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KEY PO INT S

l ML NK cell
differentiation and
CAR engineering
synergistically
combine to enhance
NK cell responses to
resistant leukemia/
lymphoma.

l CAR-ML NK cells
expand and control
NK-resistant
leukemia/lymphoma
in vivo in xenograft
models.

Natural killer (NK) cells are a promising cellular immunotherapy for cancer. Cytokine-
induced memory-like (ML) NK cells differentiate after activation with interleukin-12 (IL-12),
IL-15, and IL-18, exhibit potent antitumor responses, and safely induce complete remissions
in patients with leukemia. However, many cancers are not fully recognized via NK cell
receptors. Chimeric antigen receptors (CARs) have been used to enhance tumor-specific
recognition by effector lymphocytes. We hypothesized that ML differentiation and CAR
engineering would result in complementary improvements in NK cell responses against
NK-resistant cancers. To test this idea, peripheral blood ML NK cells were modified to
express an anti-CD19 CAR (19-CAR-ML), which displayed significantly increased interferon
g production, degranulation, and specific killing against NK-resistant lymphoma lines and
primary targets compared with nonspecific control CAR-ML NK cells or conventional CAR
NK cells. The 19-CAR and ML responses were synergistic and CAR specific and required
immunoreceptor tyrosine-based activation motif signaling. Furthermore, 19-CAR-ML NK
cells generated from lymphoma patients exhibited improved responses against their
autologous lymphomas. 19-CAR-ML NK cells controlled lymphoma burden in vivo and

improved survival in human xenograft models. Thus, CAR engineering of ML NK cells enhanced responses against
resistant cancers and warrants further investigation, with the potential to broaden ML NK cell recognition against a
variety of NK cell–resistant tumors. (Blood. 2020;136(20):2308-2318)

Introduction
Natural killer (NK) cells are cytotoxic innate lymphoid cells that
are important for host responses against infection and mediate
anticancer immune responses.1,2 NK cells directly kill diseased
cells and communicate via cytokine and chemokine production.3

NK cells recognize potential target cells through the integration
of signals by germ line DNA–encoded inhibitory, activating, and
cytokine receptors2,4,5 and maintain self-tolerance through a li-
censing or education process that requires a self-recognizing
inhibitory receptor.3 Advances over the past decade have
revealed that NK cells mediate innate memory or memory-like
(ML) responses after viral infection,6 certain hapten exposure,7 or
cytokine activation specifically after a brief activation with
interleukin-12 (IL-12), IL-15, and IL-18.8,9 Compared with con-
ventional NK (cNK) cells, ML NK cells flexibly respond more
potently to a variety of triggers, including cancer cells.9,10 In our
first-in-human trial, donor ML NK cells safely induced clinical
responses in 50% of poor-prognosis relapsed/refractory acute
myeloid leukemia (AML) patients.10 However, not all patients
respond to donor NK cells, and many types of cancer are not

visible to NK cell receptors. Therefore, NK cell recognition of
resistant blood cancers remains a barrier to the broad applica-
tion of NK cell therapeutics.

Chimeric antigen receptor (CAR)–modified T cells targeting CD19
are effective for relapsed/refractory B-cell malignancies11-13 and
are US Food and Drug Administration approved for relapsed/
refractory diffuse large B-cell lymphoma and B-cell acute lym-
phoblastic leukemia.14-18 Along with its clinical success in inducing
durable remissions, anti-CD19 CAR (19-CAR) T-cell therapy also
exhibits significant adverse events associated with on-target/off-
tumor effects, including severe inflammatory responses resulting
from cytokine release syndrome (CRS) and immune cell–
associated neurotoxicity (ICANS).19-21 Additional concerns with
19-CAR T cells include tumor-antigen escape22 and the long
duration and high cost of cell therapy production. Therefore, there
remains a clear need for additional innovations in engineered
cellular therapy for cancer. Modification of NK cells with CARs are
being investigated as an alternative to T cells.23,24 NK cells used in
the allogeneic setting have an excellent adverse event profile and
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do not cause graft-versus-host disease (GVHD), CRS, or ICANS,25-27

including in a recent trial of cord blood (CB)–differentiated 19-CAR
NK cells,28 which collectively suggests an improved safety profile
for NK-based cellular therapy.

