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RESPONSE

Therapy-induced mutagenesis in relapsed ALL is
supported by mutational signature analysis
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We appreciate the interest of Gaynon et al1 in our study on acute
lymphoblastic leukemia (ALL) relapse.2 They argued against our
finding that therapy-induced drug resistance mutations occur in
ALL and stated that these mutations were potentially preexisting
at diagnosis but undetectable. They focused primarily on our
mathematical modeling of ALL doubling times, while ignoring
other important biological evidence from our study.

First, our strongest evidence of therapy-induced drug resistance
mutations came from mutational signature analysis, not the
modeling of doubling times. We showed that.25% of relapsed
ALLs bore 1 or 2 treatment-induced mutational signatures, re-
ferred as novel signatures A and B. We showed experimentally
that novel signature B was induced by thiopurine treatment, and
the therapy-induced mutations were clonal in most relapses
(supplemental Figure 10); hence therapy does not simply induce
minor subclonal variants.

Second, drug resistance mutations in relapsed ALL preferentially
occurred at trinucleotide contexts mutated by therapy. For
example, relapse-specific NT5C2 R367Q mutations were C.T

mutations occurring at the center of TCG trinucleotides. We
showed experimentally that thiopurines cause this type of mu-
tation, and NT5C2 R367Q mutations were significantly enriched
in relapses that bore the thiopurine signature (supplemental
Figure 16). We further analyzed the probability that each drug
resistance mutation was caused by individual signatures present
in each leukemia sample, based on each signature’s preference
to mutate at specific trinucleotides, using a published method.3

This indicated that NT5C2, TP53, NR3C1, and PRPS1 drug re-
sistance mutations were likely induced by treatment in a subset
of patients. A separate manuscript in preparation strongly re-
inforces this paradigm.

Gaynon et al also misinterpreted our conclusions; we did not
dismiss the contribution of preexisting clones to relapse. They
cited the study of Dobson et al,4 in which we participated as
collaborators, including part of the genomic analysis, as evi-
dence that a minor subclone is usually present at diagnosis,
which leads to the eventual relapse. Similarly, we also showed in
supplemental Figure 17 that in 80% of patients the relapse-fated
clone was detectable at diagnosis. Indeed, our Visual Abstract
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and Figure 7 showed that even in cases where drug resistance
mutations were likely therapy induced, this mutagenesis oc-
curred within a minor clone present at diagnosis, which further
evolved as a result of therapy (Figure 1). We referred to this
minor-to-major clone as a “persistent clone” because it was
not fully drug resistant but later acquired a bona fide drug
resistance mutation, such as in NT5C2, which we never de-
tected at diagnosis using 5003 capture sequencing across the
cohort nor with 4000 to 50 0003 sequencing in 3 patients.
Minor survivor subclones lacking drug resistance mutations
can be readily detected at diagnosis, whereas the resistance
mutations evolving from these subclones, such as in NT5C2
and PRPS1, are rarely if ever detected using high-depth se-
quencing at diagnosis (Figure 3 of original paper,2 and
Figure 1), including in Dobson et al4 and other studies,5,6

consistent with multistep acquisition of frank resistance.
Furthermore, Dobson et al were not able to detect therapy-
induced mutational signatures because they used exome
sequencing of 14 patients, yielding an insufficient number of
mutations to analyze mutational signatures (median of only 25
in diagnostic and 39.5 mutations in relapsed samples),
compared with our whole-genome sequencing of .100 pa-
tients (median 332 at diagnosis and 810 mutations at relapse).

Finally, Gaynon et al misstated our conclusions from our
mathematical modeling, when they noted: “With relapses out-
side these limits (later than 213 to 374 days), the authors con-
clude that the mutations could not have been present in even a
single cell at diagnosis.” Our actual statement was: “Early re-
lapses [9 to 36 months after diagnosis], by contrast, may have
occurred through a 2-step process in which a “persister” clone
survives treatment yet cannot proliferate until acquiring a bona

fide resistance mutation during treatment ... which is also sup-
ported by the mutational signature analysis presented later.
Alternatively, early relapses may have occurred through delayed
proliferation (.9-day doubling time), perhaps during specific
treatment regimens.”2 Thus, we clearly noted that relapses after
9 months could have been due to a preexisting resistant clone
with slower proliferation. The statement of Gaynon et al that “[d]
oubling times are not constant or uniform among the hetero-
geneous leukemic population” agrees with what we stated in the
quotation above. Thus, we did not conclude that post-374-day
relapses had to be from therapy-induced clones, but only
claimed that at least 20% of relapses after 9 months arose from
clones harboring therapy-inducedmutations based on mutational
signature data (see Visual Abstract and Figure 7). The only firm
conclusion we made from the modeling was that very early re-
lapses (,9 months) likely arose from ready-made resistant clones
present at diagnosis (see Figure 3B).

