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KEY PO INT S

l Specific genemutation
combinations
correlate with
morphologic MDS/
MPN subtypes and
help elucidate the
heterogeneity in these
neoplasms.

l Patients with MDS/
MPN-U display
different molecular
profiles that mimic the
ones observed in
other MDS/MPN
subtypes.

More than 90% of patients with myelodysplastic/myeloproliferative neoplasms (MDSs/
MPNs) harbor somatic mutations in myeloid-related genes, but still, current diagnostic
criteria do not include molecular data. We performed genome-wide sequencing techniques
to characterize the mutational landscape of a large and clinically well-characterized cohort
including 367 adults with MDS/MPN subtypes, including chronic myelomonocytic leukemia
(CMML; n 5 119), atypical chronic myeloid leukemia (aCML; n 5 71), MDS/MPN with ring
sideroblasts and thrombocytosis (MDS/MPN-RS-T; n 5 71), and MDS/MPN unclassifiable
(MDS/MPN-U; n5 106). A total of 30 genes were recurrently mutated in ‡3% of the cohort.
Distribution of recurrentlymutated genes and clonal architecture differed amongMDS/MPN
subtypes. Statistical analysis revealed significant correlations between recurrently mutated
genes, as well as genotype-phenotype associations. We identified specific gene combina-
tions that were associated with distinct MDS/MPN subtypes and that were mutually ex-
clusive with most of the other MDSs/MPNs (eg, TET2-SRSF2 in CMML, ASXL1-SETBP1 in
aCML, and SF3B1-JAK2 in MDS/MPN-RS-T). Patients with MDS/MPN-U were the most
heterogeneous and displayed different molecular profiles that mimicked the ones observed

in other MDS/MPN subtypes and that had an impact on the outcome of the patients. Specific genemutations also had an
impact on the outcome of the different MDS/MPN subtypes, which may be relevant for clinical decision-making. Overall,
the results of this study help to elucidate the heterogeneity found in these neoplasms, which can be of use in the clinical
setting of MDS/MPN. (Blood. 2020;136(16):1851-1862)

Introduction
Myelodysplastic/myeloproliferative neoplasms (MDSs/MPNs)
are rare clonal hematopoietic malignancies with overlapping
features from myelodysplastic syndromes (MDSs) and myelo-
proliferative neoplasms (MPNs). According to the 2017 World
Health Organization (WHO) Classification, types of adult MDSs/
MPNs include chronic myelomonocytic leukemia (CMML),
atypical chronic myeloid leukemia (aCML), MDS/MPN with ring
sideroblasts and thrombocytosis (MDS/MPN-RS-T), and MDS/
MPN unclassifiable (MDS/MPN-U).1 Because of the overlapping
features between these entities, as well as between MDS and
MPN, differential diagnosis remains a challenge in many cases.
According to previous studies,.90% of patients withMDS/MPN
harbor somatic mutations in a group of known genes that are
related to their pathophysiological features and play a role in
their clinical heterogeneity.2-5 However, none of them is specific
to MDS/MPN, and current diagnostic criteria do not include

molecular data. A great effort has beenmade to understand how
these mutations influence clinical phenotype and disease evo-
lution, especially in CMML. These patients show frequent (40% to
50%) mutations in TET2, SRSF2, and ASXL1.6 Biallelic TET2 muta-
tions and the TET2-SRSF2 combination are associated with mon-
ocytosis and CMML, whereas the presence of mutations in signaling
genes (eg, K/NRAS, CBL, and JAK2) is more prevalent in the my-
eloproliferative subtype.2,7,8 Mutations in ASXL1 have been con-
sistently associated with unfavorable outcomes and thus are
included in current CMML-specific prognostic scores.2,6,9 However,
the other MDS/MPN groups are in need of more extensive mo-
lecular studies. On the one hand, aCML, the most aggressive
subtype of MDS/MPN, shows a high frequency of mutations in
SETBP1 (30%), though their prognostic impact remains unclear.10,11

One study performed in 25 patients with aCML identified recurrent
(.10%) mutations in ASXL1, TET2, NRAS, SETBP1, and RUNX1,
with only TET2 mutations being associated with decreased overall
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survival.4 On the other hand, patients with MDS/MPN-RS-T have a
mild course and are characterized by a high frequency of mutations
in SF3B1 (90%), that strongly correlate with bone marrow ring
sideroblasts, and mutations in JAK2 (40%), that correlate with
platelet count.3,12 Less frequently mutated genes include TET2,
DNMT3A, and ASXL1, according to 2 targeted molecular studies
performed in 92 and 48 patients with MDS/MPN-RS-T,
respectively.3,13 Finally, patients with MDS/MPN-U, the least well
characterized of these syndromes, show recurrent mutations in
several myeloid-related genes, as recently reported by Bose et al,5

though none of them predicts the outcome of the patients.5 In this
study, we used genome-wide sequencing techniques to charac-
terize the mutational landscape of 367 patients with MDS/MPN
and to establish genotype-phenotype associations. We sought to
identify potential diagnostic andprognosticmolecularmarkers that
can be applied in medical practice and provide novel insights into
the hierarchy of mutations in MDS/MPN.