Here, we hypothesized that combining 2 strategies to enhance
NK cell antileukemia/antilymphoma responses (ie, ML differ-
entiation and CAR engineering) would synergistically improve
recognition and response to NK-resistant targets, thereby
overcoming barriers in the field. In this setting, ML NK cell
function and persistence and CARs and endogenous NK cell–
activating receptors work together to attack resistant blood
cancers. We report proof-of-principal, preclinical experimental
results demonstrating that human ML NK cells engineered to
express 19-CARs (19-CAR-MLNK cells) havemarkedly enhanced
responses to normally NK-resistant B-cell lymphoma malig-
nancies in vitro and in vivo, thereby providing a novel strategy for
blood cancer cellular therapy.

Materials and methods
Reagents, mice, and samples
The following recombinant human cytokines were used:
recombinant human IL-12 (rhIL-12; Biolegend), rhIL-18 (InVivo-
Gen), and rhIL-15 (Miltenyi). The Raji (American Type Culture
Collection [ATCC] CCL-86), HL60 (AML), Kasumi-3 (Kas-3; ATCC
CRL-2725), and MOLM-13 (AML-M5a) cell lines were used
according to ATCC instructions. NSG (NOD-scid IL-2rgnull) mice
(age 6-8 weeks) were obtained from The Jackson Laboratory,
maintained under specific pathogen-free conditions, and used in
accordance with our animal protocol approved by the Wash-
ington University Institutional Animal Care and Use Committee.
Lymphoma patient samples provided were deidentified after
collection on the Washington University Institutional Review
Board–approved protocol (2011-08251).

NK cell purification and cell culture
Peripheral blood (PB) mononuclear cells were obtained from
anonymous healthy platelet donors, and NK cells were purified
using RosetteSep (StemCell Technologies;$95% CD561CD32).
ML NK cells and control (conventional) NK cells were gener-
ated after in vitro stimulation with rhIL-12 (10 ng/mL), rhIL-18
(50 ng/mL), and rhIL-15 (50 ng/mL) or control conditions (rhIL-
15; 1 ng/mL) as previously described.9,10

Construction of lentiviral vector and transduction
of NK cells
The cassette encoding a single-chain variable fragment tar-
geting CD19 (clone: fmc63),16 CD8a transmembrane, CD137,
and CD3z was cloned into the MND lentiviral backbone29 to
generate the CD19-CD8a-CD137-CD3z (19-CAR) vector. CD33-
specific CARs (clone: my96; CD33-CD8a-CD137-CD3z) were
similarly cloned.30 A third-generation packaging system pseu-
dotyped with VSV-G in 293T cells produced lentivirus and was
used to transduce NK cells. Lentivirus supernatants were added
to 3 3 106 to 5 3 106 purified ML NK cells or cNK cells and
spinfected at 30°C for 90minutes on days 1 and 2. The cells were
maintained in culture in complete media with the addition of
rhIL-15 every 1 to 3 days.

Analysis of expression of CAR construct
To assess the surface expression of the CARs, cells were stained
with an His-tagged human CD19 (Invitrogen), followed by
staining with an APC anti-His tag antibody (J095G46; Biol-
egend). Cells were analyzed by flow cytometry for soluble CD19
molecules and green fluorescent protein (GFP; CAR1).

Functional and flow-based killing assay
CAR-ML NK cells were rested for 4 days after last spinfection to
allow ML NK cell differentiation to occur. Cells were then har-
vested and stimulated with NK-resistant Raji targets, freshly
thawed primary lymphoma targets, or CD331 targets (effector/
target ratio, 5:1, unless otherwise indicated) in the presence of
1 ng/mL of rhIL-15. Degranulation and interferon g (IFN-g) was
assessed in 6-hour functional assays gated onGFP.9 For blocking
experiments, Raji targets were preincubated with anti–human
CD19 antibody (FCM63; 10 mg/mL) or isotype control (immu-
noglobulin G2; 10 mg/mL) for 30 minutes.

For cytotoxicity experiments, CAR-ML or control NK cells were
coincubated with PKH67-labeled Raji or primary lymphoma cells
for 4 hours, and 7-aminoactinomycin D staining was assessed by
flow cytometry.31 The NK populations were not purified based
on GFP expression, and effector/target ratios were calculated
using total NK cells, not GFP1 NK cells.

