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KEY PO INT S

l STAT6 is a major
factor in MF/SS
tumorigenesis and
a prospective
therapeutic target
for intervention.

l STAT6 promotes
proliferation and
invasion of MF/SS
malignant
lymphocytes while
progressively
depressing the anti-
tumor immune
response.

The signal transducer and activator of transcription 6 (STAT6) is a critical up-stream me-
diator of interleukin-13 (IL-13) and IL-4 signaling and is constitutively activated in malignant
lymphocytes from Sezary syndrome (SS) and mycosis fungoides (MF), the most common
subtypes of cutaneous T-cell lymphomas. By combining genome-wide expression profiling
with pharmacological STAT6 inhibition, we have identified the genes regulated by STAT6 in
MF/SS tumors. We found that STAT6 regulates several common pathways in MF/SS ma-
lignant lymphocytes that are associated with control of cell-cycle progression and genomic
stability as well as production of Th2 cytokines. Using ex vivo skin explants from cutaneous
MF tumors as well as Sezary cells derived from the blood of SS patients, we demonstrated
that inhibition of STAT6 activation downregulates cytokine production and induces cell-
cycle arrest in MF/SS malignant lymphocytes, inhibiting their proliferation but not their
survival. Furthermore, we show that STAT6 promotes the protumoral M2-like phenotype
of tumor-associated macrophages in the tumor microenvironment of advanced stage MF
by upregulating the expression of genes associated with immunosuppression, chemotaxis,
and tumor matrix remodeling. Thus, we show STAT6 to be a major factor in the patho-

genesis and progression of MF/SS, promoting proliferation and invasion of the malignant lymphocytes while inducing a
progressive depression of the antitumor immune response. Together, our results provide new insights into disease
pathogenesis and offer new prospective targets for therapeutic intervention. (Blood. 2020;136(15):1748-1759)

Introduction
Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of
lymphoproliferative disorders derived from skin-homing effector
memory T cells.1 Mycosis fungoides (MF) and Sezary syndrome (SS)
are the most common subtypes.2 MF typically runs an indolent
clinical course, characterized by cutaneous patches and plaques
infiltrated by malignant T lymphocytes. However, in 20% of pa-
tients, the cancer may progress to a fatal advanced stage char-
acterized by tumors, erythroderma, and lymph nodal and visceral
involvement.3,4 SS is an aggressive and leukemic form of CTCL
characterized by erythroderma, lymphadenopathy, and circulating
malignant T cells.5 Diagnosis of MF/SS is difficult, particularly in the
early stages, because of the lack of specific markers for malignant
lymphocytes, delaying timely treatment. At the advanced stages,
treatment options are limited and prognoses are poor.

Aberrant cytokine expression in the MF/SS tumor microenvi-
ronment (TME) is a major factor in disease pathogenesis and
progression.6-9 Although reactive T helper (Th)1 and CD81

tumor-infiltrating lymphocytes are found in the TME of early-stage

MF/SS, disease progression is accompanied by infiltration with
benign and malignant T lymphocytes producing mostly Th2 cy-
tokines (interleukin-4 [IL-4], IL-5, and IL-13).6,7,10-12 In addition,
dermal infiltrates of inflammatory cells13-17 and nonimmune resident
cells7,9 contribute to the Th2-dominant microenvironment of ad-
vanced stageMF/SS, which promotes tumor growthwhile inducing
a progressive immunosuppression underlying the inability of pa-
tients to reject tumors and increasing susceptibility to infection.18

We have previously shown that MF/SS malignant lymphocytes
produce high levels of IL-13,19 which acts as an autocrine factor for
tumor cells19 and suppresses tumor cell immunosurveillance.11

Furthermore, our studies indicate that IL-13 synergizes with IL-4 in
inducing SS cell growth19 and implicate IL-13 signaling via the
signal transducer and activator of transcription 6 (STAT6),19 an
upstream mediator common to both IL-4 and IL-13 signaling.20

Significantly, we found high numbers of activated STAT61 cells in
the affected skin of MF patients, particularly in advanced stages,19

implicating STAT6 as a critical signaling mediator in MF/SS
lymphocytes.
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STAT6 is a member of the STAT family of transcription that plays
a key role in inflammatory immune responses to IL-4 and IL-
1321,22 as well as in tumor immunosurveillance and biology.23-29

Secondary to IL-4/IL-13 stimulation, STAT6 is activated by ty-
rosine phosphorylation, followed by dimerization and trans-
location into the nucleus, where it acts as a transcriptional
transactivator.20 Although the implication of STAT proteins such
as STAT3 and STAT5 in CTCL pathogenesis has been well
studied,30-33 little is known of the molecular mechanisms un-
derlying STAT6 regulation of MF/SS pathophysiology.