Methods
Patients and samples
A total of 367 adult patients with MDS/MPN, diagnosed
according to the WHO Classification,1 were enrolled in this study.
Bone marrow (BM) and peripheral blood (PB) samples from these
patients had been sent for diagnosis to the Munich Leukemia
Laboratory (MLL; n 5 349) or the Institut Català d’Oncologia-
Hospital Germans Trias i Pujol (ICO-HGTiP; n 5 18). Routine
analyses were performed in all cases, including cytomorphology,
conventional chromosome banding analysis (CBA) and, in part,
standard molecular analyses. Retrospective DNA samples from
BM and PB, obtained at diagnosis or from treatment-naive pa-
tients, were collected in all cases. Informed consent was obtained
from each patient. In addition, clinical and molecular data from
50 patients withMDS/MPN-U treated at the ClevelandClinic were
collected for validation purposes. The study adhered to the tenets
of the Declaration of Helsinki and was approved by the internal
review board of theMLL and the Ethics Committee of ICO-HGTiP.

Whole-genome and whole-exome sequencing
Whole-genome sequencing (WGS) was performed in 349 cases
of MDS/MPN. Libraries were generated from 1 mg of DNA, by
using the TruSeq PCR-Free prep kit according to the manu-
facturer’s recommendations (Illumina, San Diego, CA) and se-
quenced on NovaSeq6000/HiSeqX Illumina instruments by
following a 23 150-bp paired-end–reads standard protocol at a
mean depth of coverage of .1003. Whole-exome sequencing
(WES) was performed in the remaining 18 patients. Libraries
were generated from 1 mg of DNA with the SureSelect Human
ExomeKit 51Mb v5 (Agilent, Santa Clara, CA) and sequenced on
a HiSeq2500 Illumina instrument, according to a 2 3 100-bp
paired-end–reads protocol at a mean coverage of .2003.

WGS and WES data analysis
WGS and WES data were analyzed on Illumina’s BaseSpace Se-
quence Hub and in-house pipelines. Reads were aligned against
human genome build 19 (hg19) with the tool Isaac3.14 Variant
callingwas performedusingStrelka2,15 and variantswere annotated
with Ensembl VEP.16 For the purpose of this study, only exonic
(nonsynonymous single-nucleotide variants and small insertions/
deletions) and splicing variants were considered. Because control
paired samples were not available, tumor-unmatched normal var-
iant calling was performed with a pool of sex-matched DNA

(Promega,Madison,WI), followed by a strict variant filtering process
(supplemental Methods, available on the Blood Web site). In ad-
dition, GATK4 (version 4.0.2.1) was used for calling copy number
aberrations (supplemental Methods). Copy number neutral loss of
heterozygosity (LOH) regions were detected with CANVAS 1.3.1,
called by Illumina tumor/normal APP 3.0.0. Again, unmatched-normal
variant calling was performed using a pool of sex-matched DNA.17

VAF adjustment and clonal hierarchy analysis
Variant allele frequency (VAF) estimates were used to evaluate
clonal and subclonal variant relationships within each sample.
First, VAF values were adjusted for both copy number and zy-
gosity. Then, mutations were assigned as ancestral for dominant
hits and secondary for subsequent subclonal hits. For the pur-
pose of this study, a cutoff of at least a 5% difference between
VAFs was used to distinguish ancestral/dominant mutations
(higher VAFs) from subclonal hits, whereas mutations with a VAF
difference of,5% were referred to as codominant, as previously
reported.7,18 Of note, there are several limitations associated
with this approach (supplemental Methods). Biallelic TET2 or
TP53 were deemed to be present when there were 2 hetero-
zygous TET2 or TP53 mutations with a VAF sum of .55% or
when there were homozygous TET2 or TP53 mutations (single
TET2 or TP53mutation with VAF.55% in the presence of 4q24
deletion or LOH, or 17p13.1 deletion or LOH, respectively).

Statistical analysis
Baseline characteristics are described as median and range for
continuous variables and frequency and percentage for cate-
gorical variables. Comparisons between patient subsets were
performed by x2, Fisher’s exact, or Mann-Whitney U test, as
appropriate. Pairwise associations between genes were evalu-
ated by Fisher’s exact test corrected for multiple-hypothesis
testing. Overall survival (OS) was defined as time from di-
agnosis to the last follow-up or death from any cause. In patients
who underwent allogeneic stem cell transplantation (SCT), du-
ration of follow-up was censored at the time of SCT. Of note, OS
could still be influenced by other treatment strategies, which
were highly heterogeneous across patients (Table 1). Survival
curves were calculated by using the Kaplan-Meiermethod, and the
log-rank test was used for comparisons between groups. Two-
sided P , .05 was considered statistically significant. The R sta-
tistical package (version 1.2.5033) and the statistical package SPSS,
version 23.0 (SPSS Inc., Chicago, IL) were used for all analyses.

