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KEY PO INT S

l Exogenous cell-based
antigen overcomes
endogenous low-
antigen conditions to
boost virus-specific
CAR T cells in vivo.

l CAR T cells can control
viral replication after
ART withdrawal and
can be reactivated by
anti–PD-1
administration.

Chimeric antigen receptor (CAR) T cells targeting CD191 hematologic malignancies have
rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell
studies for infectious diseases such as HIV-1 have been less convincing. These challenges
are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed
patients in contrast to those with hematologic malignancies. Using our well-established
nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to
overcome these limitations and challenges. We first optimized CAR T-cell production to
maintain central memory subsets, consistent with current clinical paradigms. We hy-
pothesized that additional exogenous antigen might be required in an ART-suppressed
setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-
infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells,
followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting
led to significant and unprecedented expansion of virus-specific CAR1 T cells in vivo; after

ART treatment interruption, viral rebound was significantly delayed compared with controls (P 5 .014). In 2 animals
with declining CAR T cells, rhesusized anti–programmed cell death protein 1 (PD-1) antibody was administered to
reverse PD-1–dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR
T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-
associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge,
this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of
viral recrudescence. (Blood. 2020;136(15):1722-1734)

Introduction
The most successful chimeric antigen receptor (CAR) T cells
described to date are directed toward antigen-abundant targets
such as CD191 leukemia cells.1-3 In contrast, anti-HIV CAR T cells
are limited by insufficient viral antigen during suppressive anti-
retroviral therapy (ART), leading to inefficient activation, expan-
sion, and function.4-6 CAR T cells were originally characterized as a
potential therapeutic for HIV cure in human patients nearly 3
decades ago.4,5 Although these trials showed the long-term safety
and persistence of infused CAR T cells, no substantive expansion
or reduction in virologic status was observed.6

Recent advances in CAR T cells for the treatment of hematologic
malignancies (eg, as directed against the B-cell antigen CD19) have
aided in the optimization of CAR T-cell design, manufacturing, and

requirements for expansion and function.2,3 Notably, CD19 CAR
T-cell expansion and effector function are driven by an abundance
of CD191 tumor cells and high levels of surface-expressed antigen
per cell, numbering between thousands and tens of thousands of
molecules per cell depending on the leukemia.7 In stark contrast,
HIV-infected cells in ART-suppressed patients are exceedingly
rare, express significantly less viral antigen, and may reside pre-
dominantly in secondary lymphoid tissues, the gut, and the central
nervous system.8-11 Similar barriers likely contribute to the limited
success of novel CAR T-cell products directed against other
malignancies, namely solid tumors.12,13

We have developed a model of ART-suppressed HIV-1 infection
in rhesus macaques that is ideally suited to overcome limitations
associated with low-antigen targets for CAR T-cell therapies. We
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combined a CD4-based CAR (CD4CAR) with CCR5 editing to
protect CD4CAR T cells against simian/HIV (SHIV) infection.14-16

Our primary goal in this study was to test a combined antigen-
boosting plus immune checkpoint blockade strategy designed
to overcome barriers that limit CAR T cells specific for antigen-
sparse targets. A secondary endpoint was to assess the efficacy
of antigen-boosted virus-specific CAR T cells in infected animals
following ART treatment interruption (ATI).

Methods
Ethics statement
This study was conducted in strict accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory
Animals of theNational Institutes of Health ("The Guide") and was
approved by the Institutional Animal Care and Use Committees
of the Fred Hutchinson Cancer Research Center/University of
Washington (protocol no. 3235–06). As described previously,17 all
animals were housed at and included in standard monitoring
procedures prescribed by the Washington National Primate Re-
search Center (WaNPRC), including at least twice-daily observa-
tion by animal technicians for basic husbandry parameters and
daily observation by a veterinary technician and/or veterinarian.
Animals were housed in cages approved by The Guide in ac-
cordancewith AnimalWelfare Act regulations, fed twice daily, and
were fasted for up to 14 hours prior to sedation. Environmental
enrichment includedgrouping in compound, large activity, or run-
through connected cages, perches, toys, food treats, and foraging
activities. If a clinical abnormality was noted, clinical veterinary
staff were notified per standard WaNPRC procedures. Admission
as a clinical case was solely at the discretion of clinical veterinary
staff. Animals were sedated by administration of ketamine HCl
and/or tiletamine/zolazepam (Telazol, Zoetis Inc., Parsippany-Troy
Hills, NJ) and supportive agents before all procedures. After
sedation, animals were monitored according to WaNPRC stan-
dard protocols. For minor procedures, the presence/absence of
deep pain was tested by the toe-pinch reflex. The absence of
response (leg flexion) to this test indicates adequate anesthesia for
a given procedure. Similar parameters were used in cases of
general anesthesia, including loss of palpebral reflexes (eye blink).
Analgesics were provided as prescribed by clinical veterinary staff
for at least 48 hours after procedures and were extended at the
discretion of the clinical veterinarian based on clinical signs.

