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MYELOID NEOPLASIA

Increased CXCL4 expression in hematopoietic cells links
inflammation and progression of bone marrow fibrosis
in MPN
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KEY PO INT S

l Differential spatial
expression of the
chemokine CXCL4/
platelet factor-4 marks
the progression of
fibrosis.

l The absence of
hematopoietic CXCL4
ameliorates the MPN
phenotype and
reduces stromal cell
activation and BM
fibrosis.

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) that leads to pro-
gressive bone marrow (BM) fibrosis. Although the cellular mutations involved in the
pathogenesis of PMF have been extensively investigated, the sequential events that drive
stromal activation and fibrosis by hematopoietic–stromal cross-talk remain elusive. Using
an unbiased approach and validation in patients with MPN, we determined that the dif-
ferential spatial expression of the chemokine CXCL4/platelet factor-4 marks the pro-
gression of fibrosis. We show that the absence of hematopoietic CXCL4 ameliorates the
MPN phenotype, reduces stromal cell activation and BM fibrosis, and decreases the ac-
tivation of profibrotic pathways in megakaryocytes, inflammation in fibrosis-driving cells,
and JAK/STAT activation in both megakaryocytes and stromal cells in 3 murine PMF
models. Our data indicate that higher CXCL4 expression inMPN has profibrotic effects and
is a mediator of the characteristic inflammation. Therefore, targeting CXCL4 might be a
promising strategy to reduce inflammation in PMF. (Blood. 2020;136(18):2051-2064)

Introduction
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm
(MPN) that arises from clonal proliferation of hematopoietic stem
cells (HSCs) and leads to progressive bone marrow (BM) fibrosis
resulting in extramedullary hematopoiesis (typically in the
spleen), BM failure, and ultimately death. Although cellular
mutations involved in PMF development have been extensively
investigated,1-6 the sequential events leading to the trans-
formation of stromal cells to fibrosis-driving cells remain elusive.

It has become increasingly clear over recent years that 2 distinct
pathogenic processes contribute to the initiation and progres-
sion of PMF: (1) stem cell–derived clonal myeloproliferation; and
(2) a reactive cytokine- and chemokine-driven inflammatory fi-
brosis. On a cellular level, this means that HSCs acquire muta-
tions that lead to increased proliferation of HSCs and the

eventual replacement of normal blood formation, whereas
nonmutated, non-hematopoietic stromal cells transform into
fibrosis-driving cells. The biology of this cross-talk between
malignant hematopoietic cells and a normal (non-hematopoietic)
stromal cell that transforms into a fibrosis-driving cell is incom-
pletely understood.

Recent research has shown that Gli11 and LepR1 mesenchymal
stromal cells (MSCs) are progenitors of fibrosis-causing myofi-
broblasts in the BM.7,8 Genetic ablation of Gli11 MSCs or
pharmacologic targeting of Hedgehog-Gli signaling amelio-
rated fibrosis in mouse models of myelofibrosis. Moreover,
pharmacologic or genetic intervention in platelet-derived
growth factor receptor a (Pdgfra) signaling in Lepr1 stromal
cells suppressed their expansion and ameliorated myelofibrosis.
Together, these 2 recent studies confirmed the longstanding
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hypothesis that MSCs are indeed the cellular origin of BM fi-
brosis. However, the precise mechanisms that drive the acti-
vation of the stroma by the malignant hematopoietic clone are
not well understood. Dissecting the underlying mechanisms has
the potential to identify new molecular targets and develop
urgently needed novel therapeutics because the only cure for
myelofibrosis is an allogeneic BM transplant, which remains a
high-risk procedure with high morbidity and high mortality.

We therefore applied a nonhypothesis-driven approach and
questioned if the activation of the stroma occurs after short
exposure to fibrosis-inducing hematopoietic stem and pro-
genitor cells (HSPCs), and whether we can identify genes that
mark the progression of the fibrotic transformation. Using patient
samples, we validated and confirmed that the temporospatial
distribution of the chemokine CXCL4/platelet factor-4 (PF4)
marks progression of fibrosis and dissected the role of CXCL4
knockout in HSPCs in murine models of PMF.

CXCL4, a chemokine synthesized by megakaryocytes (MKs) with
key roles in platelet physiology, is known to be secreted by
a variety of immune cells such as activated T cells and
monocytes.9-11 CXCL4 drives a broad spectrum of immune-
modulatory effects in hematopoiesis and angiogenesis and
has also been implicated in the pathology of a variety of in-
flammatory diseases (eg, atherosclerosis, inflammatory bowel
disease, rheumatoid arthritis, systemic sclerosis) as well as he-
matologic diseases.12-15 Although CXCL4 has been under
intense investigation for .30 years, its cellular functions, re-
ceptors, and their corresponding signaling pathways are still not
fully understood andmight even be cell type specific.16 At least 2
structurally different receptors, CXCR3-B and a chondroitin
sulfate proteoglycan, are capable of binding CXCL4 and in-
ducing specific intracellular signaling machinery. The current
study sought to dissect the role of CXCL4 in MPN pathogenesis
with specific emphasis on the MK–stromal interaction using
genetic fate tracing, RNA sequencing, and pathway identifica-
tion based on available data and bioinformatics pathway anal-
ysis. Our results indicate that CXCL4 plays a significant role in the
induction of inflammation in MPN and has profibrotic effects,
whereas hematopoietic loss of CXCL4 ameliorates the MPN
phenotype and fibrosis.

