mayla Bertagna,1 Mark J. Althoff,2,3 Eman Khatib-Massalha,1 Ekaterina Petrovich-Kopitman,1

Ashley M. Wellendorf,2 Hassan Massalha,4 Smadar Levin-Zaidman,5 Tali Dadosh,5 Breanna Bohan,3 Mruniya V. Gawali,2 Biplab Dasgupta,2

Tsvee Lapidot,1 and Jose A. Cancelas2,3

1Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; 2Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s
Hospital Medical Center, Cincinnati, OH; 3Hoxworth Blood Center, University of Cincinnati, Cincinnati, OH; and 4Molecular Cell Biology Department and
5Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel

KEY PO INT S

l BM regeneration
requires donor
hematopoietic
progenitor
mitochondria transfer
to the host
mesenchymal
microenvironment.

l Mitochondrial transfer
from donor HSPC to
host BM MSC is
regulated positively
by hematopoietic
Cx43 and negatively
by hematopoietic
AMPK.

The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their
bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires
irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the
stromal ME is damaged and how it recovers after irradiation is unknown. We report that
BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial
function after irradiation. Donor healthy HSPC transfer functional mitochondria to the
stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer
to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hemato-
poietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was
rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from
Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the
purinergic receptorP2RX7and lead to reducedactivityof adenosine59-monophosphate–activated
protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BMMSC.
Host stromal ME recovery and donor HSPC engraftment were augmented after mito-
chondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration
while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hema-

topoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our
findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation,
but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer.
Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to
optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic
engraftment. (Blood. 2020;136(23):2607-2619)

Introduction
Hematopoietic stem cells (HSC) are quiescent cells that reside in
the bone marrow (BM) in close proximity to their stromal mi-
croenvironment (ME) and continually replenish the circulation
with mature cells. The well-established cross talk between HSC
and their ME tightly balances their quiescence and self-renewal
vs their motility, proliferation, and differentiation upon demand,
preserving their repopulation potential.1-3 Lethal or sublethal
total body irradiation (TBI) is widely used as a conditioning
regimen before hematopoietic stem and progenitor cell (HSPC)
transplantation, resulting in the elimination of hematopoiesis
and severe damage of the BM ME.4,5

BM HSC transplantation after conditioning is widely used in the
clinic to treat pathological mutations in the lymphohemato-
poietic system.6 Although IV infused BM mesenchymal stromal
cells (MSC) cannot engraft into the BM,7 several studies have
shown improved efficiency of HSC repopulation and engraft-
ment by BM MSC cotransplant.4,8,9 Higher rates of BM repo-
pulation by LT-HSC in the presence of BM MSC suggest a cross
talk between these 2 cell types, which is crucial for successful BM
reconstitution. Repopulating HSPC are protected from DNA-
damaging agents such as irradiation, by signals from the BM
ME, thus explaining the beneficial result of cotransplantation
of both populations.5,10 Furthermore, several studies have also
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Figure 1. Lethal TBI inducesmitochondrial damage in BM stromal precursor cells. (A-J) WTmice were lethally irradiated and Sca-12 (A, C, E, G, I) and Sca-11 (B, D, F, H, J) BM
stromal precursors were analyzed at the indicated time points postirradiation. (A-B) The number of Sca-12 and Sca-11 BM stromal precursor cells in nonirradiated and irradiated
mice. Mitochondrial mass (Mitotracker green staining) (C-D), mitochondrial ROS (MitoSox red staining) levels (E-F), mitochondrial transmembrane potential (TMRE staining)
(G-H), and glucose uptake levels (I-J) in BM Sca-12 and Sca-11 BM stromal precursors before and after irradiation. Data are presented as average of 3 to 7 mice per group. (K)
Schematic illustration of in vivo irradiation experiment for stromal mitochondria imaging. (L) Representative confocal microscopy images showingmitochondrial (green) network
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demonstrated the facilitating effect of accessory and other di-
viding hematopoietic progenitors to speed and strengthen the
hematopoietic regeneration after irradiation and transplantation.11,12

Quiescent HSC have low reactive oxygen species (ROS)
content13-15 which is required to preserve their repopulation
potential. In steady-state conditions, HSC ROS levels fluctuate
following light/dark signals,16 but regenerative stress uponHSPC
cycling induces the accumulation of excess ROS, which may lead
to hematopoietic failure in the absence of protecting signals
form the BM ME.14 To overcome this insult, HSPC transfer
chemotherapy-derived excess ROS to BMMSC in a connexin-43
(Cx43) gap junction–dependent manner.17 Cx43 gap junctions
are expressed by both hematopoietic cells and MSC in the BM,
and are crucial in the regulation of migration, homing, survival,
and senescence of HSPCs.17-21 In the stromal ME, Cx43 was
shown to regulate CXCL12 secretion, an essential cytokine which
regulates HSPC motility and maintenance.22

BM MSC can metabolically support other cells by transferring
their mitochondria, the main ROS-producing organelle in the
cell. Mitochondria transfer from BM MSC to epithelial cells
protected against acute lung injury,23 and emerging evidence
shows that mitochondria transfer from BM MSC to malignant
cells as part of their regulatory cross talk provides survival
advantage and resistance to chemotherapy.24 Human BM MSC
transfer mitochondria to normal or leukemic hematopoietic cells,
contributing to their metabolic fitness.25,26 Several mechanisms,
among them the mitochondrial r-GTPase Miro1,27 PGC-1a,28

and the gap-junction channel Cx43,23 were shown to mediate
this transfer via tunneling nanotubes or exosomes29 in a cell-
context–dependent manner.

