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KEY PO INT S

l Inhibition of the
menin-MLL interaction
targets FLT3
mutations
transcriptionally via
MEIS1 in NPM1-
mutant and MLL-
rearranged leukemias.

l Combined menin-MLL
and FLT3 inhibition
is a synergistic
therapeutic
opportunity in these
leukemia subtypes
with concurrent FLT3
mutation.

The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a
potential opportunity for treatment ofNPM1-mutant (NPM1mut) andMLL-rearranged (MLL-r)
leukemias. Concomitant activating drivermutations in the gene encoding the tyrosine kinase
FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this
study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex
revealed specific changes in gene expression, with downregulation of the MEIS1 tran-
scription factor and its transcriptional target gene FLT3 being the most pronounced.
Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3
phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and
transcriptional suppression of genes downstream of FLT3 signaling. The drug combination
induced synergistic inhibition of proliferation, as well as enhanced apoptosis, comparedwith
single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias har-
boring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from pa-
tients withNPM1mut FLT3mut AML showed significantly better responses to combined menin
and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with
wild-typeNPM1,MLL, and FLT3were not affectedby either of the 2 drugs. In vivo treatment

of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival com-
pared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3
inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia
and concurrent FLT3 mutation. (Blood. 2020;136(21):2442-2456)

Introduction
Acute myeloid leukemia (AML) is a neoplastic disease of
hematopoietic progenitor cells with acquired genetic ab-
normalities characterized by impaired differentiation and
clonal expansion.1,2 Comprehensive sequencing studies of
AML samples have provided a broad list of recurrent cyto-
genetic and mutational abnormalities that are considered
potential driver events of AML pathogenesis. These studies
confirmed nucleophosmin 1 (NPM1) and the fms-related ty-
rosine kinase 3 (FLT3) as the most commonly mutated genes
in AML and discovered frequent genetic abnormalities in
genes encoding epigenetic regulators of transcription, with
about two-thirds of AML cases being affected.3-5 Genetic
abnormalities represent the basis for the current World Health

Organization classification and for prediction of the outcome
of AML.1,6

Despite our growing understanding of its pathogenesis, AML
remains a therapeutic challenge. Curative treatment efforts still
rely on intensive chemotherapy as a backbone.6,7 Currently, only
35% to 40% of the younger and 5% to 15% of the elderly patients
(.60 years) can be cured, and the outcome of patients who are
not eligible for intensive treatment is even more dismal.2 Hope
arises from the introduction of mechanism-based agents that
target AML-specific genetic abnormalities or epigenetic
vulnerabilities.7,8 Since 2017, eight novel drugs have been ap-
proved by the U.S. Food and Drug Administration for the treat-
ment of AML, and numerous novel agents are currently under
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clinical investigation, many of them targeting epigenetic
mechanisms.9,10

One promising therapeutic opportunity for tackling an epige-
netic vulnerability in AML is to inhibit the interaction between the
histone methyltransferase MLL and the chromatin-associated
oncogenic cofactor menin.11 This approach was initially pro-
posed for the treatment ofMLL-rearranged (MLL-r) leukemias, in
which a chromosomal translocation leads to the formation of an
oncogenic MLL-fusion protein.12,13 These fusion proteins require
the interaction with menin for chromatin binding to activate
leukemogenic gene expression that includes the MEIS1, PBX3,
and MEF2C transcription factors and to drive the leukemic
transformation of hematopoietic stem or progenitor cells.14-19

Both can be reversed by pharmacological inhibition of the menin-
MLL interaction,11,20-25 and 2 small-molecule inhibitors are cur-
rently entering clinical trials (NCT04067336 and NCT04065399).

We have recently demonstrated that the menin-MLL interaction
is also a dependency in the NPM1-mutant (NPM1mut) leukemias,
which represent themost common AML subtype in adults. These
leukemias lack an MLL-fusion protein but express a leukemo-
genic gene program, including MEIS1, HOX, PBX3, and FLT3
that is very similar to the program expressed in MLL-r
leukemias.26 As in MLL-r leukemias, small-molecule inhibition
of this interaction reversed expression of these genes and
showed dramatic antileukemic activity against human and mu-
rine models of NPM1mut leukemias in vitro and in vivo.26 These
findings were recently confirmed by other groups that used
medicinal chemistry to developmenin-MLL inhibitors with better
drug-like properties.22,27,28

Of note, we and others found FLT3 a putative transcriptional
MEIS1 target to be among the genes most dramatically
downregulated by menin-MLL inhibition inNPM1mut AML.26 This
finding attracted our interest, because activated mutations
within FLT3 are important leukemic drivers. FLT3 mutations
occur across all AML subgroups, including MLL-r leukemias
(10%), and are particularly common in NPM1mut AML (60%).29-32

An internal tandem duplication (ITD), the most common type of
FLT3 mutation, is associated with adverse treatment outcome
and, if present at a high allelic ratio, also converts the relatively
favorable NPM1mut AML subtype into an intermediate prog-
nostic category.6,33-36 Also, FLT3 mutations represent an im-
portant therapeutic target and midostaurin, a first-generation
multitargeted inhibitor of FLT3 phosphorylation has been shown
to improve survival rates of patients with AML who have de novo
FLT3 mutations, when given in combination with intensive
chemotherapy.37 Next-generation FLT3 inhibitors with higher
potency and selectivity, such as quizartinib, gilteritinib, and
crenolanib, induce high remission rates in relapsed/refractory
patients with FLT3-ITD1 AML as single agents.38-40 Gilteritinib
was recently approved for this indication in the United States and
Europe, but none of the currently used FLT3 inhibitors has in-
duced long-term remissions as single agents.38,39 The devel-
opment of a curative treatment is therefore currently focused on
the exploration of these compounds in combination treatment
regimens.41

FLT3-transcription is consistently downregulated upon menin-
MLL inhibition in NPM1mut AML, and we therefore hypothesized
that combining these agents with FLT3 inhibitors would enhance

their therapeutic efficacy. In this study, we demonstrated that
combined menin-MLL and FLT3 inhibition has enhanced on-
target activity against activating FLT3 mutations in MLL-r or
NPM1mut AML cells and shows remarkably superior activity
compared with single-drug treatment in vivo.