Study design and blood and tissue sampling
Animals were infected with SHIV-1157ipd3N4 via the intrave-
nous route as previously described.18 ART was initiated 13 to
14 weeks postinfection and consisted of tenofovir disoproxil
fumarate (TDF, 5.1mg/kg), emtricitabine (FTC, 40mg/kg), kindly
provided by Gilead Sciences (Foster City, CA), and dolutegravir
(DTG, 2.5 mg/kg), kindly provided by Viiv Healthcare (Research
Triangle, NC).19 Following 59 to 70 weeks of suppression, ani-
mals received CD4CAR T cells, followed 19 days later by irra-
diated K562-Env cells.16 Twelve days after infusion of K562-Env,
animals began ATI. ART was not restarted following ATI. Data
presented here encompass 6months of post-ATI follow-up; each
animal continues to bemonitored at the time of publication of this
article. Throughout the study, peripheral blood was collected by
venipuncture to monitor, for example, plasma viral loads.20

Tissues, including biopsy samples from the colon (“lower GI”),
duodenum/jejunum (“upper GI”), and spleen, along with whole
axillary lymph nodes and bronchoalveolar lavage, were collected

at 2 and 4 weeks after infusion of CAR T cells. Lower and upper
GI samples were processed as previously described.18,21 Spleen
biopsy pinches were mechanically dissociated by forcing through
a 70 mm filter, followed by red blood cell lysis in hemolytic buffer.
Whole lymph nodes were minced and similarly filtered to obtain
single-cell suspensions, which were counted and prepared for
flow cytometry assays.

CAR T-cell manufacturing and infusion
Autologous T cells from each animal were collected and cryo-
preserved before SHIV infection (SHIV–) and after infection and
ART suppression (SHIV1); SHIV– and SHIV1 cells were cultured
separately throughout the CD4CAR T-cell manufacturing pro-
cess. To isolate nonhuman primate (NHP) T cells, total peripheral
bloodmononuclear cells (PBMCs)were serially sortedbybead-based
CD4-positive selection, followed by bead-based CD8-negative
selection (StemCell Technologies, Vancouver, BC, Canada). Iso-
latedCD41 and CD81 cells were immediately electroporated with
NHP CCR5-targeted CRISPR-Cas9 ribonucleoprotein complexes,
consisting of 180 pmol TrueCut Cas9 Protein v2 and 540 pmol of
guide RNA (Synthego, Redwood City, CA22) per 2 3 107 cells.
Ribonucleoproteins were incubated at room temperature for
10 minutes before mixing with cells. Cells underwent electro-
poration using the Lonza 4D platform, P3 Primary Cell 4D Kit L
(Lonza, Basel, Switzerland), and electroporation program CY100.
Cells were cultured in X-VIVO-15 media including 50 mM
b-mercaptoethanol, 10% fetal bovine serum (FBS) (Gemini Bio,
West Sacramento, CA), 1%penicillin/streptomycin (Thermo Fisher
Scientific,Waltham,MA), 1%GlutaMAX (ThermoFisher Scientific),
and 5 ng/mL each of human interleukin-7 (IL-7) and IL-15
(PeproTech, Rocky Hill, NJ). All FBS lots were prevalidated to
support robust expansion of NHP T cells in culture. NHP T cells
were stimulated with an artificial antigen-presenting cell (aAPC)
line engineered to express CD86 and an anti-CD3 single-chain
variable fragment. aAPC media consisted of RPMI 1640 (Thermo
Fisher Scientific) plus 10% FBS, 1% penicillin/streptomycin, and
1%GlutaMAX. Expanded aAPC cultures were irradiated at a dose
of 100 Gy, cryopreserved, and thawed and mixed with NHP T
cells at a ratio of 1 aAPC:2 T cells (using aAPC counts taken be-
fore irradiation and cryopreservation). Stimulated CD41 and
CD81 T-cell cultures were plated separately at a concentration
of 2 3 106/mL and incubated at 37°C, 5% carbon dioxide. Three
days later, lentiviral vector transductions were performed by
adding vectors to cells at amultiplicity of infection of 10; cells were
transduced in culture media plus protamine sulfate at a con-
centration of 4 3 106/mL. Further information on our CD4CAR
lentiviral vector can be found in the supplemental Methods
(available on the Blood Web site). Following ;4 hours of trans-
duction at 37°C with rotation, cells were re-plated and incubated
overnight at 37°C, 5% carbon dioxide. The next day, CD41 and
CD81 cells were counted, pooled at a ratio of ;1:1, seeded into
either G-Rex10 or G-Rex100 expansion flasks (Wilson Wolf, St.
Paul, MN), and then expanded for 8 days, replenishing media
once on day 4. Before infusion, a small fraction of the CD4CAR
T-cell product was reserved for flow cytometry– and polymerase
chain reaction–based assays. For manufacturing comparison
studies (Figures 1 and 2), cells were prepared identically to the
infusion products, aside from the use of CD31 selection (Stemcell
Technologies), anti–CD3/CD28 magnetic beads for stimulation
(Thermo Fisher Scientific), and IL-2 cytokine supplementation
(PeproTech).
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K562-Env boost
The K562-Env cell line used to boost NHP CD4CAR T cells in this
study has been previously described.16 Cells were expanded in
aAPC media, irradiated, and cryopreserved. Stable Env expres-
sion at the cell surface was confirmed by flow cytometry (sup-
plemental Figure 3) using anti-HIV broadly neutralizing antibodies
VRC01 and PGT126 (National Institutes of Health AIDS Reagent
Program) and a polyclonal anti-immunoglobulin G phycoerythrin
secondary antibody (BioLegend, San Diego, CA).23,24 For intra-
venous dosing in CD4CAR-treated animals, irradiated aliquots
were thawed and administered at 2.5 3 107 cells per kilogram
body weight, using cell counts acquired before irradiation and
cryopreservation.