Herewe show that TBI, as a preconditioningmechanismbefore BM
transplantation (BMT), damages BM MSC and induces a dys-
function in their mitochondria. Healthy transplanted BM HSPC
transfer mitochondria to the damaged MSC, a process requiring
the expression of Cx43 and low adenosine 59-monophosphate–
activated protein kinase (AMPK) activity in hematopoietic pro-
genitors. The transferred mitochondria are functional in the
recipient MSC and prompt a rapid recovery of the BM ME,
improving hematopoietic reconstitution after BMT.

Methods
Mice
Details on the creation of the animals used and subsequent
crossings can be found in the supplemental Materials and
methods available on the Blood Web site.

Immunofluorescence studies of phenotype,
mitochondria transfer, and cell isolation
Immunofluorescence studies were performed by a combination
of flow cytometry, sorting, confocal microscopy, and correlative
light and electron microscopy (CLEM). Experimental details can
be found in the supplemental Materials and methods.

Functional assays
Function analysis was performed by colony-forming-unit, apo-
ptosis analysis, BMT and chimera analysis, mitochondrial transfer,
mitochondrial activity,metabolic analysis, andproliferation assays.
Experimental details can be found in the supplemental Materials
and methods.

Biochemical assays and generation of reconstituted
Cx43-expressing HSPC
Biochemical assays were performed by the analysis of glucose
uptake and adenosine triphosphate (ATP) levels. Expression of
HSPC with full-length Cx43 was performed by retroviral trans-
duction. Experimental details can be found in the supplemental
Materials and methods .

Results
Irradiation induces mitochondrial damage in BM
stromal ME
To identify the cellular consequences of TBI-induced damage of
the BM stromal ME, we first measured the content of MSC in the
BM compartment at different time points after TBI and tracked
them for 24 hours. The levels of both CD452/PDGFRa1/Sca-12

(Sca-12 MSC) and CD452/PDGFRa1/Sca-11 (Sca-11 MSC) cells
were elevated significantly at 1 hour post-TBI, and gradually
decreased in the period of time between 4 and 24 hours post-
TBI, suggesting severe damage of both Sca-12 and Sca-11 BM
MSC after irradiation (Figure 1A-B, supplemental Figure 1A).
Because mitochondria are the major source of cellular energy
and metabolism, we next studied the effect of TBI on the MSC
mitochondrial content and function. TBI significantly increased
the mitochondrial mass in both Sca-12 and Sca-11 MSC at
8 hours post-TBI, and were maintained high all through the first
24 hours after irradiation (Figure 1C-D). Similarly, MSC metab-
olism, assessed as mitochondrial ROS level, was elevated at
24 hours post-TBI in both Sca-12 and Sca-11 MSC (Figure 1E-F).
Mitochondrial dysfunction was confirmed by an analysis of the
mitochondrial membrane potential (DCm), which was strongly
reduced as early as 8 hours after TBI in both Sca-12 MSC and
Sca-11 MSC (Figure 1G-H). These results imply that TBI leads to
severe mitochondrial dysfunction in both Sca-12 and Sca-11

Figure 1 (continued) in MSC cultured for 24 hours and 48 hours after in vivo lethal irradiation. The boxed area (a) and the respective high-magnification images show long,
tubular mitochondria network in nonirradiated BMMSC. The boxed areas (b-c) and the respective high-magnification images demonstrate global mitochondrial fragmentation
with loss of the long, tubular mitochondrial structures and presence of many small roundedmitochondria at 24 hours and 48 hours (red arrows), respectively. (M) Quantification of
mean mitochondrial volume per surface in MSC after in vivo irradiation and culture. (N) Frequency of mitochondrial events with size higher or lower than 0.5 mm3 in volume. (O)
Schematic illustration of in vitro irradiation experiment for stromalmitochondria imaging. (P) Representative confocal microscopy images showingmitochondrial (green) network
in MSC cultured for 96 hours after in vitro irradiation. The boxed area (i) and the respective high-magnification images show long, tubular mitochondria network in nonirradiated
BMMSC (similar to nonirradiated L). The boxed areas (ii) and the respective high-magnification images demonstrate again global mitochondrial fragmentation with loss of the
long, tubular mitochondrial structures and presence of many small roundedmitochondria at 96 hours after in vitro irradiation of BMMSC (red arrows). (Q) Quantification of mean
mitochondrial volume per surface inMSC after in vitro irradiation. (R) Frequency of mitochondrial events with size higher or lower than 0.5mm3 in volume. Both in vivo and in vitro
experiments were performed as 2 independent experiments. Mitochondrial network and volume were analyzed using Imaris surface building algorithm, and the statistical color
coding of mitochondrial volume are shown. Scale bar, 2, 3, 5, and 10 mm. (S-U) Schematic illustration of lethally irradiated Dendra2-mitoWT mice transplanted with WT BM cells
and analyzed at 2 weeks and 1 month posttransplantation (S). Normalized mean fluorescence intensity level of Dendra2 mitochondria in Sca-12 (T) and Sca-11 (U) BM stromal
precursor cells were analyzed before irradiation, and 2 weeks and 1month posttransplantation. Data are the average of 3 to 6mice per group. All data are represented asmean6
SEM. Statistical significance was assessed using 1-way ANOVA except in panels Q and R where the 2-tailed Student t test was used. *P , .05, **P , .01, ***P , .001.
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Figure 2. Donor hematopoietic cells transfer functional mitochondria to the irradiated host BM MSC following total body irradiation. (A-C) Schematic illustration of
transplantation protocol. Lethally irradiated congenic WT mice transplanted with CD451 BM cells obtained from Dendra2-mito WT mice and analyzed 2 weeks and 1 month
posttransplantation (A). Representative histograms after 1 month posttransplantation (B) and quantified analyses (C) show the levels of Dendra21 mitochondria transfer from
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MSC. To determine whether this mitochondrial dysfunction
relates with alterations in upstream glycolysis, we analyzed the
cellular uptake of glucose which is upstream to pyruvate and
reduced NAD phosphate production and is critical for mito-
chondrial oxidative phosphorylation, antioxidative potential,
and lactate production.30 No sustained difference in glucose
uptake was noted in both Sca-12 and Sca-11 MSC at all the
assessed time points post-TBI (Figure 1I-J), suggesting that the
irradiation effect has not generated a significant survival bias of
MSC with different glucose uptake requirements.31 Other BM
niche populations included in the heterogenous pool of CD452/
PDGFRa2 cells did not show any major changes in mito-
chondrial levels (supplemental Figure 1B), albeit their mito-
chondrial DCm declines dramatically (supplemental Figure
1C) during the first 24 hours after irradiation. Altogether, our
results suggest that TBI damages the mitochondria content
and function of BMME cells, albeit with different levels of intensity
and time kinetics.

