
Regular Article

IMMUNOBIOLOGY AND IMMUNOTHERAPY

Immunogenomic identification and characterization of
granulocytic myeloid-derived suppressor cells in
multiple myeloma
Cristina Perez,1,* Cirino Botta,1,2,* Aintzane Zabaleta,1 Noemi Puig,3 Maria-Teresa Cedena,4 Ibai Goicoechea,1 Daniel Alameda,1
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KEY PO INT S

l There is a progressive
gradient of
immunosuppression
from immature to
mature neutrophils
present in the
myeloma
microenvironment.

l CD11b1CD131CD161

mature neutrophils
are epigenetically
deregulated, and
their abundance in
the myeloma
microenvironment is
prognostic.

Granulocytic myeloid-derived suppressor cells (G-MDSCs) promote tumor growth and im-
munosuppression in multiple myeloma (MM). However, their phenotype is not well estab-
lished for accurate monitoring or clinical translation. We aimed to provide the phenotypic
profile of G-MDSCs based on their prognostic significance in MM, immunosuppressive
potential, andmolecular program. ThepreestablishedphenotypeofG-MDSCswas evaluated
in bone marrow samples from controls and MM patients using multidimensional flow
cytometry; surprisingly, we found that CD11b1CD142CD151CD331HLADR2 cells over-
lappedwith common eosinophils and neutrophils, which were not expanded inMMpatients.
Therefore, we relied on automated clustering to unbiasedly identify all granulocytic subsets
in the tumor microenvironment: basophils, eosinophils, and immature, intermediate, and
mature neutrophils. In a series of 267 newly diagnosed MM patients (GEM2012MENOS65
trial), only the frequency of mature neutrophils at diagnosis was significantly associatedwith
patient outcome, and a high mature neutrophil/T-cell ratio resulted in inferior progression-
free survival (P < .001). Upon fluorescence-activated cell sorting of each neutrophil subset,
T-cell proliferation decreased in the presence of mature neutrophils (0.5-fold; P5 .016), and
the cytotoxic potential of T cells engaged by a BCMA3CD3-bispecific antibody increased

notably with the depletion of mature neutrophils (fourfold; P 5 .0007). Most interestingly, RNA sequencing of the 3
subsets revealed that G-MDSC–related genes were specifically upregulated in mature neutrophils from MM patients vs
controls because of differential chromatin accessibility. Taken together, our results establish a correlation between the
clinical significance, immunosuppressive potential, and transcriptional network of well-defined neutrophil subsets,
providing for the first time a set of optimal markers (CD11b/CD13/CD16) for accurate monitoring of G-MDSCs in MM.
(Blood. 2020;136(2):199-209)
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Introduction
Myeloid-derived suppressor cells (MDSCs) are described as a
mixture of immature cells that have common biological activity.
They are able to influence innate and adaptive immune re-
sponses through depletion of L-arginine, generation of oxidative
stress, induction of cytotoxic T-cell apoptosis, and activation of
T regulatory cells.1 All these mechanisms lead to immune
supression.2,3

MDSCs have been extensively studied in mice and less frequently
in humans. Whereas in mice they are identified based on ex-
pression of Gr-1 and CD11b, the immunophenotype of their
human counterpart remains unclear.4 Commonly, they are defined
as a CD11b1CD331HLADR2/lo subset among mononucleated
cells isolated after density gradient.3,5 Cells with such phenotype
were found to be rare in healthy adults (HAs) but expanded in
patients with cancer. Two subsets of MDSCs have been identified
based on the additional expression of CD14 or CD15: monocytic
MDSCs and granulocytic MDSCs (G-MDSCs), respectively.2,4-6

In multiple myeloma (MM), malignant plasma cells colonize and
modify the bonemarrow (BM) microenvironment through cytokine
production and bidirectional interactions with other cell types.
Namely, it has been suggested that MM cells induce MDSC de-
velopment and survival, whereas MDSCs promote tumor growth
and induce immune suppression.7-10 In addition, antimyeloma
therapies such as dexamethasone, melphalan, or cyclophospha-
mide or even immunomodulatory drugs could expand and
potentiate MDSC immunosuppressive effects, most likely as a
counterregulatory mechanism.8 By contrast, recent data suggest
that daratumumab acts, among other modes of action, by de-
pleting MDSCs.6,7,11 Thus, MDSC suppression could become an
important strategy for increasing and prolonging the efficacy of
novel immunotherapies (eg, chimeric antigen receptor T cells or
T-cell engager bispecific antibodies), but for this to be the case,
precise knowledge of the phenotype ofMDSCswould be required
for its clinical monitoring in the MM tumor microenvironment.