Methods
Mouse experiments
Gli1CreERT2;tdTomato mice received tamoxifen injections (33)
before lethal irradiation and transplantation of ckit1 cells from
wild-type (WT) or Cxcl42/2 expressing either thrombopoietin
(ThPO) or empty vector (EV) control (n5 5 per group). For JAK2,
CXCL4 overexpression and MPLW515L studies, WT or Cxcl42/2

ckit1 cells transduced with JAK2(V617F), MPLW515L, or pMIG
control retrovirus (control: JAK2 EV) were transplanted into le-
thally irradiated B6.SJL recipients (n 5 5-6 mice per group). At
the end of the experiment, BM cells were isolated from crushed
pelvis and hind legs. Cells were labeled with directly conjugated
antibodies, anti-mouse: Gr1, Ter119, CD3, B220, CD11b, ckit,
CD41, F4/80, CD48, CD41, Sca1, CD45.2, and CD150 (all
1:100). All samples were analyzed by using an FACSCantoII
or FACS Aria (BD Biosciences, San Jose, CA). Hoechst solution
was added (1:10 000) to exclude dead cells, and data were

analyzed by using FlowJo software version 10 (Tree Star Inc,
Ashland, OR).

In vitro experiments, RNA sequencing, and
bioinformatics
Gli11 stromal cells isolated from Gli1CreERt2;tdTomato mice
were cultured in aMEM with 20% MSC fetal calf serum, 1%
penicillin-streptomycin, 5 ng/mL endothelial growth factor, and
1 ng/mL fibroblast growth factor. For recombinant cytokine
stimulation, Gli11 cells were stimulated with recombinant human
transforming growth factor-b (TGF-b; 10 ng/mL, InvivoGen, San
Diego, CA) or recombinant murine interleukin-6 (IL-6; 100 ng/mL,
PeproTech, Rocky Hill, NJ) for 72 hours. For coculture experi-
ments, ckit1 BM fromWTmice transduced with ThPO or EV virus
were maintained in Cellgro media (Cellgenix, Freiburg, Ger-
many) containing m-Scf (50 ng/mL) and m-Tpo (50 ng/mL).
Transduced ckit1 cells were cocultured with 40 000 primary
Gli11 tdTomato1 cells for 72 hours and sorted on an FACS Aria
for Gli11 tdTomato1 and GFP1 ckit1 cells into TRIzol LS.
Complementary DNA (cDNA) libraries were generated by using
the Smart-Seq V4 Ultra-Low Input RNA Kit (Clontech Labora-
tories, Mountain View, CA), and amplified cDNA was further
processed to generate Illumina compatible sequence-ready li-
braries (using the TruSeq Nano DNA Sample Prep Guide [Illu-
mina, San Diego, CA]) that were pair-end sequenced (2 3 75
cycles) on a Hiseq2500 platform (Illumina). RNA data analysis is
described in detail in the Extended Methods in the supple-
mental Files (available on the Blood Web site).

Statistical analysis
Statistical analysis was performed by using GraphPad Prism
version 8 software (GraphPad Software Inc, San Diego, CA).
Comparisons between 2 groups were performed by using an
unpaired Student t test or Mann-Whitney U test as described in
the figure legends. For multiple group comparisons, an analysis
of variance with post hoc Tukey correction or a Kruskal-Wallis
test was applied. Data are shown asmean6 standard error of the
mean, and a value of P , .05 was considered significant.

Extended methods are available in the supplemental Files.

Results
Gli11 stromal cells show fibrotic transformation and
functional reprogramming after short exposure to
fibrosis-inducing HSPCs
Our previous work showed that Gli11 stromal cells are com-
pletely transcriptionally reprogrammed in progressed BM fi-
brosis as indicated by upregulation of a “matrisome signature”
and significantly decreased expression of genes that are nec-
essary for hematopoiesis support.7 Here, we hypothesized that
fibrosis-inducing HSPCs in PMF induce the reprogramming of
the stromal cell transcriptome, and we questioned if this occurs
after short exposure of fibrosis-inducing HSPCs with Gli11

stromal cells in vitro. To test this hypothesis, we used a model
system in which ThPO is overexpressed in HSPCs to induce BM
fibrosis, as it represents a robust, proof-of-principle model, and
all mice develop fibrosis 8 to 10 weeks after transplantation.