Materials and methods
Cell culture
All human AML cell lines used in this study were authenticated
by Multiplex Cell Authentication by Multiplexion (Heidelberg,
Germany), as described previously,42 andmaintained in standard
conditions, as described.26,43 The murine Npm1CA/1Flt3ITD/1

leukemia model, as well as murine retrovirally transformed Mll-
Af9-cells and their culture, have been described.26,44,45

Primary AML blast cells and coculture assay
Primary human NPM1mutFLT3ITD AML samples were obtained
from patients treated at the University Medical Center, Mainz,
under Institutional Review Board–approved protocols and in
accordance with the Declaration of Helsinki. The coculture
treatment assays were performed as reported previously26,43 and
are also described in the supplemental Methods, available on
the Blood Web site.

In vitro studies
In vitro drug treatment, cell viability assays, annexin-V staining,
RNA isolation, cDNA synthesis, quantitative real-time-PCR (qRT-
PCR), chromatin-immunoprecipitation (ChIP), western blot anal-
ysis, flow cytometry, viral transduction, and colony-forming unit
assays were performed according to standard procedures.26,43

Drug synergism was calculated using the Chou-Talalay Method.46

A detailed description is provided in the supplemental Methods.

RNA sequencing and analysis
For gene expression analysis, OCI-AML3, MOLM13, andMV411
cells were treated in 3 independent experiments. Normalization
on synthetic RNA spike-in controls, as proposed by Lovén and
colleagues,47 was performed as described.26,47 See the sup-
plemental Methods for RNA preparation, normalization details,
and sequencing analysis.

AML xenograft model
Six- to 10-week-old NOD.Cg-PrkdcscidIl2rgtm1Wjl/ SzJ (NSG) mice
were purchased from the Translational Animal Research Center
at the University Medical Center, Mainz. For in vivo experiments,
they were injected via the tail vein with 5 3 106 MV411 cells.
Animals were randomized into the following treatment groups:
vehicle (25% DMSO, 25% PEG400, and 50% phosphate buff-
ered saline), MI-503 (50 mg/kg; twice daily intraperitoneally),
quizartinib (10 mg/kg; PO, once daily), or a combination of both
drugs. For assessment of leukemia burden, the mice were eu-
thanized after drug treatment. Harvested bone marrow cells
were analyzed for human CD45 expression by flow cytometry.
For survival analysis, treatment was initiated on day 12 after
transplantation and continued until day 45, with a 2-day treat-
ment break to allow partial recovery from local irritation at the
injection sites. Moribund animals were euthanized when they
displayed signs of terminal leukemic disease. All mouse ex-
periments were approved by the National Investigation Office
Rheinland-Pfalz.
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Results
MEIS1 and FLT3 transcription is uniformly
suppressed by menin-MLL inhibition in
MLL-rearranged and NPM1mut leukemia
Because we found MEIS1 and its putative transcriptional target
FLT3 to be dramatically downregulated upon menin-MLL in-
hibition in our previous study, we wanted to explore whether
MEIS1 and FLT3 are uniformly suppressed after pharmacological
disruption of the menin-MLL interaction in MLL-r and NPM1mut

leukemias.

We first confirmed the selective inhibitory effects of menin-MLL
inhibition on cell proliferation in a selection ofMLL-r andNPM1mut

human and murine leukemia cells, with and without activating
FLT3mutations, using the small-molecule inhibitor MI-503 (MLL-r:
MOLM13 [FLT3-ITD], MV411 [FLT3-ITD], OCI-AML2 [wild-type
(wt) FLT3] and murine Mll-Af9 [wtFlt3]; and NPM1mut: OCI-AML3
[wtFLT3], murine Npm1CA/1Flt3ITD/1). In accordance with previous
reports20,26 the inhibitory effects of MI-503 on proliferation were
assessed after 7 and 11 days, because this compound affects cell
growth with a latency of several days, most likely as a conse-
quence of differentiation induction (supplemental Figure 1). As
expected, we observed a profound dose-dependent reduction in
proliferation of all MLL-r and NPM1mut cells, whereas leukemia
cells lacking MLL-r or NPM1mut showed only minor responses to
very high concentrations of the drug (human APL cell lines: NB4;
HL-60; murine Hoxa9-Meis1-transformed cells), with 50% in-
hibitory concentrations (IC50) of .1500 nM (Figure 1A-B; sup-
plemental Figure 1A-C).