We thankGaynon et al for their provocative discussion and agree
that more needs to be done to fully understand the biology of
leukemia relapse.
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Figure 1. Example showing the multistep acquisition of resistance in ALL. Cells are represented with mutations shown as small colored circles. At diagnosis (D), patient
SJALL043859 had a subclonal mutation in SNRNP25 of uncertain significance in 10% of leukemic cells (10% cancer cell fraction or CCF), which increased to 87% at relapse (R). At
relapse, anNT5C2 R367Q mutation was detected at 84% CCF within the SNRNP25 lineage, but was not found at diagnosis at 7473 coverage, indicating that theNT5C2 variant
descended from the SNRNP25 clone. The relapse sample also acquired the thiopurine signature (bottom), and the NT5C2 mutations had .50% probability of having been
induced by thiopurines because it occurred at a thiopurine-preferred trinucleotide context. These findings are based on whole-genome sequencing and targeted deep
sequencing (484 to 12843 coverage of the SNRNP25 and NT5C2 mutations).
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TO THE EDITOR:

Increased tumor burden in patients with chronic myeloid
leukemia after 36 months of imatinib discontinuation
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The Imatinib Suspension and Validation (ISAV) study1 is a multi-
center trial of imatinib discontinuation (ID) among patients with
chronic myeloid leukemia (CML) in undetectable deep molecular
remission (U-DMR). After 12 months of follow-up, 48% of patients
relapsed (total n 5 107), with the majority of relapses occurring
within the first 9 months. An inverse relationship between patient
age and risk of relapse was also observed at this timepoint. Here
we report the final results of ISAV after a median follow-up of 49
months, aswell as thedynamics of leukemic tumor load asdetermined
by digital polymerase chain reaction (dPCR) in nonrelapsed patients.
This trial is registered at www.clinicaltrials.gov (NCT01578213).

Eligible patients were 18 years and older and had CML, either in
chronic or accelerated phase, with U-DMR of at least 18 months’
duration and at least 3 consecutive negative quantitative real-
time PCR (Q-RT-PCR) just before study entry (supplemental
Figure 1, available on the BloodWeb site). A total of 107 patients
were enrolled at 15 centers worldwide between 2011 and 2013.
U-DMRwas defined as an undetectable BCR/ABL1 byQ-RT-PCR
as determined by local laboratories. Between 10 000 and 32 000
copies of the ABL1 control gene molecules were amplified,
corresponding to a sensitivity of MR4 and MR4.5, respectively.
All but 1 laboratory used the International Scale.

Within 7 days of providing informed consent, 20mL of bloodwere
collected from the patient in PAX gene tubes (PreAnalytiX GmbH,

Switzerland) for dPCR analysis and the patient discontinued
imatinib therapy. Q-RT-PCR tests were performed1 monthly for
the first 6 months, then every 2 months until up to 36months from
ID to assess for the maintenance of the major molecular remission
(MMR) (BCR-ABL/ABL ,0.1%). Patients still in MMR at 36 months
entered the follow-up phase, during which Q-RT-PCR monitoring
was performed every 6 months for an additional 2 years. Loss of
MMRwas defined as at least 1 BCR-ABL1/ABL1 value above 0.1%
among 2 consecutive positive Q-RT-PCR tests. Patients with a loss
of MMR resumed imatinib at the same dose used before treat-
ment interruption and were monitored by standard Q-RT-PCR for
2 additional years.1

dPCR.RNA (3mg) was reverse transcribed to complementary DNA
as previously described.2 The final concentration of the reagents
were:MgCl2 (5mM); PCRBuffer (1X); DTT (100 nM); dNTPs (10 nM
each); M-MLV reverse transcriptase (16 U); RNAse Inhibitor (0.2 U);
and Random Hexamers Primers (12.5 mM) (Thermo Fisher Sci-
entific). Droplet dPCR experiments were performedby theQX200
system (BioRad). The BCR-ABL1 fusion and ABL1 transcripts were
quantified using DigiDropP210 MasterMix and DigiDropP210
Positive Control (Bioclarma), according to the manufacturer’s
protocol and using appropriate negative controls (no template).
The target concentration in each sample was expressed as per-
centage of BCR-ABL1/ABL1, and represents the mean of 3 rep-
licates; negative wells were counted as “0.”
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