To trace the fate of Gli11 stromal cells, bigenic Gli1CreERt2;
tdTomato mice received tamoxifen to induce cell-specific
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expression of the tdTomato fluorochrome. For coculture ex-
periments, Gli11 stromal cells isolated from bigenic Gli1-
CreERt2; tdTomato mice after tamoxifen pulse were cocultured
with c-kit1 HSPCs transduced with a ThPO-overexpressing
vector or its EV control. TdTomato1Gli11 cells and GFP1 ckit1

HSPCs were separated for subsequent RNA isolation by sort-
purifying single, viable GFP1 and tdTomato1 cells using
fluorescence-activated cell sorting. As expected, sorted HSPCs
expressing ThPO clustered distinctly from control HSPCs in
principal component analysis and hierarchical cluster analysis
(Figure 1A). Interestingly, the analysis indicated that Gli11 cells
exposed to ThPO-expressing ckit1HSPCs for only 72 hours were
already drastically distinct from Gli11 cells exposed to control
ckit1 HSPCs (Figure 1B). These data suggest that exposure to
fibrosis-inducing HSPCs indeed leads to early transcriptional
reprogramming of Gli11 stromal cells.

We performed a Pathway RespOnsive GENes (PROGENy)
analysis17 to understand which signaling pathways are mostly
affected in: (1) fibrosis-driving (ThPO) HSPCs (compared with
control); (2) Gli11 stroma exposed to fibrosis-inducing HSPCs
(early); and (3) Gli11 stromal cells in progressed ThPO-induced
BM fibrosis (late; both compared with Gli11 cells exposed to
HSPCs expressing an EV control). By comparing the differential
expression signature of our data with 14 signatures of pathway
perturbation,18 we noticed that the second most extreme esti-
mated deregulation was an increased activity of the JAK-STAT
pathway in fibrosis-inducing ThPO HSPCs compared with con-
trol HSPCs (activity z score .5, uncorrected P value 5 1.9e-08)
(Figure 1C; supplemental Figure 1). This validates our model, as
binding of the ThPO ligand to the MPL receptor activates the
JAK/STAT pathway. In addition, profibrotic TGF-b signaling was
significantly induced in fibrosis-driving ThPO HSPCs compared
with control HSPCs. Gli11 cells exposed to ThPO-expressing
HSPCs were characterized by a hypoxic signature, which is a
common hallmark of fibrosis and tissue repair.19 Interestingly,
Gli11 cells in the early condition as well as fibrosis-inducing
HSPCs exhibited a significant induction of inflammatory path-
ways such as NF-kb and tumor necrosis factor-a (TNF-a), which
were downregulated in the late condition, suggesting that in-
flammation is a hallmark feature of stroma in BM fibrosis initiation
and is induced by HSPCs.

We then wondered how genes that encode ECM-associated
proteins, such as ECM regulators and secreted factors that are
crucial for the fibrotic transformation, are expressed in ckit1

HSPCs and stromal cells in both “early” and “late” conditions.

We used a published matrisome-associated gene signature20

and found significant enrichment (using piano in R [Väremo
et al21]) in early HSPCs and Gli11 stromal cells (consensual
P value ,1e-4) (Figure 1D). In particular, CXC chemokines such
as CXCL1, CXCL3, and CXCL4, all known to play a role in fi-
brosis,22 were significantly upregulated in HSPCs (respective P
values of 6e-6, 2e-9, and 6e-4). The strong upregulation of
matrisome-associated genes in “early” Gli11 stromal cells in-
dicated that the fibrotic transformation is likely initiated after
short exposure to fibrosis-inducing HSPCs, in line with functional
analysis of the stromal cells in culture showing upregulation of a
smooth muscle actin (aSMA), collagen 1a1, and fibronectin
transcripts after 72 hours (supplemental Figure 1B).

CXCL4 intensity and spatial localization marks the
progression of matrix remodeling and BM fibrosis
in patients with MPN
Our data confirmed that CXCL4 was significantly upregulated in
fibrosis-driving HSPCs and in “late” but not “early”Gli11 stromal
cells. Thus, we wondered whether: (1) CXCL4 in HSPCs is an
initiator of the fibrotic transformation; (2) CXCL4 expression in
stromal cells is a marker for fibrosis progression; and (3) CXCL4
plays a role in the inflammation seen in the initiation phase. We
stained BM biopsy specimens from control patients and patients
with MPN and varying grades of fibrosis for CXCL4. We defined
4 grades of CXCL4 expression in the BM (Figure 2A-B). Grade 1
CXCL4 staining is MK specific. In grade 2, MKs are strongly
stained, and faint staining is also detected in endosteal and
perivascular stromal cells. In grade 3, strong CXCL4 positivity is
detected in endosteal and perivascular stromal cells scattered
throughout the BM. In the highest grade (4), CXCL4 staining is
observed in dense stromal cell patches. Significantly higher
grades of CXCL4 staining were observed in patients with MPN
compared with control subjects (Figure 2C), together with an
increase in CXCL4 grade with increasing myelofibrosis (reticulin)
grades (Figure 2D). Interestingly, intermediate grades were
specific to MPN patients without fibrosis in the reticulin staining,
suggesting that CXCL4 marks remodeling of the microenvi-
ronment even in the absence of fibrosis.We observed decreased
hemoglobin levels and increases in the number of white blood
cells (WBCs) correlating with increases in CXCL4 grade (Figure
2E-F), suggesting that CXCL4 grade progression marks fibrotic
progression and the progressive loss of normal hematopoiesis.
Together, this shows that CXCL4 is first detected in hemato-
poietic cells (early stage) such as MKs, with a subsequent shift of
localization to stromal cells as fibrosis progresses (late stage),
indicating a significant interaction between MKs and stromal
cells of the BM during fibrotic transformation.