Combining STAT6 inhibition with genome-wide transcriptome
analysis, we identified the STAT6-regulated genes in advanced
stage MF/SS tumors. We found that STAT6 inhibition down-
regulates common molecular pathways in MF/SS malignant
lymphocytes which are associated with control of cell-cycle
progression, DNA repair, and Th2 cytokine production. Fur-
thermore, inhibition of STAT6 activation downregulates ex-
pression of several genes in M2-like tumor-associated
macrophages involved with immunosuppression and tumor in-
vasion. These findings provide new insights into MF/SS path-
ogenesis and offer novel targets for prospective intervention.

Materials and methods
Patient samples
Samples from 28 patients (supplemental Table 1A on the Blood
Web site) with confirmed diagnoses of advanced (stage IIB-
IVA)2,4,5 MF (n5 8; skin biopsies) and SS (n5 20; blood samples)
were obtained from the Comprehensive Skin Cancer Center,
Columbia University Medical Center, and from the University of
Pittsburgh Medical Center. Healthy control blood (HC, n 5 5)
and normal skin (NS, n 5 8) were obtained from the Central
Blood Bank of Pittsburgh and The Health Sciences Tissue Bank,
University of Pittsburgh (supplemental Table 1B). Research
protocols involving human subjects were approved by the in-
stitutional review boards of Columbia University and the Uni-
versity of Pittsburgh. All participants gave written informed
consent in accordance with the Declaration of Helsinki.

Cell isolation and culture
CD41 T cells were isolated from peripheral blood mononuclear
cell samples by negative selection using the EasySep Enrich-
ment Kit (StemCell Technologies), as previously reported.34 Cells
were isolated from skin using the Whole Dissociation Skin Kitit
(Miltenyi Biotec).35 All cultures were performed in complete
RPMI-1640 medium (Thermo Fisher Scientific) containing re-
combinant human IL-2 (10 ng/mL; PeproTech) and IL-7 (5 ng/mL,
PeproTech).19 Cells were activated by the Dynabeads CD3/
CD28 T-Cell Expander (bead-to-cell ratio: 1:1; Thermo Fisher Sci-
entific). STAT6 was inhibited by the STAT6-specific inhibitor
AS151749936 (100 nM; Axon Medchem).

RNA isolation, sequencing, and data analysis
RNA was isolated from samples obtained from SS (n 5 4), MF
(n 5 3), and HC (n 5 3) independent donors after 48 hours of
culture with/without AS1517499.37 RNA isolation, library prep-
aration, and RNA sequencing followed established procedures
detailed in supplemental Methods. Gene ontology analysis was
performed using the CLC Genomics Workbench (Qiagen
Bioinformatics).

Pathway analysis
Datasets obtained after CLC Genomics Workbench analysis
were evaluated by Ingenuity Pathway Analysis (Qiagen). Ca-
nonical pathway and upstream regulator analyses were per-
formed on differentially expressed genes (DEGs) as described in
Figure 1. In Ingenuity Pathway Analysis, the pathways were
compared using a value of P# .05.

Single-cell RNA sequencing
Experimental procedures, detailed in supplemental Methods,
followed established techniques35 using the Chromium Single
Cell 39 Library V2 Kit (10X Genomics). RNA-sequencing was
performed using the Illumina NextSeq500 sequencing system.
Cell–gene unique molecular identifier counting matrices gen-
erated were analyzed using Seurat.38,39

Intracellular staining of cytokines
Intracellular cytokines staining was performed as previously de-
scribed34 using the following anti-human antibodies: anti-IL-13, anti-
IL-4, anti-IL-5, or respective immunoglobulin G (IgG) isotype con-
trols (all from eBioscience). All samples were collected on an LSRII
Flow Cytometer (BD) and analyzed using FlowJo software (BD).

siRNA transfection
Freshly isolated Sezary CD41 T cells were transfected with 4mM
STAT6 ON-TARGETplus SmartPool small interfering RNA (siRNA)
or theON-TARGETplus Non-Targeting siRNA #1 (negative control)
(Thermo Fisher Scientific) using the Amaxa Human T Cell Nucle-
ofector kit (Lonza), as previously described.34 STAT6 depletion was
determined 5 days after nucleofection by western blot.

Western blotting
Standard methods for immunoblot analysis were used.34 Addi-
tional details are reported in supplemental Figure 1.