To assess global transcriptional changes after menin-MLL in-
hibition in NPM1mut and MLL-r leukemia cells, we performed
RNA-seq analysis after MI-503 treatment in OCI-AML3,
MOLM13, and MV411 cells. After 4 days of treatment, gene
expression was assessed in OCI-AML3 and MOLM13 cells and
after 3 days in MV411 as these exhibited an earlier anti-
proliferative response to the treatment. In theMLL-r FLT3-ITD1

leukemia cells, we found that 1051 (MOLM13) and 1386
(MV411) genes were downregulated by at least twofold (ad-
justed P , .05; Figure 1C; supplemental Table 1). Many of the
most profoundly downregulated genes were known MLL-
target genes, including MEIS1, PBX3, JMJD1C, and MEF2C.
As hypothesized, we also found FLT3 expression to be dra-
matically suppressed (Figure 1D). In the NPM1mut OCI-AML3
cells, MI-503 led to downregulation of 578 genes, including
MEIS1, PBX3, and FLT3, when using the same thresholds (Figure
1C-D; supplemental Table 1). It is interesting to note that, in
contrast with the previously published menin-MLL inhibitor MI-2-
2, HOXA/B genes were not substantially repressed in these cells

(supplemental Figure 2A). Forty genes were significantly down-
regulated in bothNPM1mut andMLL-r leukemia cells and included
MEIS1 and FLT3 (Figure 1C). Using qPCR, we confirmed that
MEIS1 and FLT3 were uniformly downregulated by menin-MLL
inhibition in all other NPM1mut and MLL-r leukemia cells that we
assessed in this study (Figure 1E). Dramatic suppression of FLT3 in
MV411 cells known to harbor a hemizygous FLT3-ITD mutation
(with no remaining FLT3 wild-type [WT] copy) indicated that
menin-MLL inhibition also suppresses the mutated FLT3-ITD
transcript. qPCR, with individually designed ITD-specific primers,
confirmed this finding in MOLM13 and MV411 cells (supple-
mental Figure 2B).

ChIP, followed by qPCR, revealed that transcriptional down-
regulation of MEIS1 by MI-503 treatment was accompanied by
abrogation of menin andMLL protein binding to theMEIS1 gene
locus (Figure 1F-G; supplemental Figure 2C-D). These data
support the view that binding of the menin-MLL complex is
necessary for MEIS1 gene expression in these AML-subtypes.

Next, to assess FLT3 protein expression after 7 days of MI-503
treatment (except MV411, 4-day treatment), we performed flow
cytometry with antibodies that recognize an extracellular FLT3
epitope. In fact, FLT3 protein expression was also significantly
reduced in all NPM1mut and MLL-r leukemias (Figure 1H).

These data showed that pharmacological menin-MLL inhibition
causes uniform downregulation ofMEIS1 and of WT and mutant
FLT3 in NPM1mut and MLL-r leukemias.

Combined menin-MLL and FLT3 inhibition exerts a
synergistic effect against MLL-r or NPM1mut

leukemias that harbor a concurrent FLT3-ITD
The data presented thus far indicate that mutant FLT3 expres-
sion can be targeted via menin-MLL inhibition in MLL-r and
NPM1mut leukemias. We therefore sought to assess the effects of
combining menin-MLL inhibition with direct FLT3 kinase in-
hibitors that have been shown to be highly active against FLT3
mutant AML. First, we determined the IC50 concentrations of the
specific and potent FLT3 inhibitors quizartinib, crenolanib, gil-
teritinib, and ponatinib in humanMLL-r FLT3-ITD1 leukemia cell
lines after 48 hours of treatment. Both cell lines were highly
sensitive to the FLT3 inhibitors (Figure 2A; supplemental
Figure 3A). Consistent with published data, quizartinib was the
most potent inhibitor and was highly selective against FLT3-ITD1

leukemias, with IC50 values within the subnanomolar range,
whereas AML cells without FLT3 mutation were unaffected
(Figure 2A-B; supplemental Figure 3B-C).

Figure 1. Gene and protein expression changes upon menin-MLL inhibition in NPM1mut and MLL-r AML. (A) Human (left) and murine (right) AML cells were treated for
11 days with MI-503. Viable (49,6-diamidino-2-phenylindole [DAPI]–negative) cells were assessed by flow cytometry, and IC50 values were calculated with GraphPad Prism
software. (B) Summary of IC50 values (MI-503), MLL-rearrangement, and NPM1 and FLT3 mutation status in the AML cells assessed. (C) Venn diagram showing downregulated
genes identified by RNA-seq (more than twofold decrease; adjusted P, .05), inNPM1mutOCI-AML3,MLL-rMOLM13, andMV411 cells after MI-503 treatment (2.5mM) compared
with the DMSO control. (D) Volcano plots of RNA-seq data obtained from OCI-AML3, MOLM13, and MV411 cells treated with MI-503 (2.5 mM). FLT3 and selected MLL-fusion
targets are labeled. (E) FLT3 and MEIS1 mRNA expression in human and murine leukemia cells after 4 days of MI-503 treatment (2.5 mM), as assessed by qRT-PCR. ChIP was
performed with antibodies against menin (F) or MLL1 (G) and IgG as the negative control, followed by qPCR to detect a sequence within the MEIS1 gene body or SOX2 as
negative control. Cells were treated with MI-503 (2.5 mM) or vehicle control for 4 days. (H) FLT3 protein (cell surface) expression assessed by flow cytometry in human and murine
NPM1mut andMLL-rearranged AML cells after MI-503 treatment (2.5 mM for 4 or 7 days, as indicated). Representative histograms of 3 independent experiments are shown. Bar
graphs in panels A and E-G represent the mean of 3 independent experiments, each performed in technical triplicate. Bar graph in panel H showing Npm1CA/1Flt3ITD/1 cells
represents 2 independent experiments performed in technical triplicate. Error bars represent standard deviation.
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Figure 2. Synergistic effects of combined menin-MLL and FLT3 inhibition. (A) Dose-response curves from cell-viability assays after 48 hours of treatment with various FLT3
inhibitors in FLT3-ITD1 MOLM13 and MV411 cells. (B) FLT3-ITD1 and FLT3WT human leukemia cell lines were treated with quizartinib for 48 hours. IC50 values were graphically
determined by GraphPad Prism. (C) Dose-response curves from cell-viability assays after 48 hours of treatment with various FLT3 inhibitors in murine Npm1CA/1Flt3ITD/1 cells.
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We next assessed FLT3 inhibition in the murineNpm1CA/1Flt3ITD/1