Knockout of CXCL4 in HSPCs ameliorates the
MPN phenotype
Given that the CXCL4 expression is first significantly increased in
HSPCs (and MKs) and in progressed disease also in the stroma,
we next questioned whether the absence of CXCL4 from the
HSPC compartment affects the MPN phenotype. We thus
combined genetic fate tracing experiments in a murine model of
ThPO-induced myelofibrosis with knockout of Cxcl4 in HSPCs.
Bigenic Gli1CreERt21/2;tdTomato1/2 recipient mice were pulsed
with tamoxifen to induce expression of the tdTomato fluoro-
chrome in Gli11 cells, and subsequently BM-transplanted with
either WT or Cxcl42/2 ckit1 HSPCs overexpressing ThPO or its
EV control (supplemental Figure 2A-C).

CXCL4 knockout in HSPCs in ThPO-induced fibrosis partially
restored the progressive anemia with decreased hemoglobin
levels commonly observed in ThPO-induced BM (Figure 3A), a
measure that often correlates with the degree of fibrosis and the
progressive replacement of erythropoiesis in mice.7 In addition,
CD711 erythroid cells in peripheral blood and BM were also
partially normalized, suggesting that the absence of CXCL4
preserves erythropoiesis in ThPO-induced fibrosis.

The typical myeloproliferation seen in ThPO-induced BM fi-
brosis, as indicated by significantly increased WBC counts, was
further completely normalized in the absence of CXCL4 in
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HSPCs (Figure 3B). Specifically, flow cytometric analysis revealed
a significant reduction in the frequency of Gr11CD11b1 gran-
ulocytes and Gr1–CD11b1 monocytes in the peripheral blood
(Figure 3C) and Gr1–CD11b1 monocytes in the BM in the ab-
sence of CXCL4 in ThPO-induced fibrosis (Figure 3D).

A hallmark feature in ThPO-induced BM fibrosis is significant
thrombocytosis. CXCL4 knockout in HSPCs in ThPO-
induced fibrosis normalized increased platelet levels and
reduced the frequency of CD411 cells in the peripheral
blood (Figure 3E). Interestingly, blood smears showed
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cells were then sort-purified as GFP1 and lin–GFP-tdTomato1, respectively. To analyze fibrosis in vivo, bigenic Gli1CreERt2;tdTomato mice were lethally irradiated 10 days after
the last tamoxifen dose and received c-kit–enriched HSPCs fromWT littermates expressing either ThPO cDNA (n5 5, 3 malemice) or control cDNA (control, n5 5, 3 male mice).
Mice were euthanized at 70 days after transplantation. Gli11 cells were sort-purified as lin–GFP1 tdTomato1 and subjected to RNA sequencing. (A) Principal component analysis
and heatmap representation with hierarchical clustering of HSPCs transduced with either ThPO or EV control. (B) Principal component analysis and heatmap representation with
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dysplastic platelets in ThPO-induced fibrosis that were elim-
inated in the absence of CXCL4 (Figure 3F). In line with the
presence of dysplastic platelets in the blood, enlarged, dys-
plastic, and hyperlobulated MKs, which are pathognomonic
for MPN, were also normalized in their frequency, morphol-
ogy, and size in the BM in the absence of CXCL4 in HSPCs
(Figure 3G-I). In summary, the absence of CXCL4 in HSPCs in
ThPO-induced BM fibrosis almost completely ameliorated the
MPN phenotype and indicated more preserved hematopoi-
esis in the BM.

Knockout of CXCL4 in HSPCs decelerates the
progression of BM fibrosis
Because the analysis of hematopoiesis suggested that the ab-
sence of CXCL4 ameliorates hallmark features of the MPN
phenotype and preserves hematopoiesis in the BM, we next
questioned whether BM fibrosis was reduced. Total cell counts
of the BM revealed significantly reduced cell numbers in ThPO-
induced BM fibrosis in the presence and absence of CXCL4,
although the numbers were slightly higher in the absence of
CXCL4 (Figure 4A), in line with decreased fibrosis. This notion
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was supported by reticulin staining, which revealed severe,
grade 2 to 3 fibrosis in WT ThPO mice, characterized by
abundant, thick fiber crossing and severe osteosclerosis
(Figure 4B). In the absence of CXCL4, reticulin fibers were less