Cell proliferation and cell metabolic activity
Proliferation of SS cells was determined by carboxyfluorescein
diacetate succinimidyl ester assay (CFSE; Thermo Fisher Scien-
tific), according to the manufacturer’s directions. The cellular
division capacity was tested by flow cytometry and analyzed
by FlowJo. Cell metabolic activity was determined by 3-(4,5-
dimethylthiazol-2-yl)-2,5-dimethyltetrazolium bromide; 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)
assay (Vybrant MTT Cell Proliferation Kit, Thermo Fisher Scientific)
as previously reported.19 Optical density was measured at 570 nm
on a Wallac 1420 Victor2 Microplate Reader (PerkinElmer).

Apoptosis assay and cell viability
The Annexin V-FITC Apoptosis Detection Kit (Thermo Fisher
Scientific) was used to detect apoptosis of SS CD41 cells, fol-
lowing the manufacturer’s instructions. Samples were analyzed by
flow cytometry and FlowJo software.Quantification of cell viability
was performed using the Cellometer Auto 2000 Cell Viability
Counter (NexcelomBioscience), as indicated by themanufacturer.

Cell-cycle analysis
SS CD41 cells were cultured with/without AS1517499 for
48 hours and stained with Vybrant DyeCycle Ruby Stain Kit
(Thermo Fisher Scientific), as indicated. The DNA content was
measured by flow cytometry according to the manufacturer’s
instructions. Analysis of cell-cycle distribution was performed by
FlowJo software.
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Ex vivo skin explant assays
Organ culture of full-thickness skin explants was performed as
previously reported.40,41 Skin punch biopsies (2 3 3 mm) were
obtained from MF skin tumors and cultured in 24-well plates in

500 mL complete medium with/without inhibitor. Skin explants
were cultured in an air–liquid interface for 5 days, epidermal side
up. Cells were fed every 2 days with fresh medium or medium
replenished with inhibitor.
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Figure 1. The effect of STAT6 inhibition on transcription in
MF and SS tumor samples. (A) Volcano plots comparing
gene expression in AS1517499-treated for 48 hours vs un-
treated MF skin tumors (n 5 3) and blood SS cell samples
(n 5 4). FC, fold change. Blue dots and lines identify the
genes scored as differentially expressed (Log2FC . 60.58
and P , .05). (B) Venn diagram showing the relationship
between numbers of DEGs in MF or SS samples after
treatment with STAT6 inhibitor or medium alone. The total
number of DEGs in SS or MF is given in parenthesis. The
number of DEGs unique to SS orMF or shared between them
are shown within the diagram; the numbers of genes that
were upregulated (up) or downregulated (down) in MF/SS
after STAT6 inhibition are also indicated. (C) Heat maps
showing a selection of the top DEGs after STAT6 inhibition in
individual SS or MF tumor samples. (D) Pathway analysis by
Ingenuity of the most significant DEGs commonly up- or
downregulated in MF and SS samples after STAT6 inhibition.
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Multicolor immunohistochemistry
Multicolor staining was performed on formalin-fixed, paraffin-
embedded skin samples using the Tyramide Signal Amplifica-
tion Kit (Thermo Fisher Scientific) as previously described.35 The
antibodies used in these experiments are reported in supple-
mental Table 3. Confocal images were captured on an Olympus
FluoView 1000 Confocal Microscope using an oil immersion
1003 objective.

Results
STAT6 inhibition is associated with profound
transcriptional changes common to both MF/SS
subtypes
To identify the genes and signaling pathways that are regulated
by STAT6 in MF/SS, we investigated the transcriptional changes
associated with STAT6 inhibition in primary tumor cells from the
blood and skin of advanced stage MF/SS patients. STAT6 was
inhibited with AS1517499, a STAT6-specific inhibitor that pre-
vents IL-4-induced STAT6 activation in healthy donor CD41