leukemia cells known to harbor the F692L point (“gatekeeper”)
mutation that mediates resistance to most FLT3 inhibitors.48 In
accordance with published data, the cells showed hardly any
response to quizartinib, and the IC50 values of ponatinib, cren-
olanib, and gilteritinib, were shifted to higher concentrations
compared with the values determined from the MOLM13 and
MV411 cells that lacked the F692L mutation. Murine Hoxa9-
Meis1–transformed cells without an FLT3 mutation were not af-
fected by FLT3 inhibition (Figure 2C-E; supplemental Figure 3D-
F). Because the multityrosine kinase inhibitor ponatinib showed
the lowest IC50 (48nM; 48hours) among thedifferent compounds,we
used this inhibitor for the treatment of the murine Npm1CA/1Flt3ITD/1

leukemias and validated the results with higher doses of the more
specificdruggilteritinib.Quizartinibwas chosen for experiments in the
human MLL-r FLT3-ITD1 cells.

Next, we sought to assess combined menin-MLL and FLT3 in-
hibition in the MLL-r FLT3-ITD human and the murine
Npm1CA/1Flt3ITD/1 leukemia cells (Figure 2F-G). Because single-
drug treatment with menin-MLL inhibitors inhibits proliferation
with a latency of several days20,26 and single-drug FLT3 inhibition
induces a more rapid cytotoxic response in vitro, we pretreated
the leukemia cells for 2 (MV411) or 3 days (MOLM13, murine
Npm1CA/1Flt3ITD/1 cells) with MI-503 and then added the FLT3
inhibitor for an additional 24 hours (combination treatment).
Menin-MLL and FLT3 inhibition resulted in dramatically en-
hanced inhibition of proliferation compared with single-drug
treatment in all 3 of the assessed leukemias (Figure 2F-G;
supplemental Figure 3G). Notably, for all of those leukemias we
found dramatic drug synergism when using the Chou-Talalay
algorithm (supplemental Figure 3H-I). Human and murine AML
cells without MLL-r, NPM1mut, or FLT3 mutation (HL-60, NB4,
and Hoxa9-Meis1–transformed cells), which served as negative
controls, were not affected by single-drug or combinatorial
treatment (supplemental Figure 3J-K). MurineNpm1CA/1Flt3ITD/1

leukemia cells treated with both drugs in methylcellulose for
7 days showed significantly better suppression of total and blast
colony formation compared with single-drug treatment or ve-
hicle control (Figure 2H; supplemental Figure 4A).

The enhanced killing ofMLL-r FLT3-ITD1 andNpm1CA/1Flt3ITD/1

leukemia cells was associated with a significantly enhanced in-
duction of apoptosis compared with single-drug or vehicle
treatment (Figure 2I-J; supplemental Figure 4B). Menin-MLL
inhibitors are known to inhibit proliferation by apoptosis and
induction of differentiation inMLL-r andNPM1mut leukemias with
a latency of several days, and we wondered whether early-onset
induction of differentiation also contributes to the quick-killing
effect of the combination treatment. Therefore, we assessed cell

morphology in all 3 cell types at the timewhen efficient inhibition
of proliferation was noted with combination treatment (3 and
4 days of menin-MLL inhibition and 24 hours of FLT3 inhibition).
The mild-to-moderate myelomonocytic differentiation observed
at this early time point (Figure 2K) indicates that apoptosis in-
duction may be the main mechanism of the antileukemic activity
of the combination treatment.

These data indicate that combined menin-MLL and FLT3 in-
hibition enhances apoptosis induction compared with single-
drug treatment and synergistically inhibits proliferation in
NPM1mut and MLL-r leukemias with FLT3-ITD.

Menin-MLL inhibition enhances
FLT3-inhibitor–mediated abrogation of
phosphorylated FLT3
To characterize the effects of combined menin-MLL and FLT3
inhibition in more detail, we first assessedMEIS1 and FLT3 gene
expression after combinatorial drug treatment. As described,
menin-MLL inhibition alone or in combination with an FLT3
inhibitor suppressed MEIS1 and FLT3 transcription in MLL-r
FLT3-ITD1 and Npm1CA/1Flt3ITD/1 leukemias. As expected, we
did not find significant downregulation ofMEIS1 and FLT3 gene
expression with single inhibition of FLT3-phosphorylation. In
fact, FLT3 transcription was even upregulated in MV411 and
Npm1CA/1Flt3ITD/1 cells with single FLT3 inhibition, which is
consistent with previous reports49-51 (Figure 3A).

These transcriptional changes translated into similar changes on
the protein level, as assessed by immunoblot analysis. Although
total FLT3 protein expression was reduced with menin-MLL or
combination treatment, single-drug FLT3 inhibition caused no
change (MOLM13) or upregulation (MV411) of total FLT3 protein
levels (Figure 3B; supplemental Figure 5A).