Adoptive transfer of human CAR–transduced ML
NK cells into NSG mice
NSG mice were irradiated with 250 cGy and inoculated IV with
Raji cells (1 3 106) on day 23.32 On day 0, mice received IV
injection of 3 3 106 to 5 3 106 total NK cells, containing 5% to
25% CAR1 19-CAR-ML NK cells or 33-CAR-ML NK cells. To
maintain NK cell survival in NSG mice that lacked homeostatic
survival signals, rhIL-15 was injected intraperitoneally every 2 to
3 days. On day 18, the mice were euthanized, and spleen and
blood were assessed for the presence of GFP1 NK cells. For
bioluminescent imaging (BLI) and survival experiments, irradi-
ated NSG mice were inoculated IV with luciferase-Raji cells
(13 105) and 33 106 to 53 106 NK cells, containing 19-CAR-ML
NK cells (mean6 standard error of the mean [SEM], 1.93 105 6

0.43 105; range, 0.43 105 to 3.93 105) or 33-CAR-ML NK cells
(mean 6 SEM, 1.9 3 105 6 0.43 105; range, 0.7 3 105 to 4.03

105). Mice were evaluated by BLI to assess tumor burden and
followed for survival (supplemental Methods, available on the
Blood Web site).

Flow cytometry
Flow cytometry was performed on a Gallios (Beckman Coulter)
and analyzed using FlowJo (Tree Star) software as described.9,10

Cell sorting was performed using a FACSAria II cell sorter (BD
Biosciences).

Mass cytometry and data analysis
Donor NK cells were assessed by mass cytometry (supplemental
Table 1). All samples were processed and analyzed using
Cytobak as previously described.10 Flow-sorted GFP2 ML cells
and GFP1 CAR-transduced ML NK cells were analyzed using
visualization of t-distributed stochastic neighbor embedding
(viSNE).
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Statistical analysis
Between-group differences (mean6 SEM) were compared using
the paired Student t test, 2-sample Student t test, or analysis of
variance as appropriate. Analyses were performed using Prism
v8. P values were 2 sided, and P , .05 was considered signif-
icant. The synergic effect of ML differentiation and CAR ex-
pression in the overall response of NK cell was calculated by the
combination index (CI)33 (supplemental Methods).

Results
CAR lentiviral vectors effectively transduce human
PB ML NK cells
Although preclinical studies have demonstrated that CB cells28

and induced pluripotent stem cells (iPSCs)23 may be transduced
with CAR lentiviral or retroviral vectors and differentiated into NK
cells over weeks, the feasibility of engineering human PB ML NK
cells with CAR constructs and the subsequent antitumor potency
of these cells have not yet been established. To address this, we
used single-chain variable fragments targeting CD19 or CD33 to
generate a second-generation CAR with CD137 and CD3z in-
tracellular signaling domains (Figure 1A). Both CD13734,35 and
CD3z36,37 were chosen because they are used by endogenous
NK cells for signaling and activation. We also generated a
truncated 19-CAR molecule (19-CARtrunc) that lacked ITAM
signaling domains. CAR expression by NK cells wasmeasured by
expression of P2A-GFP in these preclinical CAR constructs.
Purified PB NK cells were activated with IL-12, IL-15, and IL-18 to
generate ML NK cells or IL-15 to maintain survival, resulting in
control cNK cells (Figure 1B),9 transduced with lentivirus, and
cultured for a total of 5 to 7 days to allow for ML differentiation
and CAR expression. There was no significant difference in
transduction efficiency between cNK cells or ML NK cells with
this approach, but a modest trend toward higher transduction
efficiency with ML NK cells was seen (Figure 1C). Additionally,
19-CAR-ML NK cells stained with a soluble CD19 molecule
showed concordant surface expression of 19-CARs with GFP
expression (Figure 1D).