To further explore the effect of TBI on MSC mitochondrial
morphology, we used Dendra2-mitochondria (Dendra2-mito)–
transgenic mice in which the Dendra2 fluorescent protein is
fused with the targeting signal of subunit 8a of mitochondrial
cytochrome oxidase (Cox8a),32 a mitochondrial transmembrane
protein, and allows measurements of mitochondrial mass.33

These mice were either lethally irradiated, and their BM CD452

MSC were tested for the mitochondria networking structure, or
primary MSC were isolated from these mice and irradiated
in vitro to test the consequences of TBI on the mitochondrial
structure. Confocal microscopy of Dendra2-mito structure in
in vivo– or in vitro–irradiated BM MSC demonstrates global
mitochondrial fragmentation with the presence of many small,
round/ovoid-shaped mitochondria, resulting in reduced mito-
chondrial volume as compared with nonirradiated counterparts
showing tubular mitochondrial networks (Figure 1K-R; supple-
mental Videos 1-3). In contrast, TBI exerted a minimal effect on
the mitochondrial networking of another functionally relevant
ME cell population like BM endothelial cells (Lin2/CD452/Sca-
11/CD311) (supplemental Figure 1D-H), and did not change
their overall mitochondrial mass (supplemental Figure 1I).

Further, to explore the long-term effects of TBI on MSC mito-
chondria content, Dendra2-mito mice were lethally irradiated
and transplanted with wild-type (WT) HSPC, and the level of
Dendra21mitochondria in BMMSCwas assessed at 2 weeks and
1 month post-TBI (Figure 1S). A strong reduction in BM stromal
cell mitochondria levels was observed in Sca-12 MSC, albeit at a
lower extent in Sca-11 MSC at 2 weeks and 1 month post-TBI
(Figure 1T-U), suggesting that both populations of MSC, and
especially Sca-12 MSC, have a decrease in their content of host
transgenic mitochondria. Overall, our data demonstrate that TBI
induced damage to BM MSC, leading to mitochondria dys-
function that is mostly prominent in Sca-12 MSC.

Donor hematopoietic cells transfer functional
mitochondria to BM MSC
Since TBI preconditioning for BMT damages the MSC by af-
fecting their mitochondria function, we hypothesized that
healthy HSPC after transplantation transfer some of their mito-
chondria to the BM MSC in order to maintain their function and
increase their recovery. To test this hypothesis, we created
chimeric mice by transplanting Dendra2-mito CD451 cells into
lethally irradiated WT recipients (Figure 2A). At 2 weeks and
again at 1-month posttransplantation, Dendra2-mito levels in
recipient WTMSCwere examined and found 896 1.3% of these
cells to express donor-derived Dendra21 mitochondria (Figure
2B-C; supplemental Figure 2A). These results suggest that mi-
tochondria are indeed transferred from donor hematopoietic
cells to the BM stromal ME after transplantation. Next, we asked
whether mitochondria can be transferred in the opposite di-
rection and thus chimeric mice were established by transplanting
donor WT CD451 cells into lethally irradiated Dendra2-mito
recipient mice (Figure 2D). After 2 weeks and 1 month from
transplantation, 18 6 2.5% of WT HSC (Lin2/CD342/c-Kit1/
Sca-11) expressed Dendra21 mitochondria (Figure 2E-F; sup-
plemental Figure 2B), suggesting that mitochondria can be
transferred also from the BM MSC to the hematopoietic cells
after transplantation, but to a much lower extent. The transfer of
mitochondria from donor BM leukocytes to BM MSC was also
confirmed in an isolated in vitro system after overnight coculture
of primary BM MSC with BM CD451 Dendra2-mito cells. We