Enumeration of putative G-MDSCs was shown to correlate
with MM burden but never with patient survival.12,13 However, it is
challenging to dissect causal effects and mechanistic functions
based solely on tumor burden. This study overcomes these lim-
itations by integrating clinical, functional, and molecular data on
granulocytic cells from the tumor microenvironment and provides
a set of markers for optimal monitoring of G-MDSCs in MM.

Patients and methods
Patients and treatment
A total of 388 BM samples from 22 HAs and 366 patients
with MM were analyzed in this study (median age of 54 and
64 years, respectively). Only samples with . 90% viability
(according to the percentage of debris identified by flow
cytometry) were used for downstream analysis. Of the 366 MM
patients, 267 were enrolled in the PETHEMA/GEM2012ME-
NOS65 clinical trial (registered at www.clinicaltrials.gov as
#NCT01916252), and this cohort was selected to determine
the prognostic value of the distribution of various granulocytic
subsets in the tumor microenvironment. Briefly, patients re-
ceived 6 induction cycles of bortezomib, lenalidomide, and
dexamethasone, underwent autologous stem-cell transplantation

conditioned with Bu-Mel or Mel-200 high-dose therapy, and
received 2 consolidation cycles of bortezomib, lenalidomide,
and dexamethasone.14 Afterward, patients were enrolled in
the PETHEMA/GEM2014MAIN clinical trial (registered at
www.clinicaltrials.gov as #NCT02406144), which randomized main-
tenance with lenalidomide plus dexamethasone or lenalidomide
plus dexamethasone plus ixazomib for 2 years, after which pa-
tients continued with lenalidomide plus dexamethasone for
3 additional years if minimal residual disease positive or stopped
therapy if minimal residual disease negative.15 Median follow-up
was 39 months (range, 7-57 months). The independent ethics
committee at each study site approved the protocol and informed
consent forms required before patient enrollment. The study was
conducted per the ethical principles of the Declaration of Helsinki.

Multidimensional flow cytometry
Multidimensional flow cytometry was used to evaluate the
preestablished phenotype of G-MDSCs2,3,6-9,12,16 in BM samples
from HAs (n 5 7) and MM patients (n 5 10), and compare their
phenotype in paired BM and peripheral blood (PB) samples
from MM patients (n 5 5). Briefly, the EuroFlow lyse, wash, and
stain standard sample preparation protocol adjusted to 106

nucleated cells, together with the 8-color combination of the
monoclonal antibodies (mAbs) HLADR-BV421, CD45-OC515,
CD15-FITC, CD13-PE, CD33-PerCPCy5.5, CD16-PECy7, CD11b-
APC, andCD14-APCH7, were selected to identify CD11b1CD142

CD151CD331HLADR2 cells and compare their frequency in BM
samples from HAs vs MM patients using Infinicyt software
(Cytognos SL, Salamanca, Spain). Screening of different granu-
locytic subsets in newly diagnosed patients enrolled in the
PETHEMA/GEM2012MENOS65 study was performed with the
following combination of mAbs: HLADR-PacB, CD45-OC515,
CD36-FITC, CD13-PE, CD34-PerCPCy5.5, CD117-PECy7, CD11b-
APC, and CD71-APCH7. EDTA-anticoagulated BM samples were
processed within 24 hours after collection following the EuroFlow
lyse-wash-and-stain standard sample preparation protocol, and
data acquisition was performed in a FACSCanto II flow cytometer
(Becton Dickinson/BD Biosciences, San Jose, CA) using FACSDiva
6.1 software (BD Biosciences). Flow cytometry standard files
obtained from 55 patients studied in 1 of the 3 central laboratories
of the Spanish Myeloma Group (Grupo Español de Mieloma/
Programa para el Estudio de la Terapéutica en Hemopatı́as
Malignas) were used as a discovery data set and analyzed with a
semiautomated pipeline that performs batch analyses of flow
cytometric data to avoid the variability intrinsic to manual analysis
and reveals full cellular diversity based on unbiased clustering
(described in detail in supplemental Methods). Briefly, this strategy
allowed the systematic identification and quantification of a vari-
able number of cell clusters, which were grouped according to the
similarity of antigen expression profiles by using the bioinformatic
algorithm FlowSOM (supplemental Figure 1).17 After unbiased
identification of cell clusters in the discovery data set, we per-
formed manual analysis to quantify them in the remaining
212 patients enrolled in the PETHEMA/GEM2012MENOS65
clinical trial.