densely packed and more diffuse, with less intercrossing and
more parallel fibers, characteristic of a less severe, grade 1 to 2
reticulin fibrosis. Importantly, the cellular composition of the BM
was normalized in the absence of CXCL4 in ThPO-induced BM
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Figure 3. Loss of Cxcl4 in hematopoietic cells ameliorates theMPN phenotype and restores MK and platelet abnormalities. (A) Hemoglobin (Hg) counts monitored over
time, together with the frequency of GFP1 Ter1191 cells in peripheral blood and BM 9 weeks’ posttransplant (euthanasia). (B) WBC counts are monitored over time from
peripheral blood. (C) Flow cytometric quantification of Gr11 CD11b1 (granulocytes) and Gr1– CD11b1 (monocytes) at euthanasia in peripheral blood. (D) Flow cytometric
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fibrosis as seen in the hematoxylin and eosin staining, in line with
reduced bone marrow fibrosis and reduced MPN-characteristic
myeloproliferation. In addition, CXCL4 immunohistochemistry of
femurs revealed strong CXCL4 positivity in dysplastic MKs, in the
endosteal stroma and in stromal patches scattered throughout
the BM, exactly as seen in patients with progressed fibrosis
(Figure 2). In contrast, the CXCL4 expression was markedly re-
duced in MKs and associated stromal cells in Cxcl42/2 ThPO
animals (supplementary figure 3).

In line with the severe BM fibrosis in WT ThPO mice, the spleen
weight significantly increased (Figure 4C), and mice exhibited
extramedullary hematopoiesis indicated by detection of GFP1

lineagelow Sca11ckit1 HSPCs in the spleen (Figure 4D). Both
spleen weight and extramedullary hematopoiesis were reduced
in the absence of CXCL4 in ThPO-induced BM fibrosis, further
suggesting a reduction although not complete resolution of BM
fibrosis.

Importantly for therapeutic purposes, the knockout of CXCL4 in
HSPCs in control mice did not have (negative) effects on
erythropoiesis, myelopoiesis, or megakaryopoiesis. Only within the
HSPC compartment in BMwas an increase observed in the frequency
of GFP1linlowSca11ckit1 (LSK), GFP1linlowSca11ckit1CD481CD150–

(multipotent progenitor cells), GFP1linlowSca11ckit1CD48–CD150–

(short-term HSCs) and GFP1linlowSca11ckit1CD48–CD1501 (long-term
HSCs) in Cxcl42/2 EV mice compared with WT EV (supplemental
Figure 4A). This is consistent with data from Bruns et al,23 who high-
lighted the role of CXCL4 as a regulator of HSC quiescence and HSC
cell cycle activity, while its absence leads to HSC cycling and HSC
proliferation.

We therefore wondered if the improved MPN phenotype ob-
served in CXCL4 knockout conditions was due to decreased
quiescence and exhaustion of HSCs over time. We thus re-
transplanted whole BM cells from primary WT ThPO or EV or
Cxcl42/2 ThPO or EV animals into lethally irradiated secondary
recipients for an additional 32 weeks. Importantly, we observed
no difference in BM engraftment or repopulation in either
CXCL42/2 control or fibrosis condition (compared with WT;
CXCL41/1) for the complete duration of the study, indicating
that CXCL42/2 cells perform equally well and that these cells do
not exhaust over time, although CXCL4 affects proliferation.
These data indicate that HSC exhaustion is not the primary
reason for the amelioration of the MPN phenotype observed in
Cxcl42/2 ThPO mice (supplemental Figure 4B-C).

We previously showed that Gli11 stromal cells are key drivers of
BM fibrosis as they differentiate toward myofibroblasts and
deposit reticulin fibers and ECM. We questioned whether the
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absence of CXCL4 in HSPC affects the activation of the ge-
netically tagged Gli11 cells. Importantly, we observed a sig-
nificant decrease in the frequency of tdTomato1Gli11lineagelow

stromal cells invading the marrow space in the absence of
CXCL4 in HSPCs, indicating a decrease in Gli11 cell activation,
recruitment, and migration (Figure 4E), in line with the de-
celerated BM fibrosis.

Hematopoietic CXCL4 loss ameliorates the disease
phenotype in the clinically relevant JAK2(V617F) and
MPLW515L models of MPN
Several somatic mutations responsible for clonal stem cell ex-
pansion have been described in MPN. The 3 currently recog-
nized “driver” mutations in PMF are JAK2, CALR, and MPL, and
they are typically found to be mutually exclusive.24 Because
;60% of patients with PMF harbor a JAK2(V617F) mutation, we
wondered if we could recapitulate these findings in a JAK2(V617F)-
induced murine model of MPN/PMF. We introduced the
JAK2(V617F) mutation or JAK2WT control intoWT or Cxcl42/2 ckit1-
enriched HSPCs and transplanted them into lethally irradiated
WT recipients (supplemental Figure 5A). Interestingly, the most
significant effect of CXCL4 knockout was also observed in
platelets and MKs. WT mice transplanted with JAK2(V617F) pro-
gressively developed thrombocytosis over a period of 26 weeks,
whereas Cxcl42/2 JAK2(V617F) mice only exhibited a mild eleva-
tion in platelet counts (Figure 5A). Importantly, the MK mor-
phology was completely restored in the absence of CXCL4 in the
JAK2(V617F)-induced model of MPN (Figure 5B), suggesting that
the increased CXCL4 expression in MPN has a strong effect on
the pathognomonic MK phenotype and thus positively influ-
ences fibrosis, as we again observed a reduction of the reticulin
grade (Figure 5C-E).