Figure 2 (continued) donor HSPC to host BM-MSC (CD452/PDGFRa1/Sca-12). Data are the average of 3 to 5 mice per group. (D-F) Lethally irradiated WT Dendra2-mito mice
transplanted with CD451 BM cells obtained from congenic WT mice and analyzed 2 weeks and 1 month posttransplantation (D). Representative histograms after 1 month
posttransplantation (E) and quantified summary (F) show the levels of Dendra21 mitochondria transfer from host Dendra2-mito stromal cells toWT donor HSC (CD342/Lin2/Sca-
11/c-Kit1). Data are the average of 3 to 6 mice per group. (G-I) BMMSC were cocultured with CD451 cells isolated from Dendra2-mito WT mice for 16 hours, and the transfer of
mitochondria from Dendra2-mito CD451 cells to MSC was analyzed. Histograms (G) and bar diagram (H) representing the percentage of MSC containing donor-derived
Dendra21 mitochondria. (I) Relative quantification of mitochondrial content in stromal cells cocultured with or without Dendra2-mito CD451 cells was analyzed by real-time
polymerase chain reaction using ND1 gene belonging to mitochondrial DNA (mND1) and nuclear hexokinase 2 (nHK2) gene. n 5 4-6 independent experiments. (J)
Representative example of mitochondrial transfer kinetics followed for up to 225 min. Confocal spinning disk microscopy of hematopoietic Dendra2-mito cells cocultured with
WT stromal precursors. Heat map shows the Dendra2 signal intensity. Images taken at indicated time points show the transfer of mitochondria from 1 hematopoietic cell (H)
toward a neighboring stromal cell (S) after a long, thin hematopoietic cell extension. White arrows depict mitochondria moving away from H to S and red arrows depict
mitochondria already transferred to S. (K) TEM images of mitochondria transfer in an in vivo setting. WT Dendra2-mito CD451 cells were transplanted in lethally irradiated WT
congenicmice and the transfer of Dendra21mitochondria fromHSPC toMSCwas analyzed 4months posttransplantation. (a) Representative TEM images showing donor (D) and
recipient (R) cells, and mitochondrial cristae. (b) Overlay of TEM image with identical fluorescent micrograph (correlative light electron microscopy, CLEM). (c) Fluorescent
microscopy image showing donor CD451 hematopoietic cells (red) and Dendra21mitochondria (green). Nuclei were counterstained with 49,6-diamidino-2-phenylindole (DAPI) .
The short white arrows in panels a-c show Dendra21 mitochondria in donor CD451 cells. The short red arrows in panel a-c represent donor Dendra21 mitochondria in recipient
stromal cells. The boxed areas (d, e, and f) in panel a aremagnified in TEM image panels d, e and f, respectively. TEMmagnification of mitochondria indicated by a longmagenta
arrow in panel d is presented in TEM micrograph (g). TEM magnification of mitochondria indicated by a long yellow arrow and a green arrow in panel e are presented in TEM
micrographs panels h and i, respectively. TEMmagnification of mitochondria indicated by a long red arrow in panel f is presented in TEMmicrograph (j). All these mitochondrial
images represent donor-derived Dendra21 mitochondria which either persist in the hematopoietic (CD451, red fluorescent) donor cell (d, g) or have been transferred to a
recipient BM stromal cell (CD452, with no red fluorescence; in e, f, h, i, and j). TEMmicrographs in panels g, h, i, and j provide morphological detail on mitochondrial cristae and
membranes. Scale bar, 2 mm, 500 nm, and 200 nm. (L-M) Mitochondrial ROS levels (L) and (M) membrane potential in host MSC containing (Dendra2-mito1) or not (Dendra2-
mito2) donor-derivedDendra21mitochondria assessed at 1month posttransplantation (n5 5mice per group). All data are presented asmean6 SEM. Statistical significance was
assessed using 2-tailed Student t test except in panels C and F, where one-way ANOVA was used. **P , .01, ***P , .001.
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Figure 3. Mitochondrial transfer from Connexin 43 deficient donor HSPC to BM MSC is decreased. (A) Level of Dendra2-mito transfer from HSPC to BM stromal cells in
coculturewithout contact in trans-wells of 0.3mm. (B-D)WTor H-Cx43D/DDendra2-mito Lin-negative cells were cocultured onWTMSCand the transfer of Dendra21mitochondria
inMSCwas analyzed.Mean fluorescence intensity of Dendra2 in PDGFRa1MSC after 2, 4, 8, and 16 hours of coculture (B). Mitochondrial ROS levels (C) andDCm (D) in PDGFRa1

MSC containing donor-derivedDendra21mitochondria at different times of coculture. Data are the average of 3 to 6 independent experiments. (E) Lin-negative cells fromWTor
Vav1-cre Cx43fl/fl Dendra2-mito mice were transduced with empty or Cx43-full length (R-Cx43-FL) retrovirus vector, followed by coculture over WT stroma for 16 hours.
Overexpression of R-Cx43-FL in Cx43D/D Dendra21 HSPC rescue mitochondrial transfer in PDGFRa1 MSC. The frequency of mitochondria transfer in PDGFRa1 MSC was also
increased in R-Cx43-FL transducedWT HSPC. Data are the average of 3 independent experiments. (F-J) Schematic illustration of lethally irradiated congenic WT CD45.11 mice
transplanted with WT or Cx43D/D Dendra2-mito Lin2/CD512 cells and analyzed at days 10, 17, and 28 posttransplantation (F). Representative histograms (G) and bar diagram (H)
show the frequency of BM Lin2/CD452/PDGFRa1/Sca-12 MSC containing Dendra21 mitochondria from donor hematopoiesis at the indicated days posttransplantation.
Mitochondrial ROS levels (I), and DCm (J) in WT and H-Cx43D/D chimeric mice BM Lin2/CD452/PDGFRa1/Sca-12 MSC containing donor-derived Dendra21 mitochondria after
28 days posttransplantation are shown. (n 5 4-9 mice per group, 2 independent experiments). (K-M) Incorporation of isolated mitochondria from HSPC is independent of the
expression of Cx43 in source HSPC. Dendra21 mitochondria were isolated from WT and Cx43D/D Dendra2-mito Lin-negative cells and coculture over-irradiated (7.5 Gy) WT
primary stroma for 24 and 48 hours (K). Bar graphs show the frequencies of PDGFRa1 MSC containing extracellular Dendra21 mitochondria at indicated time points (L), and
mitochondrial ROS production in PDGFRa1 MSC containing extracellular Dendra21 mitochondria (M). Data are the average of 3 to 5 independent experiments. Dendra21