Mass cytometry reveals unbiased CAR lentiviral
transduction of ML NK cells
Because PB human NK cells were incompletely transduced by
this lentivirus approach, we questioned whether a subset of NK
cells was preferentially transduced, which could have biased
downstream analyses and functional assays. To test this, an
established mass cytometry panel9 (supplemental Table 1) that
included NK cell lineage and maturation markers, inhibitory and
activating receptors, and function-associated molecules was
used. Sorted GFP2 (CAR2) and GFP1 (CAR1) 19-CAR-ML NK
cells (.96% purity) were generated and assessed by mass
cytometry using unsupervised t-distributed SNE–based clus-
tering. The location of cNK cells on the viSNE map was clearly
distinct from both ML NK cells and CAR-ML NK cells (Figure 1E-
F). In contrast, ML and CAR-ML NK cells overlapped within the
viSNE plot, with very high concordance of the expression of the
assessed markers (Figure 1E-G). There was also no significant
bias in activating receptors, inhibitory receptors, or maturation
stage subsets (Figure 1G; supplemental Figure 1), indicating that
ML NK cells transduced with CARs share the repertoire and
subset diversity of nontransduced ML NK cells.

CAR-ML NK cells exhibit enhanced functional
responses compared with CAR cNK cells
To understand how ML differentiation and CAR expression
contributed to antilymphoma responses, 19-CAR-ML NK cells
were directly compared with 19-CAR cNK cells. 19-CAR-ML NK
and 19-CAR cNK cells from the same donors were evaluated
against Raji cell targets (Figure 2A-B; supplemental Figure 2). 19-
CAR cNK cells demonstrated significantly increased IFN-g
production and degranulation against Raji targets compared
with cNK cells (19-CAR2; Figure 2B-D). Regarding the ML NK
cells (19-CAR2), we observed amodest but significant increase in
IFN-g response to Raji targets compared with cNK cells (19-
CAR2). 19-CAR-ML NK cells demonstrated superior IFN-g and
degranulation compared with all other conditions (Figure 2B-D).
Because both ML differentiation and CAR expression in-
dividually improved functional responses against Raji targets, we
evaluated for synergistic interactions between those 2 attri-
butes9 using the CI.33,38 CI values were derived from mean
percentage of IFN-g2 and CD107a1 cells and used to determine
whether the CI values were significantly different from the CI
value of 1 (defined as no synergy; “Materials andmethods”). The
results showed a significant beneficial synergism for both IFN-g
(CI, 0.587; P5 .040) and CD107a (CI, 0.503; P5 .024), indicating
synergism between CAR and ML differentiation for enhanced
NK cell function (Figure 2E). 19-CAR-ML NK cells were next
compared with 19-CAR cNK cells for their ability to kill Raji
targets in a flow-based killing assay. 19-CAR-ML NK cells
exhibited increased killing of Raji targets compared with donor-
matched 19-CAR cNK cells (Figure 2F). Thus, both ML differ-
entiation and CAR engineering combine to maximize the
antilymphoma effector functions and cytotoxicity against CD191

targets by 19-CAR-ML NK cells.

19-CAR-ML NK cells exhibit CD19-specific
responses to CD191 targets requiring CAR
signaling
Next, the specificity of 19-CAR-MLNK cells for the CD19 antigen
was investigated using CD191 Raji targets vs CD192 Kas-3
targets. 19-CAR-ML NK cells exhibited a fourfold increase in
IFN-g production and sixfold increase in degranulation against
Raji targets compared with ML NK cells, but minimal changes
against Kas-3 targets (Figure 3A-B). To confirm antigen speci-
ficity, ML NK cells transduced with a control 33-CAR-ML len-
tivirus did not have enhanced responses to Raji targets
(CD191CD332) compared with nontransduced ML NK cells
(Figure 3C-D), although they displayed enhanced functional
responses to a variety of CD331 targets (supplemental Figure 3).
Additionally, monoclonal antibody blockade of CD19 resulted in
abrogation of the 19-CAR-MLNK cell response to control levels
(supplemental Figure 3E-F). Furthermore, Raji killing was in-
creased in the 19-CAR-MLNK cell condition compared with 33-
CAR-ML NK cell controls, even at low CAR1 effector cell/target
ratios of,1:1 (range, 0.05:1 to 0.75:1; Figure 3E; supplemental
Figure 4). To determine if the CAR intracellular signaling
component was required for enhanced antitumor responses,
stimulation of a 19-CARtrunc-ML with Raji targets abolished the
increase in IFN-g production and degranulation observed
in 19-CAR-ML NK cells (Figure 3F-G). Together, these data
demonstrate that 19-CAR-ML NK cells’ enhanced responses
were CAR antigen specific and required intracellular CAR ITAM
signaling.
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19-CAR-ML NK cells have enhanced responses
against patient primary lymphoma cells
Next, the antitumor activity of 19-CAR-ML NK cells against
CD191 primary lymphoma in vitro was investigated. First, we
examined the functional responses by 19-CAR-ML NK cells and
19-CAR cNK cells when incubated with primary lymphoma cells
(supplemental Table 2). Significantly increased IFN-g production