Results
Characteristics of the MDS/MPN cohort
The series included 367 patients who were classified as having
CMML (n 5 119), aCML (n 5 71), MDS/MPN-RS-T (n 5 71), or
MDS/MPN-U (n5 106).1 Main demographic, hematological, and
clinical data from the patients are summarized in Table 1 and
supplemental Figure 1.

Frequency and spectrum of chromosomal
abnormalities and gene mutations
CBA was available in 359 patients and revealed an abnormal
karyotype in 29% (103 of 359) of MDSs/MPNs, with18 (12%),27/
del(7q) (5%), and2Y (3%) being the most recurrent abnormalities
(Table 1). Complex karyotypes ($3 alterations; CKs) were de-
tected in 4% of patients. Chromosomal abnormalities were un-
common inMDS/MPN-RS-T (10%) andCMML (17%), in contrast to
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aCML (42%) and MDS/MPN-U (47%), which showed higher ge-
nomic instability (Table 1; supplemental Figure 2).

A total of 20304 variants were retained after variant filtering
(supplemental Table 1), with a mean of 55 variants per patient.

MDS/MPN-RS-T patients had a lower mean number of variants per
patient compared with other MDS/MPN subtypes (48 in MDS/
MPN-RS-T vs 55 in CMML, 58 in MDS/MPN-U, and 60 in aCML;
P , .001; supplemental Figure 3). The frequency of base substi-
tutions (C.A, C.G, C.T, T.A, T.C and T.G) was comparable

Table 1. Main demographic, hematological, and clinical data from the MDS/MPN cohort

Variable

Baseline distribution in the cohort (n 5 367)

CMML (n 5 119) aCML (n 5 71) MDS/MPN-RS-T (n 5 71) MDS/MPN-U (n 5 106)

Demographics
Sex, n (%)

Male 79 (66) 50 (70) 27 (38) 67 (63)
Female 40 (34) 21 (30) 44 (62) 39 (37)

Age, years, median (range) 77 (50-89) 74 (50-92) 74 (44-93) 75 (32-91)

Blood counts, median (range)
Hb, g/dL 11.8 (7.0-16.6) 10.1 (5.8-14.6) 9.4 (6.0-12.2) 9.4 (4.9-14.9)
WBC count, 3109/L 16.1 (2.8-86.9) 44.8 (15.6-325.0) 6.6 (2.4-19.7) 27.3 (1.2-202.4)
Platelets, 3109/L 119 (14-1,77) 102 (60-786) 564 (454-1,416) 121 (7-2,276)
Neutrophils, 3109/L 8.2 (0.3-54.7) 28.53 (3.6-162.5) 4.0 (1.8-8.6) 18.2 (0.3-123.5)
Monocytes, 3109/L 4.0 (1.0-95.7) 0.8 (0.0-17.8) 0.2 (0-0.7) 0.7 (0-13.5)
Blasts, % 0 (0-9) 2 (0-18) 0 (0-1) 1 (0-10)

Bone marrow features
Blasts, median (range) 6 (0-19) 1 (0-19) 2 (0-6) 2 (0-15)

,5%, n (%) 81 (68) 54 (76) 68 (96) 76 (72)
$5%, n (%) 38 (32) 17 (24) 3 (4) 30 (28)

Ring sideroblasts, median (range) 0 (0-18) 0 (0-14) 66 (18-97) 0 (0-84)

Cytogenetics
Available, n/total n (%) 119/119 (100%) 69/71 (97%) 69/71 (97%) 102/106 (96%)
Normal karyotype, n (%) 99 (83%) 40 (58%) 62 (90%) 54 (53%)
Altered karyotype, n (%) 20 (17%) 29 (42%) 7 (10%) 48 (47%)

18, n (%) 6 (5%) 12 (17%) 3 (4%) 26 (25%)
Isolated, n 4 9 2 17
11 Abnormality, n 2 2 1 3
In CK, n 0 1 0 6

27/del(7q), n (%) 4 (3) 4 (6) 0 (0) 12 (12)
Isolated, n 3 0 0 5
11 Abnormality, n 1 1 0 2
In CK, n 0 3 0 5

2Y, n (%) 4 (3) 1 (1) 3 (4) 1 (1)
Complex karyotype, n (%) 0 (0) 3 (4) 0 (0) 12 (12)

Treatment, n (%)
Cases with treatment information 103 (87) 57 (80) 64 (90) 86 (81)