Assessment of FLT3-receptor phosphorylation (pFLT3; activated
FLT3) in these cell lines showed a strong reduction in pFLT3 after
its direct inhibition by quizartinib and was also mildly reduced
after menin-MLL inhibition, the latter most likely reflecting the
decreased total FLT3 protein level. Combined-drug treatment
caused even more pronounced reduction of pFLT3 compared
with single-drug treatment, as assessed by immunoblot analysis
(Figure 3B; supplemental Figure 5A). The observed reduction of
pFLT3 was also associated with reduced phosphorylation of the
downstream signaling proteins STAT5 (pSTAT5) and ERK (pERK).
Similar to pFLT3, we observed reduced phosphorylation of both
proteins with single-drug treatment that was even more pro-
nounced with combinatorial treatment for pERK in MV411 and
MOLM13 cells and for pSTAT5 in MV411 cells, whereas the

Figure 2 (continued) (D) Ponatinib IC50 concentrations in murine Npm1CA/1Flt3ITD/1 and Hoxa9-Meis1–transformed cells after 48 hours of treatment. (E) Summary of FLT3
inhibitor IC50 concentrations in the human and murine leukemia cell lines assessed in this study. (F) Dose-response curves from cell-viability assays of MV411 andMOLM13 cells,
comparingMI-503 (MI; 3 days for MV411 cells and 4 days for MOLM13 cells), quizartinib (Qz; 24 hours), and combinatorial MI-503 (3 or 4 days) and quizartinib (24 hours) treatment.
Dashed lines indicate IC50 values. (G) Dose-response curves from cell-viability assays ofNpm1CA/1Flt3ITD/1 cells comparing MI-503 (MI, 4 days), ponatinib (Po, 24 hours, left), and
gilteritinib (Gil, 24 hours; right), or their combination (4 days, MI-503; 24 hours, ponatinib and gilteritinib). Dashed lines indicate IC50 values. (H) Effect of MI-503 (2.5mM), ponatinib
(100 nM), and combinatorial treatment (2.5 mM and 100 nM) on the number of total and blast-like colonies in murineNpm1CA/1Flt3ITD/1 cells, normalized to DMSO. Micrographs
were taken at320 amplification. (I-J) Percentage of apoptotic (annexin V) and dead (49,6-diamidino-2-phenylindole [DAPI]-stained) cells after single and combinatorial treatment
with MI-503 (2.5 mM) and quizartinib (3 nM) in human cell lines (I) or MI-503 (2.5 mM) and ponatinib (100 nM) or gilteritinib (400 nM) in murine cells (J). (K) Giemsa-stained cytospins
showing human MV411 and MOLM13 cells and murine Npm1CA/1Flt3ITD/1 cells after single and combinatorial treatment with MI-503 (2.5 mM; 4 days and 3 days for MV411) and
FLT3 inhibitor (quizartinib, 3 nM, 24 hours; ponatinib, 100 nM, 24 hours) or their combination (day 4/24 hours and day 3/24 hours for MV411, respectively). Micrographs were taken
at 3100 amplification. Error bars represent SD of 3 independent experiments, each performed in 3 technical replicates.
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Figure 3. Effects of single and combinedmenin-MLL and FLT3 inhibition on FLT3 and phosphorylated FLT3 protein levels. (A) FLT3 andMEIS1mRNA expression in human
MOLM13 (left) andMV411 (middle) cells andmurineNpm1CA/1Flt3ITD/1 (right) leukemia cells after single or combinatorial treatment with MI-503 (2.5 mM; 4 days for MOLM13 and
Npm1CA/1Flt3ITD/1 cells and 3 days for MV411 cells) and FLT3 inhibitors (quizartinib, 3 nM; ponatinib, 100 nM, 24 hours) as assessed by qRT-PCR. Bar graphs represent the mean
with SD of 3 independent experiments, each performed in technical triplicate. (B) Immunoblot analysis of FLT3 and phosphorylated (p)FLT3 in MOLM13 cells (left) and MV411
cells (right) upon treatment with 2.5 mM MI-503 (for 3 and 4 days in MV411 and MOLM13 cells), quizartinib (3 nM, 24 hours), or the 2 combined. One representative blot of 3
independent experiments is shown. Numbers indicate the DMSO-normalized quantification of western blot signals, relative to the loading control, performed by densitometry
with ImageJ software. (C) Immunoblot analysis of STAT5 and phosphorylated (p)STAT5 in MOLM13 (left) and MV411 (right) cells after treatment as described in panel B. One
representative blot of 3 independent experiments is shown. Numbers indicate the DMSO-normalized quantification of western blot signals, relative to the loading control,
performed by densitometry with ImageJ software. pFLT3 (D) and pSTAT5 (E) protein expression in human MOLM13 and MV411 and murine Npm1CA/1Flt3ITD/1 cells after
treatment withMI-503 (2.5mM; 4 days for MOLM13 andNpm1CA/1Flt3ITD/1 cells; 3 days for MV411 cells), FLT3 inhibitor (quizartinib, 3 nM, and ponatinib, 100 nM; 24 hours) or their
combination, as assessed by flow cytometry. One representative histogram of 3 independent experiments is shown. The colored numbers in the flow histograms indicate the
percentage of pFLT31 and pSTAT51 cells, respectively.
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dramatic reduction of pSTAT5 observed with quizartinib in
MOLM13 was not enhanced (Figure 3C; supplemental Figure 5B).

Similar results were obtained when we assessed pFLT3 by flow
cytometry in the humanMLL-r FLT3-ITD and theNpm1CA/1Flt3ITD/1

leukemia cells, in which combined treatment abrogated pFLT3
levels significantly more than single-drug or vehicle treatment (Figure
3D; supplemental Figure 5C-D). The specificity of the antibody for
pFLT3 is indicated by FLT3 ligand-stimulation experiments (supple-
mental Figure 5E). Again, the decrease in the FLT3 downstream
signaling proteins pSTAT5 and pERK was more pronounced after
combinatorial treatment than after single-drug treatment in MV411

cells and murine leukemia cells examined by flow cytometry, whereas
quizartinib and combinatorial treatment showed a similar reduction of
pSTAT5andpERK inMOLM13cells (Figure3E; supplementalFigure5F-J).