and degranulation against primary patient lymphoma cells by
19-CAR-ML NK cells were observed, compared with 19-CAR
cNK cells (Figure 4A). Consistent with responses to Raji cells
(Figure 3), the enhanced 19-CAR-ML NK cell responses against
primary lymphoma targets were CAR antigen specific and were
not observed with 33-CAR-ML NK cells (Figure 4B). Cytotoxicity
against primary lymphoma targets by 19-CAR-ML NK cells and
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33-CAR-ML NK cells was tested, and significantly improved
killing by 19-CAR-ML NK cells compared with 33-CAR-ML NK
cells was observed (Figure 4C). Differences in analyzing gated
CAR1 NK cells vs bulk NK cells likely account for differences in
the magnitude of degranulation vs cytotoxicity (“Materials and
methods”). Thus, 19-CAR-ML NK cells have enhanced CAR
antigen–specific antitumor responses against primary lymphoma
targets.

Lymphoma patient 19-CAR-ML NK cells respond to
autologous lymphoma cells
We next investigated whether lymphoma patient NK cells
could be engineered to respond against their own lymphoma
cells. 19-CAR-ML NK cells from lymphoma patients were
generated and tested for functional responses (Figure 4D).
Although patient ML NK cells responded weakly to autologous
lymphomas targets (Figure 4E-H), patient 19-CAR-ML NK cells
produced significantly increased IFN-g and degranulation.
Thus, the addition of targeted CARmolecules to patient ML NK
cells results in significant improvement in autologous antitumor
NK responses.

19-CAR-ML NK cells have CAR antigen–specific
expansion in vivo
Previous studies have established that after IL-12, IL-15, and IL-
18 activation, ML NK cells differentiate within NSG mice in vivo,
and similar to cNK cells, their survival in mouse xenograft models
requires rhIL-15 or rhIL-2.8,9 Using this experimental system, Raji
cells were engrafted in NSG mice, and 19-CAR-ML and 33-CAR-
ML NK cells were adoptively transferred into Raji-bearing mice
(Figure 5A). On day 18 after NK cell transfer, 19-CAR-MLNK cells
accounted for 40% to 90% of the NK cell population in vivo in
blood in the presence of Raji, a significant increase compared
with 33-CAR-ML–recipient mice (Figure 5B-D). This is sub-
stantially higher than the average transduction efficiency after
in vitro differentiation without CD19 targets (Figure 1C), sug-
gesting expansion of CAR1 ML NK cells in vivo. These data
suggest that CAR-mediated CD137/CD3z signals contribute to
NK cell survival and/or expansion in the presence of CD19-
expressing targets in vivo. In this experiment, and in other in vivo
experiments in this study, we focused our comparisons on CD33-
CAR-ML (control) vs CD19-CAR-ML (experimental) NK cells as
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the most relevant to establish the translational potential of
CD19-CAR-ML NK cells. This was based in part on the prior work
demonstrating that ML NK cells exhibited superior responses to
myeloid leukemia targets compared with cNK cells.8,9 Further-
more, in vivo CAR-ML NK cells expand in vivo after brief
transduction and become 40% to 90% CAR1, suggesting that
relatively modest lentivirus transduction yields adequate CAR-
ML NK cells for in vivo activity.

19-CAR-ML NK cells control lymphoma targets
in vivo
Next, we examined the impact of CAR expression on ML NK cell
effector functions in vivo. NSG mice were infused IV with
luciferase-expressing Raji cells and a single injection of 1.93 105

19-CAR–transduced ML NK cells or 33-CAR–transduced ML NK
cells (33 106 to 53 106 total NK cells; Figure 6A). After adoptive
transfer, low-dose rhIL-15 was administered to support in vivo
NK survival. Tumor burden was monitored by BLI.32 Compared
with both untreated tumor-bearing mice and 33-CAR-ML NK
cell–treated mice, treatment with 19-CAR-ML NK cells resulted
in a significant decrease in tumor burden (Figure 6B-D). The
enhanced antitumor control after a single injection of 19-CAR-
ML NK cells also resulted in improved survival of treated mice
compared with 33-CAR-ML NK cells (Figure 6E). These data
demonstrated that a 19-CAR-ML NK cell product containing

10% to 25% CAR1 NK cells provides enhanced tumor control
in vivo.