No treatment 52 (50) 18 (32) 35 (55) 31 (36)
Supportive care 17 (17) 3 (5) 21 (33) 9 (11)
Azacytidine 11 (11) 4 (7) 1 (2) 6 (7)
Cytoreductive treatment 18 (17) 30 (53) 6 (9) 33 (38)
AML-induction therapy 5 (5) 2 (3) 1 (2) 7 (8)
Allogenic SCT 5 (5) 5 (9) 1 (2) 5 (6)

Outcome
Cases with follow-up, n (%) 99 (83) 56 (79) 52 (73) 73 (69)

Median follow-up, median mo
(range)

39 (2-112) 12 (3-98) 48 (2-163) 21 (2-182)

Leukemic transformation, n (%) 16/91 (18) 4/45 (9) 4/47 (9) 6/61 (10)
OS, median mo (95% CI) 74 (48-101) 16 (12-20) NR 80 (NR)

AML, acute myeloid leukemia; CI, confidence interval; Hb, hemoglobin; NR, not reached; SCT, stem cell transplant.
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across the MDS/MPN WHO subtypes (supplemental Figure 4). A
mean of 5 variants per patient affected the genes previously re-
ported in myeloid neoplasms (supplemental Table 2). Overall,
30 geneswere recurrentlymutated in$3%of theMDS/MPN cohort,
all of which had already been reported in myeloid neoplasms, being
ASXL1 (51%), TET2 (45%), SRSF2 (35%), SF3B1 (24%), JAK2 (19%),
EZH2 (17%), RUNX1 (17%), SETBP1 (15%), NRAS (13%), CBL (13%),
and KRAS (10%) the most frequent (Figure 1A; supplemental Fig-
ure 5). To focus on mutations that are more likely to be clinically
relevant, we restricted further analyses to these genes. However, the
distributionof gene frequencieswas different across the 4MDS/MPN
subtypes (Figure 1B; supplemental Table 3) and, focusing on specific
subgroups, less frequent mutations were detected in novel genes,
including APC2 (6%) in aCML, HEPHL1 (6%) and PAFAH2 (6%) in
MDS/MPN-RS-T, and ZBTB33 (5%) in MDS/MPN-U (supplemental
Figure 6). The somatic origin of these mutations could not be con-
firmed because of the lack of germline controls.

Copy number variation (CNV) analysis was performed on WGS
data (n 5 359). A total of 166 CNVs (110 losses and 56 gains) .1
Mb were identified. Of these, 51 fell below the resolution of CBA
(,10Mb). Among the rest, 105 of 115 were also detected by CBA
(91% of concordance; supplemental Figure 7). CNVs.1Mbwere
detected in 28% (98 of 349) of all MDS/MPN and in 12% (29 of
247) of patients with normal karyotype. Overall, CNV analysis
revealed very few recurrent gains and losses in patients withMDS/
MPN, besides those detectable by CBA (supplemental Figures 8
and 9), which were not specific to any MDS/MPN WHO subtype.

Correlation between genotype and disease
phenotype
Statistical analysis revealed significant correlations between
recurrently mutated genes andwith chromosomal abnormalities,
suggesting the presence of functional interactions among different
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molecular events, many of which have been reported in the
spectrum of myeloid neoplasms (Figure 2A).8,19-26

We then searched for genotype-phenotype associations and
investigated the correlation between molecular events and

MDS/MPN subtypes ormain biological parameters, including PB
counts, BM features, and the presence of myelodysplasia
(Figure 2B). Several positive correlations were detected between
MDS/MPN subtypes and gene mutations, the strongest being
MDS/MPN-RS-T with SF3B1 and JAK2; aCML with ASXL1 and

A
SX

L1

TE
T2

EZ
H

2

D
N

M
T3

A

SR
SF

2

SF
3B

1

U
2A

F1

ZR
SR

2

JA
K

2

N
R

A
S

C
B

L

K
R

A
S

PT
PN

11

R
U

N
X

1

G
A

TA
2

C
U

X
1

SE
TB

P1

ST
A

G
2

TP
53

C
SF

3R

N
K

 +
8

 -
7/

d
el

(7
q

)

C
K

aCML ** * ** ** * ** *
CMML ** * ** ** * ** ** * * *

MDSMPN-RS-T ** ** * ** ** * ** ** * ** ** ** * **
MDSMPN-U * * * ** * ** ** ** * **

Anemia * * ** *
Thrombocytopenia ** ** ** ** **

Thrombocytosis ** ** ** ** ** ** * * ** ** ** *
Leukocytosis ** * ** ** ** * *
Neutropenia
Monocytosis * ** ** *

Circulating blasts ** ** * * ** * *
BM blasts 10% **

Ring sideroblasts ** ** * ** * *
Dyserythropoiesis ** * ** ** ** **
Dysgranulopoiesis