3-dimensional cultures
An organoid 3-dimensional model was developed to test the
effect of daratumumab (10 mg/mL) on granulocytes from BM
samples of MM patients (n 5 3). Cells were lysed with 1X
BulkLysis buffer (Cytognos), and 1 3 106 cells were embedded
in 30 mL of Matrigel Matrix (Corning) and fibronectin (ratio of
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matrigel/fibronectin, 2:1). This mix was seeded per well in a
48-well plate (Cellstar) and left for 40 minutes in the incubator so
that theMatrigel solidified. Afterward, we added 300 mL of RPMI
1640 medium (10% fetal bovine serum, 1% L-glutamine, 1%
Penicillin-Streptomycin) supplemented with 10% of plasma from
the same BM sample, 100 nM of interleukin-6 (IL-6), and 100 nM
of insulin-like growth factor-1 per well. Organoids were maintained
in culture for 10 days at 37°C, and daratumumab (10 mg/mL) was
added to the medium on days 1 and 5 of culture. Finally,
organoids were desegregated with Cell Recovery Solution
(Corning) and labeled with HLA-DR-BV421, CD45-OC515, CD16-
FITC, CD13-PE, CD34-PerCP-Cy5.5, CD117-PE-Cy7, CD11b-
APC, and CD10-APCH7. Data acquisition was performed in a
FACSCanto II flow cytometer using FACSDiva software, and data
analysis was performed using Infinicyt software. In addition, we
analyzed the percentage of various granulocytic subsets present
in BM samples from 36 MM patients collected before and after
treatment with daratumumab, which were stained with the next-
generation flow mAb panel designed to monitor plasma cell
clonality (tube 1: CD138-BV421, CD27-BV510, CD38-FITC,
CD56-PE, CD45-PerCPCy5.5, CD19-PECy7, CD117-APC, and
CD81-APCH7; tube 2: CD138-BV421, CD27-BV510, CD38-FITC,
CD56-PE, CD45-PerCPCy5.5, CD19-PECy7, cyKAPPA-APC, and
cyLAMBDA-APCH7).18 The first mAb combination of the next-
generation flow panel was used to enumerate immature neu-
trophils (CD381, CD45dim, CD1171, SSChi), intermediate and
mature neutrophils (CD382/lo, CD45dim, CD812, CD1172, SSChi),
basophils (CD38hi, CD45dim, CD812, CD1172, SSClo), and eosin-
ophils (CD382/lo, CD45bright, CD81bright, CD1172, SSChi).

Fluorescence-activated cell sorting
Cells with the preestablished G-MDSC phenotype (CD11b1

CD142CD151CD331HLADR2) and 3 maturation stages of the
neutrophil lineage were sorted from HAs (n 5 15) and MM
patients (n 5 45) using a FACSAria II flow cytometer (BD Bio-
sciences). Cells were stained with 7-AAD or Sytox Blue Dead to
exclude dying events. Cells were stored in Lysis/Binding Buffer
(Invitrogen, Carlsbad, CA) for RNA sequencing (RNAseq) or in
phosphate-buffered saline plus 0.005% bovine serum albumin
until processing for the assay for transposase-accessible chro-
matin with high-throughput sequencing (ATACseq) or used
immediately for morphological assessment or functional assays.
These are described in supplemental Methods.

RNAseq data from mesenchymal stem cells (MSCs) isolated by
fluorescence-activated cell sorting from BM aspirates of age-
matched HAs (n 5 8) and MM patients (n 5 56)19 were used to
compare the expression levels of genes coding for transforming
growth factor b (TGF-b) and other soluble mediators potentially
involved in the modulation of the BM tumor microenvironment.