To further confirm the involvement of CXCL4 in MPN/PMF, we
performed additional experiments in a MPLW515L-induced mu-
rine model of PMF. We introduced the MPLW515L mutation or its
EV (pMIG EV) in WT or Cxcl42/2 ckit1-enriched HSPCs and
transplanted into lethally irradiated recipients (supplemental
Figure 5D). At the time of euthanasia at 21 days’ post-
transplantation, we observed a significant induction of throm-
bocytosis and increased red blood cell counts in WT MPLW515L,
which were normalized in the absence of Cxcl4 (Figure 5F). Our
data showed a significant increase in BM remodeling and
reticulin fiber deposition in both BM and spleen in WTMPLW515L,
whereas Cxcl42/2 MPLW515L mice showed no apparent MK pa-
thology and a significant reduction in reticulin grade (Figure
5G-I; supplemental Figure 5G). Taken together, these 3 PMF
models highlight the importance of CXCL4 in the initiation of
BM fibrosis and suggest that targeting CXCL4 in MPNmight be
an attractive strategy to ameliorate the MPN phenotype.

Our data indicate that CXCL4 plays an important role in theMPN
pathogenesis but may not be the sole driver of BM fibrosis.
Consequently, we wondered whether increased CXCL4 ex-
pression in HSPCs was sufficient to induce fibrosis. We thus
transduced WT ckit1 HSPCs with a retroviral vector over-
expressing Cxcl4 or EV control (supplemental Figure 6A-B) and
transplanted into lethally irradiated WT recipients (supplemental
Figure 6C). Critically, CXCL4 overexpression in HSPCs led to an
increase in the number of platelets, with no marked signs of
fibrosis at 26 weeks’ posttransplant (supplemental Figure 6D).
We observed hyperlobulated MKs with CXCL4 overexpression

but did not detect an increase in their frequency in the BM
(supplemental Figure 6E-F). This outcome suggests that the
primary effect of CXCL4 overexpression after 26 weeks is on
MKs, acting as a mediator, although we cannot exclude that the
kinetics of fibrosis development are slower than in other models.

Hematopoietic CXCL4 knockout in MPN resulted in
decreased JAK/STAT activity in MKs and stromal
cells and downregulation of interferon target
genes in MKs
To determine the exact role of CXCL4 in MKs and their effect on
stromal cells, we performed transcriptional analysis in both cell
types in fibrosis and control conditions. Because hematopoietic
loss of CXCL4 resulted in significantly reduced Gli11 stromal cell
activation and a significantly ameliorated phenotype of MKs in
ThPO-induced fibrosis, we sort-purified tdTom1 Gli11 stromal
cells and GFP1 CD411 cells (MKs) from the BM of control (EV)
and fibrotic (ThPO) mice; we then performed RNA sequencing to
dissect the interaction between Gli11 stromal cells exposed to
CXCL4 WT or knockout MKs.

We performed pathway analysis with PROGENy and transcrip-
tion factor analysis with DoRothEA25 to gain a better un-
derstanding of the fibrosis-inducing effect of WT or CXCL42/2

MKs on stromal cells (supplemental Figure 7A). Loss of Cxcl4 in
HSPCs/MKs resulted in decreased JAK/STAT pathway activity in
both MKs and stromal cells in fibrosis (ThPO overexpression
compared with EV) (Figure 6A). Activation of JAK/STAT signaling
is one of the mechanistic hallmarks of MPN and is observed in
every patient with MPN, regardless of founding driver mutation
or clinical diagnosis.26 Specifically, in MKs, the knockout of
CXCL4 led to the downregulation of interferon-inducible target
genes such as Ifi27, Ifi35, Usp18, and Ifitm1 (Figure 6B). In
particular, Stat1 was significantly downregulated (Figure 6C).
Previous research by Chen et al27 showed that STAT1, a known
effector of interferon signaling, promotes MK differentiation and
polyploidization, particularly in patients with essential throm-
bocythemia, and they are primarily characterized by megakar-
yocytic and platelet abnormalities that are reflected in our
ThPO-induced BM fibrosis model. Our data thus suggest that
the amelioration of MK abnormalities and dysplasia observed in
the absence of CXCL4 can be attributed to a decreased interferon
response and decreased Stat1 activation.

Historically, MKs were believed to be fibrosis-inducing cells in
PMF/BM fibrosis, and we observed an amelioration of the fi-
brosis grade in the absence of CXCL4. These observations were
confirmed as the hallmark profibrotic pathway TGF-b was
upregulated in WT MKs in ThPO-induced fibrosis but not in
the absence of CXCL4 (supplemental Figure 7B). Moreover,
interleukin-6 (IL-6), a cytokine previously associated with
PMF,28,29 was upregulated in WT but not in Cxcl42/2 MKs.