mitochondria isolated from WT HSPC (WT mito). Dendra21 mitochondria isolated from Cx43D/D HSPC (Cx43D/D mito). (N-O) BM Lin2/CD452 cells containing donor-derived
Dendra21 mitochondrial were sorted fromWT and H-CX43D/D chimeric mice (1 month posttransplantation) and mitochondrial OCR was measured by Seahorse XFe96-Analyzer
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observed 21 6 1.3% of the BM MSC to contain donor-derived
Dendra2-mito in in vitro cocultures, further confirming our in vivo
findings (Figure 2G-H). As a consequence, the mitochondrial
mass of recipient BM MSC was increased (approximately two-
fold) after coculture with BM HSPC (Figure 2I). Transfer of mi-
tochondria from donor BM leukocytes to BM MSC was also
tracked by time-lapse confocal microscopy in cocultures of
CD451 Dendra2-mito cells with primary BM MSC (Figure 2J).
Transfer of Dendra2 mitochondria from donor-derived BM
leukocytes to BM MSC starts soon after the coculture is
established (2-3 hours), and both orthogonal views and
3-dimensional reconstitution images clearly demonstrate the
presence of donor-derived Dendra2-mito in the recipient BM
MSC (supplemental Figure 2C-D and supplemental Video 4).
Similar levels of mitochondrial transfer from human BM CD341

cells to murine BM stroma was evident by analyzing the
presence of human mitochondrial DNA (Mitotracker Deep Red1/
Dendra22mitochondria) in 20% of Dendra2-mito BMMSC after
coculture at a ratio of 5 CD341 cells per MSC (supplemental
Figure 3A-B).

Next, to track the transfer of Dendra2 mitochondria from donor
BM leukocytes to BM MSC in an in vivo setting, and to examine
whether the transferred Dendra2 mitochondria retain their
morphology in the recipient MSC, we transplanted Dendra2-
mito CD451 cells into lethally irradiated WT recipients and
applied a high-resolution correlative light and electron mi-
croscopy (CLEM) to access the acquired Dendra2 mitochondria
structure in the MSC. As shown in Figure 2K, recipient BM MSC
contain donor-derived Dendra2-mito which overlap with a mi-
tochondria structure by TEM, confirming that, indeed, the
transferred Dendra2-mito is part of a true mitochondria, and it
retains its morphology after transfer. Finally, we wanted to know
whether the mitochondria that are transferred from hemato-
poietic cells to BM MSC are indeed functional. Therefore, mi-
tochondrial ROS levels, as well as DCM, were measured in MSC
of chimeric mice 1 month after BMT of Dendra2-mito CD451

cells into WT recipients. Recipient BM MSC that contained
donor-derived Dendra2 mitochondria demonstrated increased
ROS production and higher DCM as compared with recipient
BM MSC with no donor-derived Dendra2 mitochondria, sug-
gesting that the mitochondria transferred from donor BM
leukocytes to BM MSC are metabolically active and significantly
reprogram the overall mitochondrial metabolism of the recipient
BM MSC (Figure 2L-M).

Deficiency of Cx43 in HSPC decreased their ability
to transfer mitochondria to BM Sca-12 MSC cells
and not to other BM stromal populations
Organelle exchange between cells is either cell-contact
dependent34 or occurs through their secretion in extracellular
vesicles.23 To identify the mode of mitochondria transfer be-
tween HSPC and BMMSC, we first established in vitro cocultures
of Dendra2-mito CD451 cells and WT primary MSC with a
mechanical barrier between the 2 cell types. No Dendra21

mitochondria transfer from HSPC to BM MSC was found in the
noncontacting cocultures (Figure 3A), suggesting that HSPC and
MSC need a physical contact to transfer mitochondria. A major
contributor to cell contact in the BM is Cx43 gap junction, which
was previously shown to regulate HSPC motility and survival as
well as stromal secretion of CXCL12.22 In addition, HSPC Cx43
plays a protective role during myeloablative conditions, facili-
tating the transfer of potentially lethal ROS from HSPC to the BM
MSC and preventing ROS-mediated HSPC damage.17 There-
fore, the role of Cx43 in cell-contact–dependent mitochondria
transfer was examined. Time-dependent analysis of mitochon-
dria uptake by MSC in an in vitro coculture of WT or Cx43
deficient (Cx43D/D) Dendra2-mito HSPC with primary WT MSC
show reduced transfer of mitochondria from Cx43D/D HSPC to
BM stroma at 16 hours (Figure 3B; supplemental Figure 4A-C).
Similarly, both mitochondrial ROS levels and the DCM were
lower in BM MSC containing donor-derived mitochondria that
were cocultured with Dendra2-mito Cx43D/D HSPC as compared
with WT HSPC (Figures 3C-D; supplemental Figure 4D-E). This
correlates with the decreasedmitochondrial transfer occurring in
cocultures of Cx43-deficient HSPC with WT stroma. Transfecting
Cx43D/D HSPC with a vector expressing WT FL-Cx43 followed by
in vitro coculture with WT primary MSC restored mitochondria
transfer to the levels seen for WT HSPC transfer, further con-
firming the requirement of Cx43 in HSPCs for mitochondria
transfer (Figure 3E). To further identify the role of hematopoietic
Cx43 in mitochondrial transfer in an in vivo setting, we estab-
lished chimeric mice by transplanting Lin2/CD512/Dendra2-
mito WT or Cx43D/D hematopoietic progenitors into lethally
irradiated WT recipients, and the level of mitochondria trans-
ferred from donor HSPC to recipient mice MSC was analyzed at
different times posttransplantation (Figure 3F). Hematopoietic
Cx43 deficiency significantly attenuated the transfer of healthy
mitochondria fromHSPC to BMSca-12MSC (with 50% reduction
in mitochondria transfer to Sca-12 MSC) at all the time points
analyzed post-TBI (Figure 3G-H; supplemental Figure 5A) in
comparison with WT HSPC mitochondria transfer. Interestingly,
the deficiency of Cx43 in HSPC did not modify the transfer of
mitochondria to other BM stromal populations (supplemental
Figure 5A-E). Mitochondria transfer from Col-1cre–expressing/
Cx43-deficient MSC20 to HSC was also unaltered (supplemental
Figure 4F-J). These data indicate that hematopoietic Cx43 ex-
quisitely mediates mitochondria transfer from healthy donor
HSPC to damaged, recipient BM Sca-12 MSC in vivo. In-
terestingly, the reduced mitochondria transfer from Cx43D/D

