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KEY PO INT S

l CPI203-expanded
cord blood cells retain
bone marrow
repopulating capacity.

l CPI203 promotes
humanmegakaryocyte
development ex vivo.

Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can
result in high yields of hematopoietic progenitor cells, this generally occurs at the expense
of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic
applications. Because bromodomain-containing proteins (BCPs) have been demonstrated
to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting
various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds
tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the
expansion of human cord blood HSCs without losing cell viability in vitro. The expanded
cells also demonstrated improved engraftment and repopulation in serial transplantation

assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was ac-
companied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated
reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove benefi-
cial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for
transplantation research and therapy. (Blood. 2020;136(21):2410-2415)

Introduction
Gene regulation through epigenetic modification is vital for
normal and malignant hematopoiesis,1 and epigenetic regu-
lators have been highlighted as important therapeutic targets.
Small molecules that target chromatin-regulating proteins,
such as histone deacetylase inhibitors and DNA demethy-
lating agents, overcome the loss-of-stemness by human
hematopoietic stem cells (HSCs) that occurs in ex vivo ex-
pansion cultures, but it is unclear if all cell types can be gen-
erated by reported protocols, especially megakarocytes2-4.
Bromodomain-containing proteins (BCPs), as components of
transcription factor complexes and determinants of epigenetic
memory,1,5,6 have been implicated in regulating mouse HSC
self-renewal and “stemness,”7,8 but are not well-studied in
normal human hematopoiesis. By screening small molecules
that target various BCPs in umbilical cord blood (UCB) HSCs,
we demonstrate that the bromodomain and extra-terminal
motif (BET) domain inhibitor CPI203 promotes ex vivo
expansion of long-term repopulating human HSCs and
megakaryocytes.

Methods
CD1331 human UCB cells (purity .90%) were cultured under
optimized conditions for 5 days in stem cell expansion cultures
(with stem cell factor [SCF], TPO, and FLT3L as described
previously4,9-11). Detailed methods are described in supple-
mental Materials, available on the Blood Web site. Sequencing
data have been submitted to the NCBI Gene Expression Om-
nibus (GSE140813).

Results and discussion
BET inhibitors support ex vivo expansion of
phenotypic HSCs
To investigate the role of BCPs in normal hematopoiesis, we
tested 10 BCP inhibitors targeting BRD2-4, BRDT, BAZ2A/B,
CREBBP, EP300, SMARCA, or PB1 on UCB CD1331 cells (sup-
plemental Figure 1A). Cells were plated in stem cell expansion
media with increasing concentrations of these compounds (60 nM
to 15 mM) and then analyzed by flow cytometry (supplemental
Table 1). Lin2CD341CD382CD45RA2CD901CD49f1 cells were
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Figure 1. Cord blood hematopoietic stem/progenitor cell expansion ex vivo by the BET inhibitor CPI203. (A) Flow plots of 5-day expanded UCB CD1331 cells in vehicle/
cytokines (top) and CPI203/cytokines (bottom), showing the expression of Lineage (Lin), CD34, CD38, CD45RA, CD90, and CD49f markers. Sequential gating strategy from left to
right. (B) Absolute numbers of phenotypically defined (p) Lin2CD341CD382CD45RA2CD901CD49f1 HSCs increased significantly in CPI203/cytokine condition compared with
the vehicle/cytokine control (**P# .01; ***P# .005; each well seeded with 5000 cells, n5 4). (C) Absolute number of LTC-IC per well in 5-day CPI203/cytokine vs vehicle/cytokine
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identified phenotypically as HSCs (pHSCs).12 Only BET inhibitors
resulted in increased absolute numbers of pHSCs (supplemental
Figure 1B), consistent with previous studies demonstrating increased
LSK cells/HSCs in mice administered with JQ1.8 Most (JQ1, PFI-1,
bromospirone, OXF-BD-02; supplemental Figure 1B) showed their
greatest effects at concentrations.5000 nM,which also reduced cell
viability. In contrast, with CPI203, the numbers of pHSCs increased
significantly, commencing from concentrations as low as 60 nM, with
cells remaining viable up to 540 nM (supplemental Figure 1B).

To further assess CPI203, 5000 UCB CD1331 cells/well were cul-
tured in cytokines with 150 nM CPI203 for 5 days (Figure 1A).
Although total nucleated cells steadily increased in the vehicle/
cytokine control cultures as expected, mainly from to an expansion
of immunophenotypic LMPP (Lin2CD341CD382CD45RA1) and
Lin1 compartments, total nucleated cells expansion was signifi-
cantly less in theCPI203/cytokines cultures than in vehicle/cytokines
(supplemental Figure 2A). Furthermore, numbers of total Lin2

CD341 HSPCs were not altered by addition of CPI203 compared
with the vehicle/cytokine control (P5 .90 at day 5) and cell viability
was unaffected by CPI203 treatment over time (P 5 .82 at day 5;
supplemental Figure 2A). However, the absolute number of pHSCs
started to increase significantly by 24 hours after culture initiation
with CPI203 and remained significantly higher than the vehicle/
cytokine control in the following a 4-day culture (Figure 1B). Sim-
ilarly, the increase in absolute numbers of immunophenotypic MPP
(Lin2CD341CD382CD45RA2CD902) occurred earlier in CPI203
than vehicle-containing cultures (supplemental Figure 2A).