Dysmegakaryopoiesis *

Od
ds

 ra
tio

0

54

1

B

A
ASXL1

TET2
EZH2 **

DNMT3A **
SRSF2 * ** **
SF3B1 ** ** **
U2AF1 **
ZRSR2
JAK2 ** *

NRAS ** *
CBL *

KRAS *
PTPN11 **
RUNX1 ** * *
GATA2 *

CUX1
SETBP1 ** ** * **
STAG2 ** ** *

TP53 **
CSF3R * **

NK * ** *
 +8 ** ** **

 -7/del(7q) ** **
CK ** ** **

A
SX

L1

TE
T2

EZ
H

2

D
N

M
T3

A

SR
SF

2

SF
3B

1

U
2A

F1

ZR
SR

2

JA
K

2

N
R

A
S

C
B

L

K
R

A
S

PT
PN

11

R
U

N
X

1

G
A

TA
2

C
U

X
1

SE
TB

P1

ST
A

G
2

TP
53

C
SF

3R N
K

 +
8

 -
7/

d
el

(7
q

)

C
K

Mutually
excusive 

Co-mutated

Od
ds

 ra
tio

0

76

1
** q  0.001
  * q  0.01

Epigenetic regulators
Splicing factors

Signaling pathways
Transcription factors

Others

** q  0.001
  * q  0.01

Figure 2. Genotype-phenotype correlations. (A) Pairwise associations among recurrently mutated genes and cytogenetic abnormalities. Significant associations (adjusted
P-value q , .05) are colored coded by odds ratio, where red depicts mutually exclusive gene pairs and green depicts gene pairs that are comutated more than expected by
chance. Gene names are color coded according to their functional category. (B) Pairwise associations among recurrently mutated genes and hematological parameters.
Significant associations (adjusted P-value q , .05) are colored by odds ratio, where green represents genotype-phenotype–positive associations and reds depict negative
associations. NK, normal karyotype.

MOLECULAR CHARACTERIZATION OF MDS/MPN blood® 15 OCTOBER 2020 | VOLUME 136, NUMBER 16 1855

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/16/1851/1761234/bloodbld2019004229.pdf by guest on 18 M

ay 2024



SETBP1; CMML with TET2, SRSF2 or KRAS; and MDS/MPN-U
with TP53 andU2AF1. Accordingly, mutations in those and other
genes were associated with the presence or absence of specific
hematological features that are distinctive in those entities, such
as thrombocytosis, leukocytosis, or ring sideroblasts.

Clonal hierarchy of DTA mutations
Clonal and subclonal variant relationships within each sample
were inferred based on VAF values adjusted by copy number
and zygosity, according to karyotypes and CNV and LOH
analysis performed onWGS data (supplemental Table 4). Given
the limitations of this approach (supplemental Methods), this
analysis was used to identify molecular events that occur earlier
or later in MDS/MPN in a recurrent manner. Epigenetic reg-
ulators and splicing factors showed significantly higher VAFs
compared with transcription factors and signaling genes,
and therefore represent major driver events in MDS/MPN
(Figure 1A). SF3B1 was frequently detected as a primary hit (78
of 367; 21%) and, in many cases (44 of 367; 12%), it was seen as
a single founder event. Mutations in clonal hematopoiesis-
related genes (DNMT3A, TET2, and ASXL1 [DTA genes])
were present in the ancestral clone in 67% (246 of 367) of the
patients. Interestingly, a specific phenotype was observed in
patients with ancestral DNMT3A, depending on codominant
mutations, whereas more heterogeneous patterns of co-
dominant/secondary hits were observed for TET2 and ASXL1
(supplemental Figure 10).

Clonal architecture of MDS/MPN subtypes
Overall, mutational profile (Figure 1B; supplemental Table 3)
and clonal architecture were different across MDS/MPN sub-
types. Patients with CMML (n 5 119; Figure 3) showed a high
frequency of ancestral TET2mutations (85 of 119; 71%) that were
commonly associated with a combination of biallelic TET2 (55
of 119; 46%; P , .0001) and TET2-SRSF2 (54 of 119; 45%;
P , .0001). Mutations in SRSF2 (66 of 119; 55%) and ASXL1
(58 of 119; 49%) were commonly detected as founder lesions
(49 of 119; 41%). Secondary mutations in these 2 genes (14 of
119 for SRSF2 and 9 of 119 for ASXL1) were preceded by TET2
mutations, except in 1 case each. Mutations in RUNX1 (30 of 119;
25%) were detected either as ancestral or secondary hits, but
they never preceded TET2 or SRSF2, suggesting that, even in
cases of codominance, RUNX1 may have been acquired later.
Mutations in signaling genes such as CBL, K/NRAS, or JAK2
were commonly found in secondary clones. Regarding aCML
(n5 71; Figure 4), it was characterized by the presence of ASXL1
mutations (65 of 71; 92%; P , .0001), usually present in the
ancestral clone (56 of 71; 79%). Frequent codominant genes
included SRSF2, TET2, EZH2, SETBP1, and GATA2. aCML was
strongly associated with SETBP1 mutations (27 of 71; 38%;
P, .0001), whichwere equally codominant or secondary toASXL1.
No patients were found to have ancestral SETBP1 and secondary
ASXL1 mutations, suggesting that, in patients with this combi-
nation, ASXL1 may have been acquired earlier. Genes re-
currently detected in smaller secondary clones included CSF3R,
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Figure 3. Molecular landscape and clonal architecture of CMML. (A) Oncoplot showing recurrently mutated genes and ancestry in CMML: blue depicts ancestral mutations
(darker blue represents cases with 2 ancestral mutations in the same gene, mainly corresponding to biallelic TET2 mutations); yellow depicts secondary mutations and the
intensity of the shade indicates the size of the VAF, where darker yellow represents mutations with higher VAFs that have probably been acquired earlier; orange depicts cases
with 2 mutations in the same gene in which 1 mutation is ancestral and the other is secondary (mainly corresponding to biallelic TET2 mutations). (B) Frequency of ancestral/
secondary mutations per gene in all patients with CMML (n5 1191; left) and in patients who present with at least 2 different clones (n5 77; right). (C) The clonal architecture of
CMML. Black arrows depict most common events; gray arrows depict events that are recurrent but occur less frequently.