HSPC to stromal cells, affected only BM Sca-12 MSC and not
other stromal populations, as shown by their reduced overall
mitochondria ROS levels (Figure 3I; supplemental Figure 5F-I) as
well as diminished DCM (Figure 3J; supplemental Figure 5J-M).
These results suggest that either fewer mitochondria were
transferred to BM stromal recipient cells from Cx43D/D hema-
topoietic progenitors or that the mitochondria transferred from
Cx43D/D hematopoietic progenitors were dysfunctional. To ad-
dress this question, we isolated functional mitochondria from
Dendra2-mito Lin2 WT and Cx43D/D cells, incubated them with

Figure 3 (continued) using sequential injections of oligomycin, FCCP, and Rotenone (N). Quantification summary of mitochondrial OCR in WT and H-CX43D/D chimeric
mice Lin2/CD452 cells containing donor-derived mitochondria (data are the average of 3 independent experiments with 2 to 4 technical replicates) (O). All data represented as
mean6 SEM. Statistical significance was assessed using 1-way ANOVA except in panels H, I, J, and O where 2-tailed Student t tests were used. *P, .05, **P, .01, ***P, .001.
BHI, bioenergetic health index; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; SRC, spare respiratory capacity.
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irradiatedWT primary MSC for 24 hours and 48 hours, and found
that stromal MSC incorporated isolated mitochondria at an
equal level and with similar levels of ROS production capacity
regardless of the mitochondria cellular origin (Figure 3K-M;
supplemental Figure 4K-M). To gain insight whether transfer of
mitochondria improves MSC oxidative phosphorylation, the
mitochondrial oxygen consumption rate (OCR) in MSC was
analyzed in an in vivo and in vitro setting. The level of maximal
mitochondrial OCR, spare respiratory capacity, and bioenergetic
health index was significantly lower in BM stromal cells obtained
from H-Cx43D/D chimeric mice (Figure 3N-O). In contrast, equal
increase in mitochondrial OCR was observed in stromal cells
cocultured with isolated functional mitochondria from Dendra2-
mito WT and Cx43D/D HSPC (supplemental Figure 4N-O). Al-
together, these results strongly suggest that cellular contact
between HSPC and BM MSC is indispensable for functional
mitochondria transfer and the reduced transfer of mitochondria
from Cx43D/D HSPC results in overall diminished mitochondrial
activity in the host BM MSC.

AMPK in HSPC controls mitochondrial transfer to
BM MSC
To show a connection between mitochondria transfer and
irradiation-induced damage to the stromal ME, we irradiated
explanted WT primary BM MSC at doses of 9.5 and 20 Gy
which were expected to induce death of ;90% and .99% of
mesenchymal progenitors, respectively.35 At 48 hours post-
irradiation, we cocultured the MSC with BM CD451 Dendra2-
mito cells. As anticipated, the level of mitochondrial transfer
to irradiated MSC was higher than to nonirradiated MSC
(Figure 4A), suggesting that mitochondria transfer from HSPC is
augmented by irradiation-induced damage of the stromal
compartment. The mitochondria are the main metabolic sites
in the cell,36 and as such they tightly regulate cellular ATP
levels. To examine whether intracellular ATP levels affect mi-
tochondria transfer, we pretreated either WT MSC or isolated
CD451 Dendra2-mito cells with the glycolysis enhancer buffer
Rejuvesol,37 a nucleoside-containing solution that induced
strong ATP production in BM MSC and only modestly in cycling
hematopoietic progenitors (supplemental Figure 6A-B). After
drug removal, these cells were cocultured with untreated CD451

Dendra2-mito or WT MSC, respectively, and mitochondria
transfer was measured. Only pretreatment of the hematopoietic
cells resulted in increased mitochondria transfer (Figure 4B),
suggesting that the elevated intracellular ATP concentration in
hematopoietic cells can stimulate the transfer of mitochondria
from HSPC to BM MSC. To further examine the role of ATP in
mitochondria transfer, we cocultured isolated CD451 Dendra2-
mito cells with WT BM MSC together with Rejuvesol and a
specific inhibitor of the ATP receptor, P2RX7. High mitochondria
transfer induced by Rejuvesol was 50% reduced upon cotreat-
ment with the P2RX7 receptor inhibitor (Figure 4C), implying that
high ATP levels induced signaling and stimulated mitochondria
transfer. A well-known sensor of ATP levels in the cell is AMPK.38