To explore the global transcriptional consequences of the en-
hanced reduction of pFLT3, we performed RNA-seq analysis in
the MV411 cells and compared combinatorial vs single-drug or
vehicle treatment. Gene set enrichment analysis revealed that
the genes downregulated by combinatorial treatment were
significantly enriched for target genes of the FLT3-activated
transcription factor STAT5A (Figure 4A). When comparing the
expression levels of STAT5A target genes between the different
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treatment groups in more detail, we found most of these genes
to bemoderately suppressed by single-drug treatment with either
menin-MLL or FLT3 inhibitors. The combinatorial treatment fur-
ther reduced the expression levels of these genesmore efficiently
(Figure 4B; supplemental Figure 6A-B; supplemental Table 2).

As FLT3 is a reported MEIS1 and HOXA9 transcriptional and
potential binding target,52-54 we next assessed the effect of
retrovirally induced ectopic expression ofMeis1 and Hoxa9-Meis1
on Flt3 expression in Npm1CA/1Flt3ITD/1 murine leukemia cells.
Both scenarios increased the expression of endogenous Flt3 by
1.5- and 2.8-fold, respectively (Figure 5A; supplemental Figure 7A).
Of interest, ectopic Meis1 and Hoxa9-Meis1 expression partially
rescued the Npm1CA/1Flt3ITD/1 cells from the antiproliferative ac-
tivity of themenin-MLL inhibitor and of the combinatorial treatment
(Figure 5B-C; supplemental Figure 7B-C). Similar rescue effects on
colony-forming potential were observed when the cells were
treated in methylcellulose (supplemental Figure 8A-B).

These data support the concept that FLT3 expression is driven by
the MEIS1 transcription factor in these leukemias and that tran-
scriptional suppression of FLT3 via menin-MLL inhibition con-
tributes to a more efficient reduction of phosphorylated FLT3.

The novel menin-MLL inhibitor VTP-50469, in
combination with FLT3 inhibitors, exerts a highly
synergistic effect against NPM1mut and MLL-r
leukemias
To confirm the effects of pharmacological menin-MLL inhibition
by MI-503, we used 2 validated small-hairpin RNAs to perform
knockdown of MEN1 in MOLM13 and MV411 cells. At 48 hours
after lentiviral transduction, we observed downregulation of
MEIS1 and FLT3 gene expression in a MEN1 suppression–
dependent manner. Also, we found that MEN1 knockdown
consistently sensitized the MLL-r AML cells to pharmacological
FLT3 inhibition, thereby phenocopying the effects observed
with MI-503 (Figure 6A-B).

During the work on the revision of this study, VTP-50469, a novel
and more selective menin-MLL inhibitor with clinical utility was
described and became available to us. We used VTP-50469 to
independently validate the effects observed with MI-503. First,
we confirmed selective growth inhibition of VTP-50469 on MLL-r
and NPM1mut leukemia cells (Figure 6C; supplemental Figure 9A-
B). Next, we assessed its combination with the FLT3 inhibitors
quizartinib and gilteritinib in the humanMLL-r and with ponatinib
and gilteritinib in the murine Npm1CA/1Flt3ITD/1 AML cells. Similar

toMI-503, all combinations resulted in synergistic inhibition of cell
proliferation compared with single-drug treatment (Figure 6D-F;
supplemental Figure 9C-G). VTP-50469 also suppressed MEIS1
and FLT3 expression dramatically and when combined with FLT3
inhibitors resulted in more pronounced abrogation of pFLT3
protein levels than each of the single-drug treatments alone
(Figure 6G-I). These data independently confirm the synergistic
antileukemic effects of combinedmenin-MLL and FLT3 targeting.

Combinedmenin-MLL and FLT3 inhibition suppresses
primary NPM1mutFLT3ITD AML cells in vitro
To investigate combinatorial menin-MLL and FLT3 inhibition in
samples from patients with primary AML, we used a previously
described coculture assay that allowed us to maintain and treat
these leukemia cells in serum-free medium with cytokines on a
(HS27) stromal cell layer in vitro (Figure 7A). Five de novo
NPM1mut FLT3-ITD samples from patients with AMLwere treated
for 7 days with DMSO,MI-503, quizartinib, or the combination of
the drugs. All 5 samples showed significantly enhanced reduction
in the number of cells with combinatorial treatment compared
with single-drug treatment. In all samples, MI-503 and quizartinib
also reduced the number of viable cells significantly compared
with the cells exposed to the drug vehicle (Figure 7B-C). To
control for potential nonspecific drug toxicity, we also treated 2
primary AML samples lacking NPM1mut, MLL-r, and FLT3-ITD. In
both samples the number of viable cells was not significantly
affected by either single-drug or combinatorial treatment
(Figure 7D). Four of the 5 primary NPM1mut FLT3-ITD samples
were also treated in methylcellulose. Similar to the proliferation
assays, blast-colony formation was significantly reduced by the
drug combination vs all other treatment groups (Figure 7E).

These data from primary NPM1mut FLT3-ITD1 AML patient
samples further support single and combinatorial menin-MLL
and FLT3 inhibition as a potentially efficacious therapeutic
concept for FLT3-mutated NPM1mut leukemia.