To estimate the proportion of long-term culture-initiating cells (LTC-
IC) in the pHSC subset, we performed a limiting dilution analysis on
pHSCs sorted before and after 5 days of expansion by CPI203/
cytokines or vehicle/cytokines. LTC-IC frequency was almost
identical (1 in 42.4 vs 1 in 42.2 for day 5 cells for day 5 CPI203-
treated and vehicle-treated pHSCs, respectively; supplemental
Figure 2B). However, because the absolute number of pHSCs in
CPI203/cytokine cultures was 5- to 10-fold higher than the vehicle/
cytokine control from day 2 of culture (Figure 1B), and cell viability
was unaffected by CPI203 (P 5 .67; Figure 1D; supplemental
Figure 2C),weestimate thatCPI203 expandedabsolute numbers of
LTC-ICs 5- to 10-fold compared with a minimal expansion by ve-
hicle/cytokines (Figure 1C; P, .001, n5 4). As expected, although
the LTC-IC frequency was higher in unexpanded pHSCs (1 in 12.9),
consistent with the pHSC frequency (0.1 6 0.2% in CD1331 cells)
and similar to that observed in previous repopulation studies using
irradiated NSG mice,12 the total numbers of LTC-IC in the pHSC
fraction of CPI203 cultures were 1.5 to 3 times higher fromdays 2 to
5 compared with the unexpanded pHSCs.

CPI203/cytokine-expanded CD1331 cells show
improved bone marrow engraftment in
nonirradiated NOD,B6.SCID Il2rg2/2KitW41/W41 mice
To confirm preservation of HSC function of CPI203-expanded
cells in vivo, unexpanded CD1331 cells (500-50 000), or the total

progeny of that cell number after expansion, were injected into
nonirradiated adult NOD,B6.SCID Il2rg2/2KitW41/W41 mice (sup-
plemental Table 2). After 20 to 22 weeks, all 14 mice injected
with CPI203/cytokine-expanded cells engrafted the bone mar-
row (BM; $1% human [h]CD451 cells) at all cell doses, whereas
consistent engraftment of vehicle/cytokine-expanded cells only
occurred with higher cell doses (Figure 1E-F; supplemental
Tables 2-4). Indeed, the level of BM engraftment in the 500-cell
initiating group was 23.1%6 5.9% in CPI203/cytokine conditions
vs 1.5% 6 1.4% for vehicle/cytokines (Figure 1E-F). Multilineage
reconstitution was observed, with substantial hCD235a1 erythroid
cells (40.1% 6 15.2%), as well as lymphocytes (CD191 B cells:
20.1%6 5.9%; CD31 T cells: 1.4%6 1.2%), CD331 myeloid cells
(0.7%6 0.2%), and Lin-CD341 HSPCs (0.2%6 0.1%), detected in
the total BM of engrafted mice (supplemental Figure 3A-F;
supplemental Tables 3 and 4). Spleen and peripheral blood en-
graftment with hCD451 cells were also higher for CPI203/cytokine
expanded cells in 500-cell initiating group: spleen, 37.6% 6
13.2% vs 4.5%6 3.3%; peripheral blood, 5.8%6 3.2% vs 0.2%6
0.2%) (supplemental Figure 4A-C; all data in other cell dosage
appear in supplemental Figure 4 and supplemental Table 4).

To confirm long-term repopulating capacity of CPI203/cytokine-
treated cells, secondary transplantation was performed and
analyzed 22 weeks after injection. All mice injected with BM cells
from mice receiving CPI203/cytokine-expanded cells engrafted
(7.2%6 2.9% hCD451 cells in BM) with multilineage reconstitution,
compared with 0.3% 6 0.2% hCD451 cells in mice transplanted
with the same number of BM cells from mice receiving vehicle/
cytokine-expanded cells (Figure 1E-F; supplemental Figures 5 and
6; supplemental Table 5) confirming that CPI203 can expand
phenotypic and functional long term (LT)-HSC.

CPI203 promotes expansion of HSC and
megakaryocytes
Finally, to investigate the transcriptomic effects of CPI203 on
UCB HSPCs, we performed RNA sequencing on cells expanded
with CPI203/cytokines or vehicle/cytokines. Differences in ex-
pression of many HSC-related genes were detected (Figure 2A;
supplemental Figure 7A-B; supplemental Spreadsheets). Genes
highly expressed in HSCs (PROM1, POU5F1, EMCN, CRHBP, HLF,
MEIS1, JUN, and CXCR42,9,13-16) were significantly more highly
expressed in CPI203/cytokine-expanded cells, in keeping with
the higher numbers of pHSCs. In contrast, myeloid-, erythroid-,
and lymphoid-related genes,13 including CSF3R, PRTN3, CA1,
CNRIP1, APOC1, TFR2, CD4, CD79A, and CD79B, were more
highly expressed in vehicle/cytokine conditions. Unexpectedly,
3 of the most upregulated genes in CPI203/cytokine-expanded
cells are strongly associated with megakaryocyte (MK) devel-
opment (CXCR4,17 PF4,18 and C6orf2519).