Statistical analysis
The Kruskal-Wallis test was used to estimate the statistical signifi-
cance observed between groups in T-cell immunosuppression
assays. The Student t test was used to evaluate differences between
groups in experiments measuring T-cell proliferation, as well as to
evaluate significant associations between patients’ clinical data and
the distribution of various granulocytic subsets. Progression-free
survival (PFS) was defined as the time from multidimensional flow
cytometry assessment at diagnosis until disease progression or
death resulting from any cause, estimated using the Kaplan-Meier
method, and compared using a 2-sided stratified log-rank test.

Patients were stratified into groups according to the median value
of each cell type (or cell ratio) in the whole population. Statistical
analyseswere performed usingGraphPad Prism software (version 7;
San Diego, CA) and SPSS software (version 25.0.0; IBM, Chicago,
IL). P values ,.05 were considered statistically significant.

Results
Characterization of G-MDSCs based on
conventional criteria
In humans, G-MDSCs have been previously defined as a unique
(rare) population displaying a CD11b1CD142CD151CD331HLADR2

phenotype, comprising;1%of BM nucleated cells in HAs and up to
25% in MM patients.20 However, we found that the frequency of
CD11b1CD142CD151CD331HLADR2cells (gating strategy shown in
supplemental Figure 2) among total BM nucleated cells was similar
betweenHAs (n57) andMMpatients (n510;median, 28% vs 24%,
respectively; P 5 .49; Figure 1A). Moreover, rather than defining a
unique population, CD11b1CD142CD151CD331HLADR2 cells in-
cluded a mixture of neutrophil subsets (ie, metamyelocytes, band/
mature neutrophils) plus eosinophils (supplemental Figure 2).

Because various granulocytic subsets were identified within
putative G-MDSCs according to conventional phenotypic cri-
teria, we decided to perform an unbiased analysis based on
automated clustering using the antigens described above and
others reported as potentially relevant4 for MDSC isolation to
reveal how many granulocytic clusters were present in BM
samples from HAs and MM patients. This strategy led to the
identification of eosinophils, basophils, and 3 well-defined
neutrophil maturation stages according to differential ex-
pression of CD11b, CD13, and CD16 in HAs and MM patients:
immature (CD11b2CD132/loCD162), intermediate (CD11b1

CD132/loCD162), and mature (CD11b1CD131CD161) neutro-
phils as confirmed by the expected shape of their nuclei (Figure
1B-C). Of note, the mean frequency of each of the 5 granu-
locytic subsets was similar between HAs and MM patients
(Figure 1D), as was the percentage of each neutrophil subset
within total neutrophils (data not shown). There were no dif-
ferences in the phenotypic profile ofmature neutrophils present in
matched BM and PB samples fromMM patients (n5 5), although
as expected, immature and intermediate neutrophils were absent
in PB (supplemental Figure 3A-B). On transcriptional grounds,
mature neutrophils from BM and PB of MM patients clustered
together and apart from those of HAs (supplemental Figure 3C).

Daratumumab has no long-term in vitro effect on
BM granulocytes from MM patients
Based on previous data indicating that daratumumab depletes
G-MDSCs,11 we treated primary BM aspirates from MM pa-
tients (n 5 3) with daratumumab to compare the number and
phenotype of granulocytic cells before vs after treatment and
thereby infer the antigen expression of putative G-MDSCs
depleted by the drug. Samples were cultured in an organoid
3-dimensional model to enable long-term treatment (supple-
mental Figure 4A). As expected, daratumumab induced a signifi-
cant depletion of tumor plasma cells (supplemental Figure 4B),
but no differences were found regarding the percentage of
CD11b1CD142CD151CD331HLADR2 cells (supplemental Figure
4C) or various granulocytic subsets (supplemental Figure 4D) after
10-day treatment with daratumumab. These results were confirmed
ex vivo, where the percentage of various granulocytic subsets was
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similar in paired BM samples from MM patients (n 5 36) analyzed
before and after treatment with daratumumab (supplemental
Figure 4E).