Rhesusized anti–programmed cell death protein 1
administration
Rhesusized anti–programmed cell death protein 1 (PD-1) (nivolumab)
was acquired from the National Institutes of Health Nonhuman
Primate Reagents Resource (MassBiologics, Mattapan, MA). The
rhesus recombinant antibody (rhesus/human chimeric) is com-
posed of silenced rhesus IgG4k constant regions and variable
regions from the anti-human PD-1 nivolumab, and was adminis-
tered intravenously at 3 mg/kg.

Statistical analyses
For comparisons of statistical significance betweenmanufacturing
schemes, an unpaired Student t test was applied between groups

(n 5 3), using the Holm-Šı́dák method, with a 5 0.05. Each row
was analyzed individually, without assuming a consistent standard
deviation. For comparisons in time to viral rebound following ATI
for untreated (n5 8) and CD4CAR T cell–treated (n5 4) animals,
both two-sided Mann-Whitney (Wilcoxon rank sum test) and
Grehan-Breslow-Wilcoxon tests were applied (GraphPad Prism 7,
GraphPad Software, La Jolla, CA). Measures of central tendency
used mean values.

Results
Optimized manufacturing conditions for
low-antigen CAR T cells
In an extensive set of preliminary experiments, we preparedNHP
CAR T cells that were specific for HIV-1 Env and evaluated their
function in SHIV-1157ipd3N4–infected macaques. We used a
manufacturing scheme previously validated in the NHP model,
which closely resembles the approach used for US Food and Drug
Administration–approved, cancer-specific CAR T-cell products.25

Key aspects included isolation of total CD31 T cells, bead-based
T-cell stimulation, and culture of cells in media containing IL-2. We
did not observe function or expansion of these cells in vivo (C.W.P.
and H.-P.K., manuscript in preparation). Rather, these cells per-
sisted at low levels and had little or no impact on virologic pa-
rameters, similar to historical clinical studies with HIV-specific CAR
T cells.4-6 To test whether virus-specific CD4CAR T cells require
distinct culture conditions (eg, tomaintain function in a low-antigen
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Figure 1. Optimized T-cell manufacturing augments CAR expression and T-cell phenotype.NHP CAR T-cell products manufactured with PBMCs from 3 uninfected animals
were compared in vitro using 1 of 2 manufacturing schemes: traditional isolation of total CD31 cells, bead-based stimulation, and culture with IL-2 (“Old”) or an updated scheme
including separate isolation of CD41 and CD81 cells, cell-based stimulation, and no IL-2 (”New”). (A) CAR expression in total CD31 (left), CD31CD8– (middle), or CD31CD81