Combined in vivo treatment significantly prolongs
survival of MLL-r FLT3-ITD1 leukemic mice
We next sought to explore the therapeutic potential of com-
bined menin-MLL and FLT3 inhibition in vivo. First, we assessed
the effects of these drugs on leukemic burden in a disseminated
human MV411 xenotransplantation model. MV411 cells were
transplanted into NSG mice via tail-vein injection, and the animals
were randomly divided into 4 groups receivingMI-503, quizartinib, a
combination of the 2 drugs, or vehicle control treatment. The
treatment was started 1 week after transplantation (day 7) and the
animals were euthanized after 14 days of treatment. Leukemia

Figure 6. Synergistic inhibition of proliferation and FLT3 activation after combined treatment with next-generation menin-MLL and FLT3 inhibitors. (A)
Dose-response curves of MOLM13 andMV411 cells treated with quizartinib for 24 hours, comparing cells transduced with short hairpin RNAs againstMEN1with control-transduced
cells (shLUC). (B) mRNA expression levels of MEN1, MEIS1, and FLT3 in MOLM13 and MV411 cells with MEN1 knock down or control-transduced cells, assessed 48 hours after
transduction. (C) Dose-response curves from cell-viability assays after 7 days of treatment with VTP-50469 in human (left) and murine (right) leukemia cells. Viable (49,6-diamidino-2-
phenylindole [DAPI]-negative) cells were assessed by flow cytometry. (D-E) Dose-response curves from cell viability assays of MV411 and MOLM13 cells comparing VTP-50469 (VTP;
3 days for MV411 and 4 days for MOLM13 cells), quizartinib (Qz, 24 hours; D), gilteritinib (Gil, 24 hours; E), and combinatorial VTP-50469 (3 or 4 days) and FLT3 inhibition (24 hours)
treatment. Dashed lines indicate IC50 values. (F) Dose-response curves from cell viability assays ofNpm1CA/1Flt3ITD/1 cells comparing VTP-50469 (VTP; 6 days), ponatinib (Po, 24 hours,
[left]), or gilteritinib (Gil, 24 hours; [right]) with their combination (6 days VTP50469, 24 hours FLT3 inhibition). Dashed lines indicate IC50 values. (G-H) FLT3 andMEIS1mRNAexpression
in murine Npm1CA/1Flt3ITD/1 (G), human MV411 (H; left), and MOLM13 (H; right) leukemia cells after single or combined treatment with VTP-50469 (100 nM; 4 days for MOLM13 and
Npm1CA/1Flt3ITD/1 cells and 3days forMV411 cells) and FLT3 inhibitors (quizartinib, 3 nMandponatinib, 100 nM; 24 hours) as assessedby qRT-PCR. Bar graphs represent themeanwith
standard deviation of 3 independent experiments, each performed in technical triplicate. (I) Immunoblot analysis of FLT3 and phosphorylated (p)FLT3 in MV411 cells (left) and
MOLM13 cells (right) after treatment with VTP-50469 (100 nM; 3 and 4 days in MV411 and MOLM-13, respectively) and quizartinib (3 nM, 24 hours), or their combination. Numbers
indicate the DMSO-normalized quantification of western blot signals, relative to the loading control, performed by densitometry using the ImageJ software tool.
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burden, as defined by the percentage of bone marrow cells
expressinghumanCD45,was significantly reducedwithin the animal
group treatedwith thedrug combination vs all other groups (vehicle,
15%; MI-503, 8%; quizartinib, 3%; combination [combo], 1.5%;
P , .05 for combo vs other groups; Figure 7F).

In a separate experiment, we assessed survival in the dissemi-
nated MV411 xenograft leukemia model. Drug treatment was
initiated on day 12 after transplantation and continued until day
45. Combinatorial MI-503 and quizartinib treatment resulted in a
significant survival advantage compared with single-drug– or
vehicle-treated animals (hazard ratios for death, 0.15 and 0.35;
95% confidence intervals, 0.02845-0.8061 and 0.0285-0.8783;
P 5 .0269 and P 5 .0350 for combo vs MI-503 and combo vs
quizartinib, respectively; Figure 7G).

In summary, these data confirm that the combination of menin-
MLL and FLT3 inhibition substantially improves survival of mice
engrafted withMLL-r FLT3-ITD1 leukemia compared with single-
drug– or vehicle-treated animals and supports this therapeutic
concept as a synergistic approach to combat these leukemias.

Discussion
Intensive chemotherapy remains the backbone of curative
treatment of AML.6 This aggressive therapy can induce long-term
remissions in only about half of the patients with NPM1mut AML
and one-third of the patients with MLL-r AML.3 Explanations for
these relatively unsatisfactory survival rates is older age at di-
agnosis and the presence of concurrent poor prognostic disease
markers, such as the FLT3-ITD mutations.33,34,55 These mutations
are associated with treatment failure, relapse, and death56 and
also represent important therapeutic targets. FLT3 inhibitors have
been shown to increase survival rates in de novo and in relapsedor
refractory AML,38,39,57,58 and potent, highly selective second-
generation FLT3 inhibitors can induce high response rates as
single agents. However, without further consolidating treatment,
almost all patients relapse and ultimately succumb to their
disease.38,39 Emerging resistance mutations have been reported
as one reason for resistance to FLT3 inhibition,58,59 but there are
other potential explanations. First, AML is commonly driven by
multiple oncogenic mechanisms and not by a single FLT3 mu-
tation. Recent deep-sequencing efforts found a median number
of 5 and at least 2 genetic driver events to be present per AML
case.5 Second, FLT3mutations are considered late events during
leukemogenesis.60-62 Therefore, FLT3 inhibitors target the domi-
nant FLT3-mutant AML blast population, but potentially, not the
AML founding clone fromwhich relapsemay originate. Because of
its biologic heterogeneity, AML is generally not believed to be
cured by single-drug treatment.63

In our study, we developed a synergistic treatment regimen that
combines menin-MLL and FLT3 inhibitors to target leukemo-
genic gene expression in NPM1mut or MLL-r leukemia and ac-
tivating FLT3 mutations. The development of this approach was
based on the previous findings that inhibition of the menin-MLL
interaction reverses leukemogenic gene expression in NPM1mut

AML, including the most pronouncedMEIS1 transcription factor
and its putative transcriptional target gene FLT3.26 In a detailed
assessment, we also demonstrated that both WT and mutant
FLT3 transcript levels were consistently downregulated in re-
sponse to MI-503 in NPM1mut and MLL-r AML models.