Clinical significance of granulocytes in the tumor
microenvironment
Because the preestablished phenotype of human G-MDSCs does
not allow for the identification of a unique population of myeloid

cells in the BM of HAs and MM patients (nor in different per-
centages), and because no myeloid cells were depleted by
daratumumab in vitro to allow for identification of the phenotype
of G-MDSCs, we sought to define their phenotypic profile based
on the identification of granulocyte subsets of clinical significance
in patients with newly diagnosed MM (n 5 267). Overall, the
frequency of basophils, eosinophils, and immature (CD11b2

CD132/loCD162), intermediate (CD11b1CD132/loCD162), and
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B
Figure 1. Characterization of G-MDSCs based on conven-
tional criteria. (A) BM samples from MM patients (n 5 10) and
HAs (n 5 7) were stained with HLADR-BV421, CD45-OC515,
CD15-FITC, CD13-PE, CD33-PerCPCy5.5, CD16-PECy7, CD11b-
APC, and CD14-APCH7 mAbs. Cells with a CD11b1CD142

CD151CD331HLADR2 phenotype represent ;25% of total BM
nucleated cells both in HAs and MM patients. (B) Unbiased
analysis based on uniform manifold approximation and pro-
jection (UMAP) according to expression levels of HLADR,
CD45, CD15, CD13, CD33, CD16, CD11b, and CD14 revealed
various granulocytic subsets (neutrophils, eosinophils, and
basophils) in BM samples from HAs andMMpatients. (C) UMAP
of the neutrophil population led to the identification of
3 neutrophil maturation stages according to differential ex-
pression of CD11b, CD13, and CD16: immature (CD11b2

CD132/loCD162), intermediate (CD11b1CD132/loCD162), and
mature (CD11b1CD131CD161) neutrophils. Cellular matura-
tion was confirmed on cytospinned cells from the 3 different
populations by evidencing the classic changes in nuclear
shape. Images are shown with a 3400 magnification. (D) Fre-
quency of each granulocytic subset was similar between HAs
and MM patients. Bars represent the mean and lines the
standard deviation.
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mature (CD11b1CD131CD161) neutrophils had no significant as-
sociation with clinical parameters, including cytogenetic alterations
(supplemental Figure 5A). However, we noted the presence of
unique patient subgroups based on differential predominance of
neutrophils, nucleated redblood cells, tumor cells, and T cells in the
tumormicroenvironment (Figure 2A-B). On prognostic grounds, we
found that only the percentage of mature neutrophils and not any
other granulocytic subset had a significant impact on PFS (sup-
plemental Figure 5B); patients with .32% CD11b1CD131CD161

BM cells had 3-year PFS rates of 66% vs 79% in cases with #32%
mature neutrophils (Figure 2C). Because of the relationship be-
tweenMDSCs andT-cell immunosuppression,we then explored if a
mature neutrophil/T-lymphocyte ratio was prognostically relevant.
Accordingly, patients with higher ratios (.3.4) had significantly
inferior PFSwhen comparedwith caseswith lower ratios (3-year PFS
rate, 85% vs 60%, respectively; P , .001; Figure 2D).

Progressive immunosuppression from immature to
mature neutrophils
As a result of the prognostic value found in regard to the fre-
quency of mature neutrophils in the tumor microenvironment

of MM patients, we then investigated the immunosuppressive
potential of these cells with 2 functional assays: the proliferation
rate of autologous T cells in the presence of CD3/CD28 stim-
ulatory beads (n5 14; Figure 3A), and the cytotoxic potential of
autologous T cells against MM cells using a BCMA3CD3-
bispecific antibody (n 5 10; Figure 3B). Interestingly, we
noted a significant decrease in T-cell proliferation when these
were stimulated in the presence of mature neutrophils from MM
patients (0.5-fold; P 5 .016) but not from HAs (Figure 3C). By
contrast, immature and intermediate neutrophil subsets
fromMMpatients or HAs had no impact on T-cell proliferation. In
addition, we noted that the cytotoxic potential of T cells en-
gaged by a BCMA3CD3-bispecific antibody progressively
increased with the depletion of immature, intermediate, and
mature neutrophils (two-, three-, and fourfold, respectively;
P # .03; Figure 3D).