The absence of CXCL4 in hematopoietic cells/MKs resulted in
downregulation of inflammatory pathways such as Trail, NF-kb,
and TNF-a in stromal cells in BM fibrosis (ThPO compared with
EV) (Figure 6A). Interestingly, stromal cells exposed to CXCL42/2

and WT hematopoietic cells were comparable in their TFG-b
pathway activities. However, a closer look at the responsive
genes of TGF-b pathway activity (supplemental Figure 7B)
showed that Col4a1 was overexpressed in stromal cells exposed
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to WT MKs in ThPO-induced fibrosis but not in the absence of
CXCL4. Col4a1, the collagen, type IV, a1 fiber subtype, has
previously been identified as a key factor of fibrosis progression.30

To validate the inflammatory landscape in fibrotic mice, we
analyzed blood plasma of JAK2(V617F) and MPLW515L mice for
common inflammatory cytokines using a bead-based immuno-
assay (supplemental Figure 5B-C). WT JAK2(V617F) mice showed a
global increase in cytokines, specifically increases in IL-1a,
monocyte chemotactic protein 1, and TNF-a protein levels,
which were reduced in Cxcl42/2 JAK2(V617F) mice (supplemental
Figure 5C). Similarly, we observed a significant reduction in IL-1a
protein levels in the plasma of Cxcl42/2 MPLW515L mice
compared with WT MPLW515L animals, as well as decreased
WBC counts (supplemental Figure 5E-F), further confirming that

CXCL4 acts as an inflammatory “mediator” in BM fibrosis initi-
ation in these models.

The increased hypoxic signature in stromal cells in ThPO-
induced fibrosis was only observed when exposed to WT MKs
and is consistent with the severe reticulin fibrosis observed in the
BM in the presence of CXCL4. Interestingly, mesenchymal
stromal cells in hypoxic conditions survive and proliferate at
greater rates than in normoxic conditions, with additional hyp-
oxic preconditioning leading to the release of proangiogenic
factors such as vascular endothelial growth factor and IL-6, which
may further contribute to the fibrotic transformation.31-33

To better characterize the effect of the CXCL4 knockout itself, we
also performed transcription factor analysis on a differential
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expression signature comparing CXCL4 knockout and WT MKs
and stromal cells exposed to those for each of the conditions.
Remarkably, this comparison showed again that the JAK-STAT
pathway activity, and related transcription factors, was strongly
reduced in the absence of CXCL4 in ThPO-induced BM fibrosis
in both stromal cells and MKs (Figure 6C).

CXCL4 knockout ameliorates increased expression
of the profibrotic IL-6
Because IL-6 was one of the highest upregulated cytokines in
MKs in the WT ThPO condition, and significantly reduced by
CXCL4 knockout, we hypothesized that IL-6 plays a CXCL4-
dependent role in the fibrotic transformation and inflammation
in stromal cells. We questioned whether exogenous IL-6 had a
direct effect on fibrosis, specifically on the activation and dif-
ferentiation of Gli11 stromal cells into ECM-producing myofi-
broblasts. Sustained in vitro stimulation of primary Gli11 stromal
cells with TGF-b (strong inducer of profibrotic phenotype and
reduced in MKs in ThPO-induced fibrosis after CXCL4 knockout)
or IL-6 significantly increased aSMA expression (Figure 7A).
Critically, IL-6– and TGF-b–stimulated cells displayed myofi-
broblast morphology and aSMA1 stress fibers (Figure 7B). To-
gether, these data suggest an involvement of CXCL4 in a
profibrotic IL-6 axis in which proinflammatory IL-6 is highly
upregulated in MK during fibrosis and induces myofibroblast
differentiation of Gli11 stromal cells. Hematopoietic loss of
CXCL4 resulted in reduced IL-6 expression by MKs with sub-
sequently reduced myofibroblast differentiation and fibrosis.

To further elucidate whether the absence of IL-6, downstream of
CXCL4, in hematopoietic cells ameliorates fibrosis, we trans-
planted WT or IL-62/2 ckit1 HSPCs transduced with ThPO into
lethally irradiated recipients (Figure 7C). AlthoughMPN features,
including blood counts and hemoglobin (Figure 7D) as well as
MK dysplasia (Figure 7E-F), were only mildly reduced and
ameliorated in the absence of IL-6, the grade of fibrosis was
significantly reduced in IL-62/2 ThPO animals (Figure 7G-H). This
outcome further confirms the profibrotic role of IL-6 in the ac-
tivation of the BM stroma and in the production of reticulin
fibers.

Discussion
Our studies converged on a critical role of CXCL4 in the path-
ogenesis and progression of MPN and specifically PMF. Using
genetic knockout of CXCL4 in hematopoietic cells in murine
models of BM fibrosis/PMF, we found that the absence of CXCL4
leads to: (1) an ameliorated MPN phenotype; (2) decreased
severity of BM fibrosis; (3) reduced Gli11 cell activation including
reduced inflammation; and (4) decreased JAK/STAT activation
as a hallmark feature of MPN.