T cells (supplemental Figure 1A) while not affecting expression
or activation of the upstream Janus kinase (JAK)1, 2, and 3
(supplemental Figure 1B). Pharmacological inhibition of STAT6
resulted in transcriptional changes in all MF/SS samples ex-
amined (Figures 1A-B; supplemental Figure 2), although the
number of total genes affected in MF samples (n 5 2707) was
lower compared with SS samples (n 5 5818) (Figure 1B). DEG
was extremely significant in MF/SS samples after STAT6 in-
hibition, particularly among those downregulated. Interestingly,
1496 STAT6-regulated genes were shared between MF/SS
samples. This unique gene expression signature included 428
upregulated and 1068 downregulated genes (Figure 1B). Heat
maps illustrating a selection of the top DEG from individual MF/
SS samples tested are shown in Figure 1C. Of note, we found
that genes of several cytokines (eg, IL-9, IL-5, IL-4, IL-13, IL-26,
OSM) and chemokines (eg, CCL15, CXCL10, CCL17, CCL3,
CXCL9) were among the most downregulated in MF/SS sam-
ples. Among upregulated DEGs, 2 were tumor suppressor in-
hibitors (DIRAS3 and ITIH5) found in all SS samples tested,
whereas others were specific to either MF or SS samples. To
search more broadly for signaling pathways commonly regu-
lated by STAT6 in MF/SS tumors, we performed Ingenuity
Pathway Analysis.42 Highly significant examples of shared
pathways are shown in Figure 1D. Interestingly, many down-
regulated pathways were associated with cell-cycle control and
progression as well as with DNA damage and repair. STAT6
inhibition also downregulated pathways associated with Th cell
differentiation. Upregulated pathways included those associ-
ated with inflammation, regulation of epithelial-mesenchymal
transition, and Wnt/b-catenin signaling. Altogether, we identi-
fied a signature of STAT6-regulated genes common to MF and
SS that is associated with distinct cancer-related signaling
pathways.

STAT6 inhibition impairs Th2 cytokine production
by malignant and reactive MF/SS lymphocytes
Pharmacological inhibition of STAT6 causes a dramatic down-
regulation of genes encoding for cytokines such as IL-4, IL-5, and
IL-13 (Figure 1C; supplemental Table 2A). We measured protein
expression by flow cytometry in peripheral blood SS cells cul-
tured with/without AS1517499 (Figure 2A-B). Contrary to the low

transcription level of IL-5, we found extremely high proportions
of IL-51 cells in all samples tested. The proportion of IL-41 cells
was low, in agreement with its transcription level, whereas the
number of IL-131 cells was high, consistent with the transcription
level of most samples tested (Figure 2A-B; supplemental Ta-
ble 2). At the molecular level, we detected a dramatic inhibition
of STAT6 activation (Figure 2C; supplemental Figure 1B) and a
downregulation of GATA-3 (Figure 2C), the master regulator of
Th2 cytokines37 and known target of STAT6.37 Similar results
were obtained when STAT6 was silenced by specific siRNAs
(Figure 2C; supplemental Figure 3A). By single-cell RNA se-
quencing (scRNAseq), we show that GATA-3 is highly upregu-
lated in advanced MF tumors compared with NS (Figure 2D;
supplemental Figure 4) and that CD31 lymphocytes and to a
lesser extent keratinocytes are the major cell types expressing
GATA-3 in MF tumors (Figure 2E). Although GATA-3 expression
by human epidermis keratinocytes has been previously
described,43,44 GATA-3 expression by MF CD31 cells likely re-
sults from benign and malignant lymphocytes. Indeed, using
thymus high-mobility group box (TOX) as a marker of CTCL
malignant lymphocytes,19,45,46 we show that GATA-3 is
expressed by both TOX2 and TOX1 cells, although at a higher
level in the latter (P 5 1.26 3 1026; Figure 2F). To evaluate the
role of STAT6 on GATA-3 and Th2 cytokine expression by CD31

lymphocytes in advanced MF tumors, we performed ex vivo skin
explant assays from advanced stage tumors cultured for 5 days,
with/without inhibitor, followed by multicolor immunofluores-
cence microscopy. Skin explants maintained intact anatomical
structure after culture (Figure 2G). Immunohistochemical stain-
ing for GATA-3 revealed numerous CD31GATA-31 cells as well
as TOX1GATA-31 cells in untreated tumor explants. Strikingly,
STAT6 inhibition completely abolished GATA-3 expression
while maintaining unaltered CD3 and TOX expression (Figure
2H-I; supplemental Figure 5). Similarly, IL-4, IL-5, and IL-13 were
highly expressed by CD31 lymphocytes and CD31TOX1 ma-
lignant cells in all the untreated tumor explants tested, whereas
STAT6 inhibition completely abolished their expression (Figure
2H-I; supplemental Figure 5). Explants from NS were negative
for the expression of GATA-3, Th2 cytokines and TOX. Thus, as
an inducer of GATA-3 expression, STAT6 is the main regulator of
Th2 cytokines production by MF/SS reactive and malignant
lymphocytes.