Therefore, we tested whether AMPK plays a role in mitochondria
transfer by treating the coculture of Dendra2-mito hematopoi-
etic cells and WT MSC with the AMPK inhibitor, BML-275
(compound C), and the AMPK activator, AICAR (5-amino-
imidazole-4-carboxamide ribonucleotide). AMPK inhibition el-
evated in vitro mitochondria transfer from hematopoietic cells to
MSC, whereas AMPK activation reduced this transfer (Figure
4D-E). To further explore which cellular compartment is sensitive to

AMPK inhibition–mediated mitochondria transfer, we pretreated
either WT MSC or isolated CD451 Dendra2-mito cells with the
AMPK inhibitor, and after drug removal cocultured these cells
with untreated CD451 Dendra2-mito or WT MSC, respectively.
Only pretreatment of the hematopoietic cells with the AMPK
inhibitor resulted in increased mitochondria transfer from HSPC
to BM MSC (Figure 4F), suggesting that AMPK activity in the
hematopoietic compartment is a critical regulator of mito-
chondria transfer. Altogether, these results suggest that ele-
vated ATP levels in hematopoietic cells signal via hematopoietic
P2RX7 receptor as well as inhibit AMPK activation in these cells,
all leading to stimulation of mitochondria transfer to the stromal
ME. To further test this hypothesis, we cocultured isolated
CD451 Dendra2-mito cells with WT MSC together with AMPK
inhibitor and Rejuvesol and found an additive effect, whereas
treatment with both AMPK and P2RX7 receptor inhibitors did
not significantly reduce the high mitochondria transfer induced
by AMPK inhibitor only (Figure 4G). These results suggest that
AMPK is a downstream regulator of mitochondria transfer in
HSPC dependent on P2RX7 signaling. Finally, we examined
the effect of AMPK inhibition on mitochondria transfer in vivo.
AMPK inhibition increasedmitochondria transfer regardless of
the origin of the hematopoietic cells (WT or Cx43D/D BM)
(Figure 4H-I), suggesting that the activity of AMPK is down-
stream to Cx43 or represses alternative pathways of mito-
chondrial transfer.

Mitochondria transfer from healthy donor-derived
HSPC boosts BM stroma regeneration and
hematopoietic engraftment after irradiation
To understand the significance of mitochondrial transfer from
HSPC to the stromal ME in terms of hematopoiesis, we tested
whether mitochondrial uptake by BM stromal cells improves
stromal cell growth and proliferation in vivo. We found that Sca-
12 MSC that received donor-derived mitochondria were able to
proliferate more as compared with MSC which did not receive
donor-derived mitochondria (Figure 5A). Interestingly, the fre-
quency of proliferative MSC containing donor-derived mito-
chondria was higher at early time points as compared with later
time points after TBI. Indeed, BM Sca-12 MSC from chimeras of
Cx43D/D donor BM HSPC had less ability to proliferate after
mitochondria transfer as compared with WT chimeric mice
(Figure 5A), suggesting that the hematopoietic Cx43-dependent
transfer of mitochondria regulates BM MSC proliferation after
irradiation. Isolation of mitochondria from WT and Cx43D/D

Dendra2-mito HSPC followed by its coculture with WT MSC
further suggest that uptake of functional mitochondria by MSC
induces a higher proliferative state but the effect of Cx43 is
dependent on cell-mediated transfer and not on intrinsic
properties of the mitochondria derived from WT or Cx43-
deficient HSPC (Figure 5B; supplemental Figure 7A-B). To link
mitochondria uptake–induced recovery of irradiated MSC, we
cocultured irradiated MSC with mitochondria isolated from WT
and Cx43D/D Dendra2-mito HSPC and found that the MSC
population containing extracellular mitochondria was enriched
in mesenchymal progenitors as assessed by the colony-forming
fibroblast (CFU-F) formation with reduced apoptosis (Figure
5C-D). Next, to evaluate whether mitochondria transfer from
HSPC to MSC boost their recovery in vivo, we performed
CFU-F and colony-forming osteoblast/progenitor (CFU-Ob)
frequency assays from chimeras of WT or Cx43D/D Dendra2-mito
hematopoietic cells into WT recipients and found improved
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recovery of both CFU-F and CFU-Ob in WT chimeras as com-
pared with H-Cx43D/D chimeras (Figure 5E-G; supplemental
Figure 7C). Hematopoietic recovery after irradiation and BMT
may depend on the recovered stromal ME. To test this, we
studied WT and H-Cx43D/D chimeric mice for hematopoietic
reconstitution and found that donorWT hematopoietic chimeras
recovered better in terms of leukocyte, neutrophil, and platelet
counts in peripheral blood as well as BM content of

phenotypically identified LK (Lin2/cKit1/Sca-12), LSK (Lin2/
cKit1/Sca-11), long-term, and short-term HSC andmultipotential
progenitors types 2 and 3, upstream of the process of myelo-
poiesis and megakaryopoiesis (Figure 5H-I; supplemental
Figure 7D-F). We also found that the elevated mitochondria
transfer by AMPK inhibition is associated with a faster re-
generation of the stromal ME (CFU-F and CFU-Ob) (Figure 5J-K)
as well as the hematopoietic compartment (Figure 5L), further
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Peripheral blood platelet and neutrophil counts in WT and H-Cx43D/D chimeric mice treated with vehicle control (DMSO) or AMPK inhibitor (BML-275) at indicated time points
posttransplantation (L). Data are the average of 4 to 6 mice per group, 2 independent experiment. All data represented as mean 6 SEM. Statistical significance was assessed
using 2-tailed Student t test except in panels A, C-D where 1-way ANOVA was used. *P , .05, **P , .01, ***P , .001. Scale bar, 10 mm.
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supporting the role of AMPK as a negative regulator of mito-
chondria transfer and BM regeneration. To define the long-term
effect of mitochondria transfer, recovery of hematopoietic and
BM ME was accessed in Dendra2-mito WT and H-Cx43D/D chi-
meric mice paired with 5-FU myeloablation and AMPK inhibition
at 6 months post-TBI. Our findings reveal that AMPK inhibition
markedly increases mitochondria transfer, specifically to Sca-12