We showed that the spatial distribution of CXCL4 marks the
progression of BM fibrosis. This is of particular interest as pre-
vious studies found that CXCL4 levels in patients with systemic
sclerosis seem to predict progression in systemic sclerosis/fi-
brosis phenotypes.34 The identification of CXCL4 as a marker for
fibrosis may be helpful (together with conventional reticulin
staining) in early diagnosis and risk assessment, an important
factor in patients who require aggressive treatment.

Accumulating evidence suggests a role for CXCL4 in chronic
fibroproliferative and inflammatory conditions.14,35 However, in
systemic sclerosis, CXCL4 induced skin inflammation but did not
induce fibrosis. This is in line with our studies as we observed the
most significant effects of CXCL4 on inflammation. It is thus
tempting to speculate that although CXCL4 may sensitize cells
to inflammatory stimuli, culminating in fibrosis, the presence of
CXCL4 alone is not sufficient.

Inflammation is a hallmark feature of MPN and PMF, and MPN
driver mutations constitutively activate the JAK/STAT signaling
pathway.36-38 We observed a strong upregulation of in-
flammatory pathways and cytokines such as IL-1a and the
alarmins S100A8/S100A9 in ThPO-overexpressing HSPCs. In-
terestingly, CXCL4 knockout led to decreased activation of JAK/
STAT and inflammation, mainly reflected by a decrease in IL-6
levels in MKs. Our data thus link CXCL4 in hematopoietic cells
in MPN to increased JAK/STAT activation and increased in-
flammation, partially through IL-6 activation. Importantly, we
showed that IL-6 can induce a myofibroblast phenotype in Gli11

fibrosis-driving cells, highlighting the cascade and vicious cycle
of increased inflammation and fibrosis induction. The central role
of IL-6 was shown in previous studies in MPN/PMF and increased
levels of IL-6 cytokines correlate to shorter survival in patients
with PMF.28,38 All IL-6–type cytokines strongly activate STAT3,
and to a lesser extent STAT1.39 Kleppe et al37 showed that pan-
hematopoietic STAT3 deletion resulted in improved survival and
decreased cytokine secretion in a similar fashion to ruxolitinib
therapy. We report increased expression of IL-6 not only in
hematopoietic cells but also in the stroma. IL-6 secretion from
stromal cells was shown to protect JAK2(V617F)-mutated cells from
JAK2 inhibitor therapy.40 Thus, combined therapeutic strategies
targeting the malignant clone but also the inflammatory envi-
ronment (eg, by targeting CXCL4) have the potential to elimi-
nate the disease-causing cells and also their maintaining
environment. We here highlight an important crosstalk between
mutated hematopoietic progenitors and nonmutated MSCs,
which are eventually activated and subsequently contribute to
the formation of a malignant niche that supports the neoplastic
clone and the development of fibrosis.

In line with significantly reduced platelets, CXCL4 knockout had
the strongest effect on the pathognomonic MK dysplasia, in
both ThPO and JAK2(V617F)-induced PMF. MKs showed a strong
upregulation of profibrotic pathways such as vascular endo-
thelial growth factor and TGF-b signaling in fibrosis, which were
normalized comparably to control MKs by CXCL4 knockdown.
Interestingly, the profibrotic cytokine TGF-b, which is also
overexpressed in patients with PMF and MPLW515L mice, is ad-
ditionally linked to inflammation, in particular to the NF-kB
pathway that was also upregulated in stromal cells in PMF in our
models and normalized by CXCL4 knockdown.41 In sum, these
data highlight the vicious cycle of inflammation, JAK/STAT ac-
tivation, and activation of profibrotic pathways.

The only current treatment option that is able to prolong survival
or provide a potential cure for PMF is an allogeneic stem
transplant, which is associated with a 50% rate of transplant-
related deaths or morbidities.42 The JAK1/2 inhibitor ruxolitinib
was shown to reduce spleen size and JAK2(V617F) allele burden,
and it suppressed cytokine secretion both in a murine model of
PMF and in patients.43-45 CXCL4 inhibition alone was not
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sufficient to entirely rescue fibrosis but had a strong effect on the
MPN phenotype, inflammation, MK dysplasia, and JAK/STAT
activation. Our work implies that other chemokines or cytokines
continue to drive the fibrotic transformation even in the absence
of CXCL4. This was particularly obvious in the model of
JAK2(V617F)-induced PMF, in which the absence of CXCL4 mainly
affected the MK dysplasia and had a weaker effect on fibrosis,
most likely because the development of fibrosis takes longer and
other drivers can take over. Thus, combinatorial strategies might
be optimal to block the vicious cycle of inflammation and ac-
tivation of profibrotic pathways. Potential targets to combine
with ruxolitinib, for example, include inhibition of theMK–stroma
crosstalk through CXCL4 inhibition, inhibition of TGF-b signal-
ing, or direct inhibition of inflammation (in particular IL-6).41,46-50
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