STAT6 regulates cell-cycle progression in malignant
lymphocytes from MF/SS tumors
Several molecular pathways associated with cell-cycle pro-
gression and genomic stability are downregulated inMF/SS after
STAT6 inhibition (Figure 1D). Heat maps in Figures 3A-C depict
some representative examples. No similar changes could be
detected in HC samples, suggesting that these pathways are
specifically activated by STAT6 in MF/SS. In the examples
shown, downregulated transcripts included several molecules
associated with cell-cycle control of chromosomal replication
(Figure 3A), including adenosine triphosphatases (ORC1, ORC6),
helicases (CDC6, CDC7, CDC45, mini chromosome region
maintenance 2 [MCM2], MCM3 MCM4 MCM5 MCM6, MCM7,
MCM8), cyclin-dependent kinases (CDK1, CDK2, CDK4, CDK6),
DNA polymerases (POLA1, POLA2, POLD1, POLE, PRIM1,
PRIM2), TOP2A, and PCNA. Additional pathways affected by
STAT6 inhibition in MF/SS tumor samples included cell-cycle
checkpoint control of CHK proteins and of cyclins (Figure 3B-C).
In thesepathways, downregulated transcripts included regulators of
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Figure 3. STAT6 inhibition induces cell-cycle arrest inMF
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downregulated pathways after STAT6 inhibition for
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cycle phase distribution shown as a percentage. Data are
represented as mean 6 standard deviation of 5 in-
dependent SS samples (P , .001). (F) Single-cell tran-
scriptomes of 3672 CD31 cells (256 cells from normal [n5 4]
and 3416 cells fromMF [n5 3] skin samples, color coded by
subject) clustered using Seurat38 (supplemental Figure 4).
(G) Transcriptomes of TOX1 T lymphocytes from patient
tumors and healthy control skin samples. (H) Dot-plot
showing the proportion of cells and the scaled average
gene expression of the STAT-6-regulated genes identified
in panels A-C in MF and healthy skin samples determined
by scRNAseq. (I) Double-color immunofluorescence mi-
croscopy of ex vivo skin explants cultured as in Figure 2D-E
and stained for PCNA/TOX, CDK2/TOX, and CCNE2/TOX,
as indicated, at 31000. 49,6-diamidino-2-phenylindole stains
nuclei. Representative examples are shown.
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DNA polymerase (RFC1, RFC2, RFC3), PCNA, cyclin-dependent
kinases (CDC25A, CDC25C, CDK1, CDK2), and cyclins (CCND2,
CCNE2, CCNB2, CCNA2). To functionally validate these findings,
we performed cell-cycle analysis in SS CD41 T cells. Our results
(Figure 3D-E) show a significant arrest of cell-cycle progression after
STAT6 inhibition as revealed by the increased proportion of cells in
G1 phase vs those in G2 phase compared with untreated cells.
Single-cell RNAseq demonstrated that the STAT6-regulated genes
of Figure 3A-C are overexpressed by TOX1malignant lymphocytes
in advanced MF tumors (Figure 3F-H). We focused on the ex-
pression of PCNA, CDK2, and CCNE2 because these genes were
highly downregulated after STAT6 inhibition in several cell-cycle
regulatory pathways (Figure 3A-C). Multicolor immunofluorescence
microscopy on ex vivo skin explants from advanced MF tumors
reveals dramatic downregulation of PCNA, CDK2, and CCNE2
protein expression in the explants treated with the STAT6 inhibitor,
whereas TOX expression was unaffected (Figures 3I; supplemental
Figure 6). Conversely, explants fromNS are negative for expression
of PCNA, CDK2, CCNE2, and TOX. Together, these data indicate
that STAT6 regulates cell-cycle progression in MF/SS malignant
lymphocytes.

STAT6 inhibition decreases proliferation of MF/SS
malignant lymphocytes
In parallel to the cell-cycle analysis, we investigated the effect of
STAT6 inhibition on MF/SS malignant lymphocyte proliferation
and survival. We purifiedCD41 cells from the peripheral blood of
patients with SS and cultured them in vitro with and without
AS1517499 for 5 days. We observed that treated cell cultures
exhibited consistently decreased frequencies of proliferating
cell clusters compared with untreated cultures (Figure 4A). Cell
proliferation was assessed by CFSE analysis and MTT assays.
Both assays demonstrated a significant decrease in Sezary cell
proliferation after STAT6 inhibition (Figure 4B-C). Similar results
were obtained when STAT6 was silenced by siRNAs (supple-
mental Figure 3B). However, we established that AS1517499
treatment did not induce apoptosis in treated cells, as measured
by Annexin V analysis (Figure 4D) and did not affect viability of SS
or HC CD41 T cells (Figure 4E), indicating that the inhibitor did
not exert any direct cellular toxicity. Ex vivo skin explant assays of
MF skin tumors exhibited a decreased proliferation after STAT6
inhibition as indicated by a lower number of Ki671 cells, a marker
of proliferation.47 Dual-staining immunofluorescence micros-
copy further shows colocalization between Ki67 and TOX, im-
plying inhibition of proliferation in malignant lymphocytes from
MF skin tumors (Figure 4F). Thus, STAT6 inhibition affects
proliferation but not basal survival of malignant lymphocytes
from MF/SS.