Molecular characterization of neutrophil
differentiation in normal and tumor BM
In light of the progressively increasing gradient of immuno-
suppression from immature to mature neutrophils, we decided
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Figure 2. Clinical significance of granulocytes in the tumormicroenvironment. (A) Unbiased immunemonitoring of the tumor microenvironment based on uniformmanifold
approximation and projection (UMAP) of BM samples of newly diagnosedMMpatients (n5 55). (B) Unsupervised clustering of MMpatients based on cellular composition of the
tumor microenvironment. (C) PFS according to high (.32%) vs low (#32%) abundance of mature (CD11b1CD131CD161) neutrophils (3-year PFS rate, 66% vs 79%, respectively;
P 5 .0391). (D) PFS according to high (.3.4) vs low (#3.4) mature neutrophil/T-lymphocyte ratio (3-year PFS rate, 60% vs 85%, respectively; P , .0001). NK, natural killer; NRBC,
nucleated red blood cell.
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to investigate if differences in the functional behavior of each
neutrophil subset were related to transcriptional modulation
after their differentiation. Unsupervised clustering after RNA-
seq of immature, intermediate, and mature neutrophils from
HAs and MM patients (n 5 8 each) showed accurate segre-
gation per cell type and not participant (Figure 4A), thereby
validating CD11b, CD13, and CD16 as robust markers to
identify and isolate neutrophil stages with different transcrip-
tional profiles. Specific analysis of genes coding for cytokine/
chemokine-soluble mediators based on the KEGG cytokine-
cytokine receptor interaction pathway list (supplemental Ta-
ble 1) revealed significantly different levels in 21 genes and
various patterns of differential expression in immature, in-
termediate, and mature neutrophils (supplemental Figure
6A-B). Notably, most of these patterns were identical in HAs
and MM patients, except for the CXCL1, PTGS2, TGFB1,

TNFSF13B, VEGFA, CCL4, and IL1B genes, because their
expression levels were significantly altered in mature neutro-
phils fromMM patients (supplemental Figure 6C). Accordingly,
unsupervised clustering at the subset level showed incomplete
segregation between HAs and MM patients regarding the
transcriptional profiles of immature and intermediate (sup-
plemental Figure 7) but not mature neutrophils (Figure 4B),
which segregated all HAs and MM patients based on differ-
entially expressed genes. Interestingly, gene set enrichment
analysis revealed that mature neutrophils from MM patients
displayed reduced antiviral and anticancer type 1 and 2 in-
terferon transcriptional response, as well as increased activa-
tion of transcriptional pathways related to inflammation, such
as tumor necrosis factor a, IL-2–STAT5, and TGF-b signaling
(Figure 4C).
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TGF-b transcriptionally rewires mature neutrophils
Based on our transcriptomic findings and on the prominent role of
TGF-b in the MM tumor microenvironment,21,22 we exposed
mature neutrophils from HAs (n5 3) to TGF-b and investigated if
this cytokine could contribute to a shift in their transcriptional
profile to a program similar to that found in mature neutrophils
from MM patients. Therefore, we focused on the top-10 differ-
entially expressed genes between mature neutrophils from HAs
andMMpatients identified above and compared their expression
levels in MM patients vs mature neutrophils from HAs after
treatment with TGF-b (Figure 4D). Accordingly, we found no
significant differences (P . .05) in the expression of these genes,
suggesting that TGF-b significantly contributes to the molecu-
lar reprogramming of mature neutrophils. Interestingly, MSCs
from MM patients (n5 56) had similar expression levels of TGF-b
as comparedwith those from age-matchedHAs (n5 8), but genes
coding for proinflammatory molecules (CXCL2, CXCL3, and
PTGS2), growth factors (IL-6, BAFF), and angiogenetic mediators

(IL-8), which eventually may also shift the transcriptome of
mature neutrophils, were found to be upregulated in MSCs
from MM patients (supplemental Figure 8).