1856 blood® 15 OCTOBER 2020 | VOLUME 136, NUMBER 16 PALOMO et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/16/1851/1761234/bloodbld2019004229.pdf by guest on 18 M

ay 2024



EZH2, and signaling genes. In contrast, patients with MDS/MPN-
RS-T (n 5 71; Figure 5) displayed much less heterogeneity.
Overall, the most frequent mutations involved SF3B1 (97%),
JAK2 (37%), and the DTA genes TET2 (23%), DNMT3A (18%),
and ASXL1 (11%). Most SF3B1 mutations corresponded to an-
cestral hits (94%), whereas a few were secondary to DNMT3A
(6%). DNMT3A mutations were always founder mutations,
whereas TET2 and ASXL1 were detected in either ancestral or
secondary clones, but never preceded SF3B1. Secondary hits in
signaling genes included JAK2 (31%), SH2B3 (4%), and MPL
(4%). Of note, no mutations in the Ras/MAPK pathway (K/NRAS,
PTPN11, FLT3, and NF1) were detected in these patients. Fi-
nally, cases of MDS/MPN-U (n 5 106) displayed the most het-
erogeneous molecular profile with a higher frequency of TP53
mutations (13 of 106; 12%; P5 .0003), compared with the other
MDS/MPN subtypes.

Molecular signatures in MDS/MPN subtypes
Considering that some mutations were strongly associated with
hematological or clinical features that vary across MDS/MPN

subtypes and because some gene combinations were more
frequent in specificWHO subtypes, we hypothesized that specific
gene combinations could help to distinguish these entities and
therefore be helpful in differential diagnosis as a complement to
current diagnostic tools. To that end, we first performed principal
component analysis to identify the most representative variables
that collectively explained most of the variability in the original
dataset (supplemental Figure 11). Although cases ofMDS/MPN-U
were highly heterogeneous anddid not cluster together, the other
WHO subtypes were better differentiated. Considering the most
representative genes, we then performed pairwise associations
between the presence of specific gene combinations and MDS/
MPNWHO subtypes. By this method, we identified specific gene
combinations that associated with distinct MDS/MPN subtypes
and that, at the same time, were mutually exclusive with most of
the other WHO subtypes (Figure 6A). CMML was significantly
enriched in combinations with TET2, whereas combinations of
ASXL1, EZH2, and SETBP1 were highly represented in aCML.
Interestingly, some genes that were equally mutated in different
MDS/MPN subtypes were associated with a specific subtype
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according to their mutated partner. For example, SRSF2mutations
were associated with CMML in combination with TET2, but cor-
related with aCMLwhen comutated with SETBP1. Similarly, RUNX1
mutations significantly occurred in combination with SRSF2 in
CMML and with EZH2 in aCML. Finally, patients with MDS/MPN-
RS-T were characterized by SF3B1-JAK2 and SF3B1-DNMT3A
combinations.

Molecular subtypes of MDS/MPN-U
Patients with MDS/MPN-U (n 5 106) displayed highly hetero-
geneousmolecular features that clustered within the other WHO
subtypes (supplemental Figure 11A). Therefore, we used the
molecular signatures previously identified to further subclassify
patients with MDS/MPN-U (Figures 6A-B and 7). Classification
was performed based on the presence of specific gene com-
binations. Patients who harbored more than 1 possible combi-
nation (n 5 9; 8%) were classified according to the molecular
signature present in themain clone. According to their molecular
profile, 61% of MDS/MPN-U cases were categorized as “CMML-
like” (n5 18; 17%), “aCML-like” (n5 35; 33%), and “MDS/MPN-
RS-T–like” (n5 12; 11%; Figure 6B). In addition, 13% (n5 14) of
the patients were categorized as “TP53”, because they were
characterized by the presence of either mono- (n5 6) or biallelic
(n5 8) TP53mutations. The rest of the patients (“Other”; n5 27;
26%) did not show distinctive gene signatures but were enriched
in U2AF1 (n 5 9), JAK2 (n 5 9), and ASXL1 (n 5 8) mutations
(Figure 7). Molecular subtypes of MDS/MPN-U displayed he-
matological parameters in accordance with their phenotypic
group: CMML-like cases had higher monocyte count, aCML-like