STAT6 regulates gene expression of
tumor-associated macrophages in the TME of
advanced stage MF
Because STAT6 is a critical signaling mediator of tumor-
associated macrophages (TAMs),48,49 we analyzed the effect of
STAT6 inhibition on the transcriptome of TAMs from MF skin
tumors. ScRNAseq of advanced stage MF samples revealed a
high degree of macrophage heterogeneity across patient
samples and minimal overlap with the transcriptional profile of
macrophages from NS (Figure 5A). Comparison of the macro-
phage transcriptomes from the tumor and NS samples identified
9 clusters, each exhibiting distinct gene expressions (Figures 5B;
supplemental Figure 7A-B). Some macrophage clusters were

unique to individual tumors, such as cluster #6 (MF6), #2 (MF8),
and #7 (MF12), or controls (cluster #5, HC skin), while clusters #1,
3, 4, and 8 included a mix of macrophages derived from all
tumors or tumors and NS samples (cluster #0). Ingenuity Pathway
Analysis revealed significant enrichment on pathways such as
immune-cell trafficking, cell communication, cytokine signaling,
and antigen presentation in tumor-specific macrophage subsets
(data not shown). Examples of highly significant DEGs in most of
tumor-specific clusters are highlighted by heat map (Figure 5C)
and include genes that were previously identified in pro-tumoral
M2-like TAMs, including CD163, CD81, MRC1, transforming
growth factor b (TGFb), CCL18, CCL17, CTSS, and CTSC.37,50-54

The proportion of cells and the scaled average expression of
these genes by all tumors and controls show strong and specific
expression by tumor macrophages (Figure 5D). Significantly, we
observed that STAT-6 inhibition downregulated expression of
most of the selected genes (eg, CD274, TGFb, MRC1, C1QB,
CCL8, CCL17, CTSC, CXCL10, TIMD4) in MF samples
(Figure 5E). We next validated these findings by 3-color im-
munofluorescence microscopy on MF ex vivo explants. We
identified TAMs by expression of CD163 and we determined
coexpression with MRC1, CCL17, and CTSC, which are among
the top upregulated genes in MF tumor macrophages
(Figure 5E). Strikingly, Figure 5F-G shows a strong costain for
CD163, MRC1, and CCL17 or CTSC in the untreated patient
explants, and shows that STAT-6 inhibition dramatically down-
regulates expression of CCL17, CTSC andMRC1 but not CD163,
in agreement with the gene expression data. Conversely, in NS
explants we found only scant CD1631 cells and little to no
expression of MRC1, CCL17, and CTSC (supplemental Figure 8).
Thus, our findings indicate that STAT6 regulates gene expres-
sion of TAMs in the TME of MF patients, favoring immuno-
suppression and tumor invasion.

Discussion
Despite the finding that IL-4/IL-13 signaling via STAT6 plays a
critical role in the pathogenesis and progression of MF/SS, the
underlying molecular mechanism is still not defined. Combining
genome-wide transcriptional profiling with STAT6 inhibition we
identified the STAT6-regulated genes in advanced MF/SS tu-
mors. In malignant lymphocytes, we found that STAT6 regulates
the expression of genes associated with control of cell-cycle
progression, genomic stability, and proliferation. Furthermore,
we showed that STAT6 enhances expression of Th2 cytokines in
malignant and reactive T cells by upregulating the expression of
GATA-3. Finally, we demonstrated that STAT6 contributes to the
pro-tumoral M2-like phenotype of TAM in the TME of advanced
stage MF by upregulating the expression of genes associated
with immunosuppression, chemotaxis, and tumor matrix remod-
eling. Thus, STAT6 contributes to MF/SS malignancy by several
mechanisms including enhancing proliferation of tumor lym-
phocytes and promoting an immunosuppressive and protumoral
microenvironment that favors tumor growth and invasion.