We therefore examined the percentage of MK in the cultures.
After expansion in CPI203/cytokines for 5 days (Figure 2B-C),
the proportion of both CD411 and CD411CD421 MK was

Figure 1 (continued) expansion cultures based on limiting dilution analysis estimation. (n5 4, **P# .01; ***P# .005). (D) Percentage of Annexin V1PI2 (apoptotic) and Annexin
V1PI1 (dead) cells in cytokine containing medium supplemented with CPI203 or the vehicle control did not differ on day 5 of expansion (n5 3, NS P5 .82. (E) Bone marrow cells
harvested from mice injected with 500 unexpanded UCB CD1331 cells or progeny of 500 culture initiating UCB CD1331 cells show significantly more human cells in CPI203/
cytokine-expanded conditions than unexpanded or vehicle/cytokines conditions (left, primary transplantation; right, secondary transplantation, all replicates shown in sup-
plemental Figures 3-6 and supplemental Tables 2-5). (F) Dot plots show the percentage of hCD451 human leukocytes in all bone marrow cells from recipient mice in different
conditions for (top) primary transplants and (bottom) secondary transplants (n 5 3-4; *P # .05; **P # .01, 1-way analysis of variance with multiple comparison [Fisher’s least
significant difference]).
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Figure 2. CPI203promotesmegakaryocyte-accompanied ex vivo expansion of CBHSCs. (A) RNA sequencingwas performedonUCBCD1331 cells that had been expanded
for 5 days in culture with CPI203/cytokines (B) or vehicle/cytokines (V). Top differentially expressed genes associated with HSCs, megakaryocytes, myeloid cells, erythroid cells,
and lymphoid cells are shown in a heatmap (false discovery rate, 0.01, gene expression level from low to high shown as blue to orange). (B) Flow plots showing the total CD411

or CD411CD421 cells detected in all cells expanded in CPI203/cytokines condition compared with vehicle/cytokines on day 5. (C) Increased total CD411 (top) and CD411CD421

(bottom) megakaryocytic cells expanded in CPI203/cytokine conditions compared with vehicle/cytokine for 5 days, followed by a further 5 days’ expansion in MK expansion
medium (TPO, SCF) without CPI203 or vehicle (n 5 3; *P # .05). (D-E) Increased ploidy of megakaryocytes generated in MK expansion medium from d5-CPI203/cytokine-
expanded cultures compared with d5-vehicle/cytokine-expanded cultures (n 5 3; *P # .05; ***P # .005). Data shown are from day 10 of extended cultures: 5 days in CPI203/
cytokines or vehicle/cytokines followed by 5 days in MK expansion medium (SCF, TPO) without CPI203 or vehicle.

CPI203 EXPANDED UCB LT-HSC AND MEGAKARYOCYTES blood® 19 NOVEMBER 2020 | VOLUME 136, NUMBER 21 2413

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/21/2410/1789973/bloodbld2020005357.pdf by guest on 18 M

ay 2024



significantly (;2-fold) higher than for the vehicle/cytokine control.
To further test the effect of CPI203 on MK differentiation and
maturation, the day 5 CPI203/cytokines or vehicle/cytokines ex-
panded cells were transferred into MK-supportive media (SCF,
TPO) and cultured without CPI203 or vehicle for a further 5 days.
The percentages of CD411 and CD411CD421 MK increased in
the second culture phase (Figure 2C), and, by day 10, MK derived
from the d5-CPI203-expanded cells were of higher ploidy than the
d5-vehicle/cytokine-expanded UCB HSPCs (Figure 2D-E). This
suggests that CPI203 promotes MK maturation, and is consistent
with previous work showing that BET inhibition promotes en-
largement, polyploidization and proplatelet formation of human
UCB MK-progenitors.20 Whether BET inhibition might also exert
effects through reprogramming toward MK-biased HSCs is an
interesting and pertinent question, but further work would be
needed to address this.

In summary, we demonstrate that the BET inhibitor CPI203
expands serially transplantable LT-HSCs ex vivo and, in contrast
to UM171, which inhibits erythroid and megakaryocytic differ-
entiation during ex vivo expansion of LT-HSCs,21 CPI203 also
supports megakaryocyte maturation. CPI203 may therefore
prove beneficial for enhanced platelet production and for the
improved usage of UCB for transplantation. Understanding the
mechanisms by which CPI203 exerts these effects should pro-
vide fundamental insight into MK development.
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