cases had higher white blood cell (WBC) counts, andMDS/MPN-
RS-T–like cases had a higher percentage of ring sideroblasts. In
contrast, TP53 patients had more anemia and higher BM blast
percentage, whereas cases within the group of Other were
characterized by thrombocytosis, which correlated with the
presence of JAK2 mutations (supplemental Figure 12). Fur-
thermore, significant differences in OS were observed between
the 5 MDS/MPN-U molecular groups, which mimicked the
outcome of the corresponding MDS/MPN subtypes, with pa-
tients within TP53 group having the most unfavorable prognosis
(Figure 6C; supplemental Figure 13). The hematological pa-
rameters of MDS/MPN-U–like subgroups were also compared
with their counterpart MDS/MPN WHO subtype (supplemental
Figure 14). To test the utility of MDS/MPN-U molecular subtypes
in a validation cohort, we collected data from 50 additional
patients with MDS/MPN-U who had available clinical and mo-
lecular data obtained from targeted sequencing analyses
(supplemental Table 5). Overall, 50% (25 of 50) of the patients
were reclassified according to the presence of specific gene
combinations: 5 (10%) as CMML-like, 11 (22%) as aCML-like,
8 (16%) asMDS/MPN-RS-T–like, and 1 (2%) as TP53, whereas the
rest (n5 25; 50%) were categorized as Other. Similar to what we
observed in the original dataset, OS was significantly different
between those groups (supplemental Figure 15). The hemato-
logical parameters are depicted in supplemental Figure 16.

Survival analysis
Finally, we explored the impact of clinical, biological, and
genetic data on patients’ outcomes in cases with available
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follow-up data (280 of 367; 76%; Table 1). The results of the
univariate OS analysis in the MDS/MPN cohort and the 4 MDS/
MPN subtypes are summarized in supplemental Table 6. The
prognostic impact of demographic and hematological features
differed across the spectrum of MDS/MPN subtypes. The
presence of cytogenetic abnormalities was associated with an
inferior OS in all MDS/MPN subtypes, except aCML. This impact
was especially strong in MDS/MPN-RS-T, where abnormal kar-
yotypes are rare but, if detected, they confer a very poor out-
come. Regarding molecular features, the gene with the
strongest prognostic impact was ASXL1, which was consistently
associated with an unfavorable outcome across MDS/MPN
subtypes, except in aCML, probably because of the already
described aggressive course and the high percentage (92%) of
ASXL1 mutations in this entity. Moreover, aCML was the only
MDS/MPN subtype showing an improved outcome in the
presence of specific gene mutations (SRSF2 and SETBP1),
whereas mutations in RUNX1, NRAS, and CUX1 correlated with
shorter OS (supplemental Figure 17). In CMML, mutations in the
following genes were associated with a decreased OS: ASXL1
and RUNX1 mutations, both included in the molecular CMML-
specific prognostic scoring system,6 and less frequent mutations
in STAG2 and U2AF1 (supplemental Figure 18). In patients with

MDS/MPN-RS-T, characterized by the presence of a low number
of mutations, only ASXL1 and EZH2 genes were associated with
a negative prognostic impact (supplemental Figure 19). Simi-
larly, mutations in these 2 genes, as well as in STAG2, were
associated with a shorter OS in MDS/MPN-U (supplemental
Figure 20). Interestingly, the variable with the strongest prog-
nostic impact in MDS/MPN-U was the molecular classification
proposed in this study. Higher risk patients were the ones cat-
egorized either as aCML-like or TP53 (Figure 6C). Finally, we
assessed the prognostic impact of different scoring systems
previously reported in MDS/MPN (supplemental Table 6; sup-
plemental Figures 17, 18, and 19).

Discussion
MDSs/MPNs have historically been analyzed in larger MDS or
MPN cohorts, because they are rare and they present with
overlapping features from both groups. However, MDS/MPN
subtypes are known to be morphologically and clinically
distinct,27-30 though these differences have not been widely
explored at the molecular level. Analysis of oncogenic mutations
in large, well-characterized cohorts of patients are essential for
identifying specific genotype-phenotype associations. In this
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study, we used genome-wide sequencing techniques to char-
acterize the mutational landscape of 367 adults with various
types of MDS/MPN and establish genotype-phenotype asso-
ciations that can be relevant in clinical decision-making.