Constitutive STAT6 activation has been observed in several
human malignancies.23 Likewise, we found constitutively active
STAT6 in MF/SS tumor lymphocytes, particularly in patients with
advanced stage tumors.19 In most cancers, STAT6 activation
follows IL-4/IL-13 signaling25; however, mutations of STAT6 have
also been reported but their significance in disease is unclear.28

In B-cell lymphomas, STAT6 is constitutionally activated by JAK2
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amplification,55 whereas in Hodgkin lymphoma, its activation
depends on the high frequency of genetic lesions in the sup-
pressors of cytokine signaling‐1.56 The predominant mechanism
behind persistent STAT6 activation in MF/SS remains to be ex-
plored; however, currently available data support the involvement
of several potential mechanisms, including activation by increased
levels of IL-4 and IL-13 in the TME,6,7 development of an autocrine
IL-13 signaling loop,19 as well as cytokine-independent overactivity
of JAK1 and JAK3 tyrosine kinases resulting from activating
mutation(s).57,58 In preliminary studies, we found that tofacitinib and
ruxolitinib (JAK3 and JAK1/2 inhibitors, respectively) decrease
proliferation of SS CD41 T cells in a dose-dependent manner,
whereas ruxolitinib but not tofacitinib also downregulates GATA-3
expression (supplemental Figure 9). Interestingly, recent phase 2
clinical trials have shown that the dual SYK/JAK inhibitor, cerdu-
latinib,59 and ruxolitinib60 demonstrate good tolerability and clinical
response in relapsed/refractory CTCL, suggesting that both IL-4
and IL-13 signaling pathways are involved in pathogenesis and
make promising therapeutic targets in CTCL.

STAT6 activation contributes to growth, survival, and metastasis
of cancer cells in a number of human malignancies.23 Similarly,
we demonstrated here that STAT6 promotes proliferation of MF/
SS malignant lymphocytes. Mechanistically, we showed that

STAT6 regulates expression of a number of cell-cycle regulatory
genes during the G1-to-S phase transition, including those in-
volved with cell division and maintenance of genome stability.
Transition fromG1 to S phase is a critical step during cell division,
and its deregulation is a hallmark of cancer.61 Transcriptional
changes associated with cell-cycle progression are regulated by
specific CDKs and their activating cyclin subunits.62 According to
the classical model of cell-cycle control, CCND2 and CDK4 or
CDK6 regulate events in early G1 phase, CCNE2–CDK2 triggers
S phase, whereas CCNA2–CDK2 and CCNA2–CDK1 are re-
sponsible for the completion of S phase. Significantly, we found
that STAT6 induces the expression of several CDKs (CDK2,
CDK1, CDK4, CDK6) and cyclins (CCNE2, CCND2, CCNA2) in
MF/SS malignant lymphocytes, thus committing MF/SS tumor
cells to cell division. G1-S CDKs and associated cyclins promote
cell-cycle progression mostly by regulating the function of the
E2F family of transcription factors, which can act as activators or
repressors of transcription.63 Our data indicate that STAT6 in-
hibition in MF/SS malignant lymphocytes not only down-
regulates expression of several members of the E2F family (ie,
E2F1, E2F7, E2F8), but also abolishes expression of several E2F-
regulated genes encoding proteins necessary for initiation of S
phase and DNA replication, such as CDC25A, the MCM2-8 family
members, CCNA2, and CCNE2. Previous studies reported that
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Figure 5. STAT6 regulates gene expression of TAMs in the TME of advanced stage MF. (A) Transcriptomes of macrophages by scRNAseq from individual MF skin tumors
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STAT-6 itself can specifically recognize a subset of E2F target sites
and can regulate cell-cycle gene expression by binding to these
DNA elements.64 STAT6 also upregulates expression of other
genes involved with DNA replication, including PCNA and
components of the DNA polymerase a and d complexes in
malignant MF/SS lymphocytes. Cells rely on DNA structure
checkpoints to properly replicate and avoid tumorigenesis by
arresting the cell cycle in response to DNAdamage or incomplete
replication. Our studies indicate that STAT6 regulates several
signaling processes associated with maintenance of genome
stability in MF/SS, including ATM and CHK pathways as well as
responses of BRCA1 in DNA damage and mismatch repair
processes. However, although we have established that STAT6
plays a crucial role in regulating cell-cycle progression, other
factors such as mutations and epigenetic or posttranslational
mechanisms may also contribute to the final outcome of this
process.