MSC, and efficiently regenerates BMmesenchymal niche after 5-
FU–induced myeloablation, which further promotes hemato-
poietic reconstitution (supplemental Figure 8A-D). These results
imply that mitochondria transfer from healthy hematopoietic
cells to the BM stromal ME is important for boosting the recovery
of the MSC and, in return, will improve the reconstitution of the
hematopoietic system after myeloablative conditioning. Finally,
to assure that the healthy hematopoietic cells induce the re-
covery of the stroma and the reconstitution of the hematopoietic
compartments as a follow up process, we used a second boost of
WT Lin2/CD451 cell transplantation in WT and H-Cx43D/D chi-
meric mice 7 days after primary transplant. This boost of he-
matopoietic progenitor cells further accelerates CFU-F recovery
and hematopoietic reconstitution of both WT and Cx43D/D chi-
meric animals, thus suggesting that the beneficial effect on the
recovery of the stroma results from the hematopoietic cells that
transfer their mitochondria (supplemental Figure 8E-F). Alto-
gether, our findings demonstrate that healthy hematopoietic
cells transplanted after lethal irradiation, transfer part of their
mitochondria to the stromal ME to speed BM mesenchymal
regeneration and, in turn, increase the hematopoietic re-
constitution, and this process is regulated positively by hema-
topoietic Cx43 and negatively by AMPK activity.

Discussion
Our data indicate that the BM ME support is partially lost be-
cause of myeloablation damage. Because of such damage to the
BM ME, healthy transplanted HSPC not only reconstitute the
hematopoietic system, but also need to repair their ME in order
to survive and maintain their repopulation potential. We show
that HSPC can transfer their mitochondria to the damaged
BM ME to boost their recovery by metabolically supporting
their function. Interestingly, this mitochondrial transfer to BM
CD452/Lin2/PDGFRa1/Sca-12, a BMME population enriched in
Cxcl12-expressing adventitial reticular cells and mesenchymal
progenitors,39-42 is cell contact dependent via HSPC Cx43 and
involves AMPK signaling.

Mitochondrial transfer can rescue aerobic respiration.43 Bene-
ficial effects of mitochondrial transfer from MSC to parenchymal
cells have been reported in various normal and malignant cell
types, including hematopoietic and leukemic cells.23,26,44-47 We
show for the first time that mitochondria transfer also occurs in
the opposite direction, meaning from hematopoietic progenitor
cells to the MSC population and to a higher extent than the
transfer from MSC to the hematopoietic cells. This exchange of
mitochondria results in Cx43-dependent scavenging of ROS
from donor HSPC17 and the support of the metabolic activity of
the recipient MSC and their regenerative functionality, which
further contribute to the success of the hematopoietic en-
graftment. Mitochondrial share between healthy and metabol-
ically impaired cells adds another complexity level to the cross
talk between cells and especially it is relevant for the dual
regulation of HSPC and their stromal ME. Activation of AMPK

may be achieved by lower ATP cellular levels, an expected ATP
status in aerobic respiration compromised cells and ATP can
repress AMPK activation in lymphohematopoietic cells.48 Our
data show that P2RX7–dependent ATP sensing upstream of
HSPC AMPK controls mitochondria transfer from HSPC to the
stromal population. A higher ATP content is indeed expected in
cells with healthy mitochondria, which may sustain other met-
abolically compromised adjacent cells by supplying them with
functional mitochondria. It is possible that the inhibition of AMPK
derepresses Cx43-independent mechanisms of mitochondrial
transfer. Our data strengthen the view that the seesaw be-
tween ATP and AMPK activation in cells may determine the
directionality of mitochondria transfer between 2 interacting
populations. These data are complemented with the recent
finding that mitochondria transfer fromMSC to T cells can induce
their differentiation into regulatory T cells after transplantation,49

a cell type with ability to modulate allogeneic HSC engraft-
ment.50 These results support our observation regarding the role
of mitochondria transfer in achieving a successful HSC en-
graftment after transplantation.

The mitochondria transfer from healthy, lodged BM HSPC to
cell-contact–dependent BM MSC environment after TBI and
BMT supply the ME with functional mitochondria that not only
induce their proliferation but also may contribute to their dif-
ferentiation and reduce the inflammatory impact of cytokine
responses (reviewed in Reference 51).

Finally, our data imply that mitochondria transfer may have
clinical implications which include the administration of an AMPK
inhibitor before transplantation or the ex vivo culture with
inflammatory-signal deprived, cell-targeted mitochondria.

In summary, we identified a novel role for mitochondria transfer
from HSPC to their surrounding mesenchymal ME within the BM
that is important and beneficial for transplantation procedures.
Our study demonstrates a new regulatory cross talk between
HSPC and their stromal ME as well as the role of Cx43 as a
positive regulator and AMPK as a negative regulator of hema-
topoietic-to-mesenchymal mitochondrial transfer.
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