The main limitation of this study is the lack of paired germline
controls, which restricts the information that can be extracted
fromWGSdata. Therefore, we have focused on recurrent events,
which are more likely to be clinically relevant.

Our results showed that cases of MDS/MPN are characterized by
the presence of mutations in genes that are common across
the spectrum of myeloid neoplasms.5,13,31-33 However, the re-
currence of these mutations differs across MDS/MPN subtypes.
For example, CMML showed a high frequency of mutations in
TET2 (73%), whereas aCML was characterized by ASXL1 mu-
tations (92%) and MDS/MPN-RS-T by SF3B1 mutations (97%).

Our results also suggest that the acquisition of mutations in
MDS/MPN occurs similar to those reported in other myeloid
neoplasms, with frequent founder mutations in epigenetic
regulators (ASXL1, TET2, and DNMT3) and splicing factors
(SF3B1 and SRSF2) and secondary hits in genes involved in
signaling pathways (JAK2, N/KRAS, CBL, and ETNK1), though
these patterns differ among the MDS/MPN subtypes.21,34,35 We
also observed several associations between specific mutations
and distinct hematological and clinical features that vary across
MDS/MPN subtypes. These associations helped us to identify
specific gene combinations that correlated with distinct MDS/
MPNWHO subtypes and that weremutually exclusive frommost
of the other subtypes. We believe that these signatures can be
useful in the differential diagnosis of these syndromes, which
remains a challenge in many cases, and with other MDS or MPN
types, such as chronic neutrophilic leukemia.33,36,37 Furthermore,
these mutational signatures served as the basis for further
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stratifying MDS/MPN-U cases into 5 groups, according to their
molecular profile: CMML-like, aCML-like, MDS/MPN-RS-T-like,
TP53, and Other. Molecular subtypes of MDS/MPN-U displayed
hematological parameters and clinical outcomes in accordance
to their phenotypic group, suggesting that these may actually be
cases of CMML, aCML or MDS/MPN-RS-T that probably did not
fulfill all the WHO diagnostic criteria.

The prognostic impact of demographic and hematological
features in MDS/MPN has been described but differs depending
on the series. CMML is the most common MDS/MPN, and thus
has been studied in depth. Several prognostic scoring systems
have been historically proposed for CMML,38-42 though the in-
clusion of molecular markers, mainly ASXL1, has been dem-
onstrated to improve the statistical power of the previous
scores.2,6,9 In aCML, themost aggressive of MDS/MPN subtypes,
common risk factors across the reported series include age,
hemoglobin levels, and WBC count,4,27,30,43 all of which are in-
cluded in the scoring system proposed by Onida et al27 in 2002,
which also had a strong impact in our series of patients. The
addition of molecular markers is expected to improve the risk
stratification of patients, but no consistent markers have been
described so far.4 The clinical impact of the SETBP1mutations is
controversial,10,11 and other genes associated with decreased
OS in single studies include ETNK144 and TET2.4 In our study,
mutations in SRSF2 and SETBP1 were associated with an im-
proved OS, whereas EZH2 and RUNX1 were associated with
decreased OS. The clinical impact of these 2 genes had only
been investigated in 1 cohort including 25 aCML,4 and although
our series included 71 aCML, their clinical impact should be
validated in larger cohorts. In contrast, patients with MDS/MPN-
RS-T have a mild course and a homogeneous molecular profile,
characterized by normal karyotype and mutations in SF3B1 and
JAK2.12,28,45,46 Therefore, it makes sense that, in our series, the
presence of cytogenetic abnormalities or high-risk mutations
(eg, ASXL1 or EZH2), though rare, correlated with very poor
outcomes. Other risk factors have been proposed for this dis-
ease, but they are not reproducible among the reported
series.12,13,47,48 The only specific scoring system reported in
MDS/MPN-RS-T so far,13 which includes anemia, abnormal
karyotype, and mutations in ASXL1 and SETBP1, had a strong
impact in our series as well. Finally, patients with MDS/MPN-U
are the most heterogeneous both morphologically and clinically
and remain the most poorly characterized of all MDS/
MPN.5,29,30,49 Our study shows that this heterogeneity can be
explained at the molecular level, and that these genetic features
have great prognostic impact in these patients.

In summary, we performed mutational analyses in the largest
well-annotated MDS/MPN cohort to date with WGS data that
provided insights into the clonal architecture of these syn-
dromes. Our study also brings light to the molecular differences

between these diseases that can be of help in the diagnosis
workup of MDS/MPN. According to others and our results, we
recommend performing targeted sequencing analyses in all
patients with MDS/MPN-U and in any MDS/MPN patient with a
controversial diagnosis. Finally, we confirmed that specific gene
mutations may be useful in assessing the prognostic impact of
the different MDS/MPN, which can be relevant for clinical
decision-making including new targeted treatment options.
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