Discussion
Here, we developed a process to generate ML NK cells with
stable CAR expression fromPBNK cell in 5 to 7 days. These CAR-
ML NK cells induce potent responses against NK-resistant
cancer targets with a notable synergistic combination of ML
differentiation and CAR-mediated targeting. We established
that the enhanced CAR-ML NK cell functional responses (cy-
totoxicity, degranulation, and cytokine production) were CAR
antigen specific and required CAR signaling. These enhanced
effector responses were observed against NK-resistant lym-
phoma lines, as well as against primary lymphoma cell targets.
Relevant to future translation, 19-CAR-ML NK cells generated
from lymphoma patient NK cells had improved antitumor activity
against autologous lymphoma targets. Moreover, 19-CAR-ML
NK cells were able to effectively expand and persist, control
tumor growth, and prolong survival of tumor-bearing mice in
an NSG xenograft model, used previously for NK cell32 and
CB-differentiated CAR NK cell assessments.24 Thus, the de-
velopment of CAR-ML NK cells represents a novel approach to
CAR-engineered NK cellular immunotherapy and warrants
further preclinical and clinical investigation.
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NK cells represent a nascent approach for cancer immuno-
therapy and are being explored as alternatives or complements
to CAR T cells. Although significant durable responses are ob-
served in relapsed/refractory B-cell malignancy patients treated
with CAR T-cell therapies,9 severe adverse effects, including
GVHD,14,39,40 CRS,21 and ICANS,20 have been clinical challenges.
Conversely, many clinical studies have demonstrated that NK
cell adoptive therapies are safe and effective, have a role in
moderating graft-versus-leukemia responses while avoiding
GVHD,41 and have resulted in minimal treatment-limiting
toxicities.28 The underlying reason why NK cell therapy does
not result in CRS or ICANS remains poorly understood. This may
result from differences in NK persistence or expansion, the tight
regulation by inhibitory receptors that prevent killing of healthy

self tissues, or differential capacities to induce monocyte-
derived cytokines that drive CRS (eg, IL-6).9,27,28,41 Li et al23

evaluated the CRS potential of iPSC-derived NK cells bearing
CARs in NSG xenograft models and reported minimal toxicity.23

In human patients, CB-differentiated 19-CAR-NK cells exhibited
no CRS,28 also consistent with an inherent biological difference
betweenNK cells and T cells. Because the biology ofMLNK cells
between mice and humans is similar,25,42 immunocompetent
mouse models may provide an ideal system to further elucidate
the biology, safety, and efficacy of 19-CAR-ML NK cells in vivo in
future studies.

NK cells have biological properties that provide a clear premise
for investigation as cellular therapy. Because NK cells do not
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normally attack healthy tissues and do not express a clonally
rearranged antigen receptor, they have limited capacity for
causing GVHD. In addition, through their repertoire of activating
receptors (eg, NKG2D, NKp46, NKp44, NKp30, DNAM-1), a
CAR-engineered NK cell can still be activated via these re-
ceptors even if the tumor loses the CAR antigen, providing an
inherent secondary recognition system. Furthermore, the normal
expression of CD16 (FcgRIIIa) on mature NK cells allows for
flexible dual-targeting strategies with therapeutic monoclonal
antibodies or bispecific antibodies that ligate CD16 and a tumor-
restricted antigen.43 Such dual targeting may also reduce target
cell CAR antigen–based immune escape. NK cells have distinct
trafficking patterns from T cells and circulate throughout the
lymphoid systems and tissues.44 Thus, in situations where CAR
T cells fail to localize to a tumor, CAR-ML NK cells may have

unique access. Furthermore, CAR NK cell therapy can also be
used in combined therapy with strategies to limit suppression, to
fully unleash NK cell attack against tumor targets.45