Transcriptional network of mature neutrophils is
epigenetically deregulated in MM
Under the hypothesis that the transcriptional changes found in
mature neutrophils from MM patients resulted from epigenetic
modulation as a consequence of the altered cellular and cyto-
kine content in the tumor microenvironment, we integrated
RNAseq data with chromatin accessibility profiling through
ATACseq in mature neutrophils from BM aspirates of HAs (n5 3)
and MM patients (n5 3). A mean of 23 214 open chromatin sites
(peaks) in nucleosome-free regions in the 6 different samples
was reported, and using a generalized linear model (DESeq2;
adjusted P , .1), we identified 1445 differentially accessible
peaks between mature neutrophils from HAs vs MM patients.
Among these peaks, 678 showed an increase and 767 showed
a decrease in chromatin accessibility in MM. To assess their
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biological relevance, differential peaks were annotated to the
nearest gene based on their distance to transcription start sites
(TSSs). Of note, 50% of these peaks were in potential promoter
regions within 3 kb of a TSS, suggesting that these gains/losses
in accessibility could exert regulatory activity (supplemental
Figure 9A). Accordingly, we performed a gene ontology en-
richment analysis on genes that were closing or opening in MM-
derived mature neutrophils. Interestingly, we found several
functions (the top 10 are described in Table 1) associated with
closed regions that predicted for altered neutrophil immunity in
MM, whereas no significant functions were found associated
with open regions.

Based on paired ATACseq and RNAseq data, we found a sig-
nificant correlation between gains or losses of chromatin ac-
cessibility near TSSs and gene expression for each normal and
tumor-derived neutrophil sample (supplemental Figure 9B). To
confirm these results, we selected CD83, which showed sig-
nificantly higher messenger RNA expression in MM patients vs
HAs, as well as concordant transcriptional and chromatin ac-
cessibility data, and confirmed its increased protein expression
in MM by flow cytometry (supplemental Figure 9C). Most im-
portantly, we observed a significant positive correlation be-
tween MM-specific changes in gene expression levels and
chromatin accessibility at gene promoters in mature neutro-
phils (P 5 8.17e26; Figure 5A). Furthermore, gene ontology
enrichment analysis of differentially expressed genes in mature

neutrophils from MM patients revealed a significant down-
regulation in functions related to neutrophil immune activation,
in accordance with chromatin accessibility (Figure 5B).

These results led us to investigate if DNA demethylation induced
by CM-272, a selective and reversible inhibitor of histone
methyltransferase G9a and DNA methyltransferase,23 could
open chromatin regions that were closed in mature neutrophils
from MM patients and reinduce expression of genes related to
neutrophil immune activation. Accordingly, we found dose-
dependent transcriptional changes in mature neutrophils
from MM patients after treatment with CM-272 (Figure 5C) and
validated their mode of action by confirming increased ex-
pression of several type 1 interferon–related genes (supple-
mental Figure 10).23 Most importantly, we observed a significant
enrichment of upregulated genes related with neutrophil acti-
vation (Figure 5D), which suggests that hypomethylating agents
could potentially be used to revert the immunosuppressive
signature of mature neutrophils present in the tumor microen-
vironment. Accordingly, we noted that the cytotoxic potential of
T cells engaged by a BCMA3CD3-bispecific antibody was re-
stored and even enhanced when mature neutrophils were
pretreated with CM-272 (supplemental Figure 11).

Discussion
Emerging immunotherapies have shown efficacy in the treat-
ment of early- and late-stage MM.24-26 Therefore, better un-
derstanding of the complexity and diversity of the tumor
immune milieu is warranted to improve the ability to predict,
monitor, and guide immunotherapeutic responsiveness. By in-
tegrating the clinical significance with the immunosuppressive
potential and molecular network of various granulocytic subsets
in the BM, we provide for the first time a set of markers for
optimal monitoring of G-MDSCs in MM.

There is growing interest in targeting immunosuppressive cells
to optimize T-cell activity and immunotherapy efficacy in MM.
However, the ability to specifically target immunosuppressive
cells while preserving the function of antitumor immune cells
remains a challenge in the absence of specific cell markers, and
MDSCs are a good example of this conundrum. MDSCs were
first described in 2007,27 but since then, the few studies per-
formed in humans have commonly required isolation by den-
sity centrifugation of PB samples because of the lack of
markers to isolate G-MDSCs from other cells in the tumor
microenvironment.4 Interestingly, these low-density gran-
ulocytes were found to be a heterogeneous mix of both banded
and segmented neutrophils,4,28 but not of more immature
stages. These findings are consistent with the observation made
in this study that there is a gradient of progressive immuno-
suppression from immature to mature neutrophils, reaching its
maximum at the banded/segmented stage.