As FLT3 is a transcriptional target gene of MEIS1,53,54 FLT3
downregulation after menin-MLL inhibition is therefore a likely
result of the dramatically suppressed MEIS1 expression. Re-
duced total FLT3 levels were also associated with the lower level
of pFLT3 that we observed after menin-MLL inhibition. This may
explain the superior reduction of pFLT3 that we observed with
the combination treatment, compared with direct inhibition of
pFLT3 or menin-MLL inhibition alone.

It is of interest to note that the pronounced reduction of pFLT3
after combinatorial menin-MLL and FLT3 inhibition also resulted
in significantly enhanced suppression of STAT5A target genes in
MV411 cells. Because STAT5A contributes to leukemia maintenance
and is an important downstream mediator of activating FLT3
mutations,64-66 the synergistic antileukemic activity of com-
bined menin-MLL and FLT3 inhibition is probably caused by its
enhanced on-target activity in preventing FLT3 signaling.

We have also shown that upregulation of FLT3, which is com-
monly observed after FLT3 inhibition,49-51 can be reversed with
the addition of the menin-MLL inhibitor. Although this mecha-
nism may contribute to enhanced activity of FLT3 inhibitors,
future studies will determine whether this concept may help to
prevent or overcome resistance to FLT3 inhibition.

Menin-MLL inhibitors are particularly attractive partners in a
combined treatment, as they allow the effective targeting of a
core leukemogenic gene expression program driven by NPM1
mutations or MLL fusions including the transcription factors
MEIS1 and PBX3.15,53,67,68 Our assessment of blast colony for-
mation upon drug treatment is consistent with the view that
menin-MLL inhibition targets immature leukemia-initiating cells,
most likely via suppression of self-renewal–associated MEIS1-
and PBX3-driven gene expression. Blast colony formation can be
further inhibited by the addition of a FLT3 inhibitor, whereas
FLT3 inhibition alone has only minor effects. The mechanisms
behind this observation remain to be determined in detailed
studies assessing single and combined drug effects on the
leukemia-initiating fraction in these leukemia subtypes.

In contrast to previous menin-MLL inhibitors such as MI-2-2,25

many other MLL target genes including the HOX transcription
factors were only moderately suppressed (MLL-r and murine
Npm1CA/1Flt3ITD/1) or unchanged (human NPM1mut OCI-AML3)
with MI-503. This is consistent with findings from recent studies
assessing novel and more selective menin-MLL inhibitors, such
as VTP-50469 and MI-3454, that also did not lead to broad
downregulation ofHOX genes and other MLL-fusion targets.22,28

These findings are in line with the observation that MLL fusion
occupancy is lost only on a subset of genes in response tomenin-
MLL inhibition.22 Although we do not know the exact mechanism
behind the different responses at specific loci, the 2 novel
menin-MLL inhibitors also dramatically suppress a core tran-
scriptional program that includes PBX3, MEIS1, and FLT3. In
accordance with these observations, we present clear evidence
that the novel menin-MLL inhibitor VTP-50469 has dramatic
synergistic antileukemic activity in combination with various
FLT3 inhibitors.

In summary, our data show that menin-MLL inhibition targets
FLT3 transcriptionally via suppression of the leukemogenic
transcription factorMEIS1, which is driven byNPM1mutations or
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Figure 7. Effects of single and combined menin-MLL and FLT3 inhibition on primary NPM1mut FLT3ITD AML patient samples and on survival of in vivo–treated MLL-r
FLT3-ITD leukemic xenograft mice. (A) The human stromal cell coculture assay, performed to maintain and treat patients’ primary AML blasts. (B) Summary of characteristics of
patients providing the samples used in panels C-E. (C-D) Number of viable cells in de novo AML samples treated in coculture for 7 days with DMSO, MI-503 (2 mM), quizartinib
(6 nM), or combinatorialMI-503 and quizartinib treatment. (C) Five independent samples of de novoNPM1mutFLT3ITD AML. (D) Two independent samples of de novo AML,WT for
NPM1, FLT3, andMLL. Depicted are 49,6-diamidino-2-phenylindole [DAPI]2, human CD451 cell numbers as assessed by flow cytometry. (E) Effect of MI-503 (2.5 mM), quizartinib
(3 nM), and combinatorial treatment (2.5 mM and 3 nM) on total and blast-like CFUs in primary patient sample cells. (F) Experimental setup for the treatment of MV411-derived
leukemic xenograft mice (left); percentage of humanCD451 cells in the bonemarrow of leukemicmice (right) after treatment with drug vehicles, MI-503 (50mg/kg; twice daily IP),
quizartinib (10 mg/kg; PO; once daily), or combined MI-503 and quizartinib. (G) Kaplan-Meier survival analysis of MV411-derived leukemic xenograft mice treated with drug
vehicles,MI-503 (50mg/kg; twice daily IP), quizartinib (10mg/kg; PO; once daily), or combinatorialMI-503 and quizartinib (n5 5mice/group). The treatment period is displayed in
blue. The log-rank (Mantel-Cox) test was used to calculate the P-values.
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MLL fusions in AML and is not amenable to direct pharmaco-
logical inhibition. We further demonstrate that the combination
of menin-MLL and FLT3 inhibition results in enhanced on-target
activity against pFLT3, resulting in synergistic antileukemic effects
against NPM1mut or MLL-r leukemias harboring the prognostically
adverse FLT3-ITD mutation. This drug combination therefore
represents a promising opportunity for the treatment of these
leukemia subtypes that is already available for clinical testing.
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29. Kühn MWM, Bullinger L, Gröschel S, et al.
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