There are a variety of distinct NK cellular therapeutics that are
currently in preclinical or early-phase clinical development. These
include genetically modified NK-92 immortalized cell lines,8,9

iPSCs differentiated into NK cells,46 accessory cell–expanded
NKG2D-CAR NK cells,47 accessory particle–expanded NK cells,48

CB-differentiated 19-CAR NK cells,24 ML NK cells,10 and here
CAR-ML NK cells. Each of these approaches is distinct and has
strengths and potential limitations. For example, although ex-
tensive ex vivo expansion results in a large number of cells for
flexible dose and schedule, there is a risk that the expanded NK
cell populations may undergo senescence, depend on expansion
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signals for ongoing survival, or have altered homing.49 NK cells
differentiated from early progenitors and precursors may have
differences in signaling domains requirements23 or decreased
maturation status and receptor profiles28 that could alter persis-
tence and performance in vivo. Moreover, allogeneic NK cells are
expected to be rejected by recipient immunity, unless engineered
to reduce host T-cell recognition. Understanding the utility of
each of these approaches will require testing in early-phase
clinical trials. The results of the first-in-human clinical trial of
CB-differentiated 19-CAR NK cells was recently reported and
demonstrated 28-day clinical responses in 8 of 11 patients with
relapsed/refractory B-cell lymphoma.28 Themaximumdose of CB-
differentiated CAR1 NK cells was well tolerated and was not
associated with CRS, neurotoxicity, or GVHD, similar to prior NK
cell adoptive immunotherapy studies.10,27 This initial study pro-
vides important evidence that 19-CAR–modified NK cells can
safely induce remissions in relapsed/refractory B-cell malignancies.

We developed a distinct type of CAR-engineered NK cell.
Starting with PB NK cells that were phenotypically and func-
tionally mature, an ML program and CAR expression were si-
multaneously induced over a short 5-day culture period. ML NK
cells were defined by an initial activation event (IL-12, IL-15, IL-
18) followed by differentiation and a return to a resting state,
with subsequent enhanced effector responses after restim-
ulation with cytokines, activating receptors, or tumor targets.8,9,50

Previous work has established that ML NK cell biology improves
on cNK cell antitumor properties, including enhanced func-
tionality, activating receptor expression, longevity, and an ex-
panded tumor recognition profile.51 We also established that
adequate NK cell numbers may be isolated from a single donor
leukapheresis to generate clinically useful ML NK cell products
and that ML NK cells expand in vivo after adoptive transfer,
within AML patients.10 Indeed, in an immune-compatible envi-
ronment, ML NK cells persisted for .8 weeks after adoptive
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transfer.52 CAR-ML NK cells follow this same paradigm, where
mature NK cells are briefly manipulated ex vivo, with full man-
ifestation of those enhanced effector and expansion properties
in vivo within the patient after adoptive transfer. Therefore,
we expect that the in vivo expansion of CAR1 ML NK cells
may also overcome prior limitations with viral vector–based
engineering.53,54 This study provides important proof of principle
that transduction efficiencies of 15% to 25% (lower compared
with NK cell progenitor or iPSC transduction) are sufficient for
clinical translation, and doses of ML NK cells obtained in AML
clinical trials support the feasibility of generating adequate CAR-
ML NK cells to treat patients. Finally, there remains an oppor-
tunity to further optimize CAR signaling for ML NK cells and
other NK cell products with the use of constructs with NK
cell–specific intracellular activating domains, including NKG2D
and 2B4, because they have been shown to improve the function
of CAR1 iPSC-differentiated NK cells.23 Overall, an optimal NK
cell therapeutic will require multiple approaches to limit NK cell
inhibition, augment antitumor function and persistence, and
enhance tumor-specific recognition.

In summary, our study demonstrates the feasibility and proof of
principle to generate CAR-modifiedML NK cells from donor and
patient PB. CAR-ML NK cells have an expanded antitumor
recognition spectrum and exhibit specific and potent antitumor
responses in vitro and in vivo. CAR-ML NK cells also have the
potential to recognize hematological malignancies via different
CAR specificities, vastly broadening the antitumor repertoire of
PB NK cells. Thus, CAR-ML NK cells are a promising engineered
NK cell approach to cellular cancer immunotherapy and warrant
clinical testing in early-phase clinical trials.
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