The G-MDSC–specific Gr-1 surface antigen is only present in mice,
and therefore, human G-MDSCs have been attributed to a broader
CD11b1CD142CD151CD331HLADR2 phenotype. However, we
showed that this combination of markers could not distinguish
G-MDSCs from common neutrophils; in fact, most maturing
granulocytes are CD11b1, CD15 is also expressed in eosinophils,
and CD33 is present in all myeloid cells. CD16 has been proposed
as an additional marker29 to identify G-MDSCs, but alone it is not

Table 1. Gene ontology enrichment analysis of genes
closing or opening in mature neutrophils of MM patients
vs HAs

ID Description P
Adjusted

P

GO:0042119 Neutrophil activation 1.72e211 3.56e28

GO:0043312 Neutrophil degranulation 2.27e211 3.56e28

GO:0002283 Neutrophil activation
involved in immune
response

2.82e211 3.56e28

GO:0036230 Granulocyte activation 2.83e211 3.56e28

GO:0002446 Neutrophil-mediated
immunity

6.15e211 6.18e28

GO:0031325 Positive regulation of
cellular metabolic
process

1.08e210 8.60e28

GO:0051173 Positive regulation of
nitrogen compound
metabolic process

1.20e210 8.60e28

GO:0009893 Positive regulation of
metabolic process

3.33e210 2.09e27

GO:0043299 Leukocyte degranulation 5.13e210 2.87e27

GO:0002275 Myeloid cell activation
involved in immune
response

9.00e210 4.29e27

Several functions associated with closed regions predicted for altered neutrophil immunity
in MM, while no functions were significantly associated with open regions.
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sufficient, because it is also expressed in nonclassic monocytes
that coincidently downregulate CD14.30 Therefore, in the ab-
sence of established markers, human G-MDSCs can only be
defined by their functional hallmarks (T-cell suppression and
arginase 1 expression). We show that mature neutrophils (and
no other granulocytic subset) present in the MM tumor mi-
croenvironment correlate with patient outcome. Furthermore,
these cells exerted the strongest T-cell immunosuppression
and expressed higher levels of inflammatory cytokines, such
as TGFB1, TNF, and VEGFA, together with an increase in
NF-kB and other G-MDSC-associated markers (eg, PTGS2,
CSF1, IL-8, IRF1, IL4R, STAT1, STAT3, STAT6) when compared
with intermediate and immature neutrophils.31-33 Therefore, we
propose that in MM, G-MDSCs are CD11b1CD131CD161

neutrophils.

Structured models of transcriptional, phenotypic, and functional
diversity are instrumental for better understanding of immune
cell biology. However, unlike in other myeloid cells, in which

diverse functional properties have been linked to specific mo-
lecular programs, the transcriptional heterogeneity behind the
functional diversity of neutrophils remains largely unknown.34

Here, after identifying surface markers enabling the tracking of
immunosuppressive neutrophils (ie, G-MDSCs) within the MM
tumor microenvironment, we show that maturing neutrophil
subsets have unique gene expression profiles that are rewired
into an immunosuppressive state through epigenetic modula-
tion in the BM of patients with cancer. It has been suggested that
TGF-b, an immunosuppressive cytokine produced by tumor cells
from various cancer types, polarizes neutrophils to a protumori-
genic phenotype.35,36 Here, we show that exposure to TGF-b
is able to shift the transcriptional profile ofmature neutrophils from
HAs to a program similar to that found in MM, and future studies
arewarranted to investigate a possible correlation between TGF-b
level and the immunosuppressive potential of G-MDSCs in
BM aspirates. Additional research should also be performed to
identify which other players in theBMmilieumay contribute to this
phenomenon. Finally, we show that the molecular network of
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mature neutrophils from MM patients could be modified by
epigenetic drugs and thereby prevent their immunosuppressive
effect in T cells engaged by a BCMA3CD3-bispecific antibody.
Therefore, this study proposes further investigation of their bi-
ology to identify targeted therapies for the rewiring of G-MDSCs
and increase the successful application of immunotherapy in MM
and other tumors.
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Elena Ruiz Sainz, Felipe de Arriba, Jose Marı́a Moraleda Jiménez, Marta
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Puente Pomposo, Ernesto Pérez Persona, Ana Isabel Teruel Casasús, Paz
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