By upregulating GATA-3 expression, STAT6 induces Th2 cyto-
kine expression by malignant and reactive lymphocytes, pro-
moting the Th2-dominant TME of advanced stage MF/SS.
Excess IL-4 and IL-13 in MF local microenvironment induces M2
polarization of TAMs,9,53,65,66 and we found by scRNAseq that
TAMs in advanced stage MF samples express several genes
previously identified in pro-tumoral CD1631 M2-like TAMs.
Among these genes we found a number of chemokines, some of
which were previously associated with CTCL.9,13,17,54 Signifi-
cantly, we established that STAT6 controlled the expression of
CCL17, CCL13, and CCL8. Although all 3 chemokines primarily
recruit Th2-associated inflammatory cells, they also promote the
recruitment of immunosuppressive cells at the tumor site. CCR4,
the CCL17 receptor, is selectively expressed on Tregs, Th2 cells,
and MF/SS malignant lymphocytes; thus, CCR4-CCL17 inter-
actions are critical for immunosuppression and tumor cell traf-
ficking to MF skin.67 Of note, a recent phase 1/2 clinical trial with
mogamulizumab, a humanized anti-CCR4 antibody, showed
favorable results in CTCL patients.68 Cancer cells were shown
to respond to TAM-synthesized CCL8 by producing CSF1,
the major survival and proliferation factor for macrophages,
thus promoting an autostimulatory loop.69 In murine models,
CCL8 induces tumor cell invasion, motility,70 and metastasis
formation.71 Furthermore, CCL8 and CCL13 binding to CCR2,
CCR3, and CCR5 recruit Tregs, Th2, monocytes, and eosinophils
at the tumor site.72-75 Significantly, expression of CCR3 or CCR4
is associated with a poor prognosis in MF/SS,76 and CCR3 is
often expressed by CD301 large cell transformed tumors in
advanced MF/SS.77 STAT6 regulates the immunosuppressive
function of MF TAMs by additional mechanisms, including in-
ducing expression of TGF-b, a major suppressor of systemic and
local immune responses,78 as well as by stimulating the ex-
pression of immune checkpoint receptor ligands such as PD-L1
(also reported as CD274).79 TAMs are also a major source of
proteolytic enzymes that degrade the extracellular matrix, fa-
voring the release of matrix-bound growth factors and pro-
moting tumor cell motility and invasion.80 The gene expression
profile of TAMs from MF tumors reveals upregulation of genes
coding for different matrix proteins (data not shown) as well as
several proteolytic enzymes such as cathepsins A, B, C, and

S. Previous studies have shown that cathepsin expression at the
tumor site is dependent on IL-4 and M2 polarization.81-83 Like-
wise, we found that STAT6 inhibition abrogates cathepsin ex-
pression by TAMs in MF tumors. Additionally, we found that
STAT6 induces the expression of several C1q components, in-
cluding C1qA, B, and C chains by TAMs. Deposits of C1q are
found in the stroma and vascular endothelium of several human
cancers.84 Significantly, a recent study showed that C1q acts in
the tumor microenvironment as a cancer-promoting factor in-
dependently of complement activation by favoring adhesion,
migration, and proliferation of cancer cells as well as angio-
genesis and metastasis.84

We conclude that STAT6 is a major factor in MF/SS malignancy.
Targeting STAT6 may represent a new approach to MF/SS
treatment, which would potentially accomplish the dual goals
of inhibiting proliferation and the invasive potential of
malignant lymphocytes, while also enhancing patients’ anti-
tumor immunity.
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The importance of microenvironment: the role
of CCL8 in metastasis formation of melanoma.
Oncotarget. 2015;6(30):29111-29128.

72. de Oliveira C, Gasparoto T, Pinheiro C, et al.
CCR5-dependent homing of T regulatory cells
to the tumor microenvironment contributes to

skin squamous cell carcinoma development.
Mol Cancer Ther. 2017;16(12):2871-2880.

73. Loyher P, Rochefort J, Baudesson deChanville
C, et al. CCR2 influences T regulatory cell
migration to tumors and serves as a biomarker
of cyclophosphamide sensitivity. Cancer Res.
2016;76(22):6483-6494.

74. Halvorsen E, Hamilton M, Young A, et al.
Maraviroc decreases CCL8-mediated migra-
tion of CCR5(1) regulatory T cells and reduces
metastatic tumor growth in the lungs.
OncoImmunology. 2016;5(6):e1150398.

75. Mondini M, Loyher P, Hamon P, et al. CCR2-
dependent recruitment of Tregs and mono-
cytes following radiotherapy is associated with
TNFa-mediated resistance. Cancer Immunol
Res. 2019;7(3):376-387.

76. Shono Y, Suga H, Kamijo H, et al. Expression
of CCR3 and CCR4 suggests a poor prognosis
in mycosis fungoides and Sézary syndrome.
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