subsets (right). (B) CD4:CD8 ratio. (C) T-cell memory:effector ratio, determined via flow-based staining with antibodies for CD95 and CD28. (D) T-cell memory subset distribution,
determined via flow-based stainingwith antibodies for CCR7 andCD45RA. Samples in panels B-Dwere collected onmanufacturing day 8. Statistical significancewas determined
by using the Holm-Šı́dák method, with a 5 0.05. DP, double positive; DN, double negative; NS, not significant; TCM, T central memory; Tdx, CAR-transduced; TEM, T effector
memory; TEMRA, T effector memory RA.
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environment), we first compared the established manufacturing
scheme with a new protocol that separately isolated CD41 and
CD81 cells, stimulated T cells using irradiated artificial antigen-
presenting cells, and omitted IL-2 from culture media.26,27 Our new
manufacturing scheme supported significantly higher levels of CAR
expression in vitro (Figure 1A), substantially less CD8 skewing with
balanced CD4:CD8 ratios (Figure 1B), and a larger proportion of
cells displaying a memory phenotype (Figure 1C), specifically
central memory (Figure 1D). These cells displayed target-specific
killing function that was dose dependent, whereas cells manu-
factured with the traditional method killed targets in a relatively
binary manner (Figure 2A). Finally, expansion of cytotoxic effectors
was more robust and target-specific with the new manufacturing
scheme compared with the old scheme (Figure 2B). Collectively,
these data suggest that our “new” manufacturing parameters
support more efficient modification of T cells with CAR transgenes,
increased persistence of memory subsets, and graded effector
function that correlates with levels of antigen-expressing targets.

Adoptive transfer of CD4CAR T cells in nonhuman
primates
Four rhesus macaques were infected with SHIV-1157ipd3N428

for 12 to 13 weeks and then placed on ART for 59 to 70 weeks
(Figure 3A; supplemental Table 1) prior to infusion with
CD4CAR-modified autologous T cells reprogrammed to rec-
ognize HIV-1 (Figure 3B). This SHIV strain was chosen based
on our extensive previous experience17,18,29-32 and its well-
established CCR5-tropism (ie, to evaluate our CCR5 editing
approach).28,33 T cells from each animal were derived from 2 time
points: PBMCs collected and cryopreserved before SHIV chal-
lenge (SHIV–) and freshly isolated PBMCs collected from SHIV-
infected, ART-suppressed animals (SHIV1). The latter cells were
included to prove that our manufacturing scheme could be
applied to cells from HIV-infected, ART-suppressed patients, a

key requirement for any clinically relevant CAR T-cell strategy.
SHIV– and SHIV1 cells were manufactured in parallel and then
mixed immediately before infusion, enabling detailed comparisons
between each fraction (discussed later). Each CD4CAR T-cell
product was first gene edited with CCR5 CRISPR ribonucleopro-
tein complexes to protect against infection with this highly CCR5-
tropic SHIV15,30,34 (supplemental Figure 1). Editing of our infusion
products was suboptimal (,36%). Over the first 2 months after
infusion, ,2% of total PBMCs were CCR5-edited and did not
expand, inferring that higher levels of editing are necessary for
virus-dependent positive selection. After CCR5 editing, each
product underwent cell-based T-cell receptor stimulation, trans-
duction with CD4CAR-encoding lentiviral vectors, and 8 days of
expansion. CAR modification efficiency in each infusion product
ranged between 20% and 50%; cells manufactured from both
SHIV1 and SHIV– PBMCs were then pooled and infused in-
travenously into animals at a dose ranging from 2.593 107 to 5.92
3107CAR1 cells per kilogrambodyweight (supplemental Table 2).

Cell-based antigen boosting of CD4CAR T cells
Preparative cytotoxic conditioning regimens are frequently ad-
ministered to increase engraftment/persistence of cancer-specific
CAR T cells. However, these regimens may be associated with
toxicities that are unreasonable (ie, for an otherwise healthy HIV-
infected individual on ART).35 To improve the safety and toxicity
profile in our study, we did not administer a conditioning regimen
before CD4CAR T-cell infusion. Following infusion, the absolute
number and percentage of CD4CAR-modified, virus-specific ef-
fectors were quantified in the peripheral blood at serial time
points. We applied the flow cytometry gating strategy shown in
supplemental Figure 2, which measured CAR1 T-cell subsets on
the basis of CD8 expression (using CD8– as a surrogate for CD41),
as anti-CD4 clones that label macaque CD4 but not our CD4CAR
are unavailable.16 To test our primary hypothesis that an Env boost
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strategy could potentiate CD4CAR T cells to expand as well as
recognize and kill recrudescent targets during ATI, we infused an
irradiated K562 cell line modified to express HIV-1 YU2 Env
(supplemental Figure 3) at day 19 following CD4CAR T-cell in-
fusion. Twelve days following boost (31 days postinfusion of
CD4CAR T cells), ART was interrupted. CD4CAR T-cell expansion
was observed in all animals after Env boost and ATI, with CAR1

frequencies peaking at 20% to 50% of total peripheral T cells
(Figure 3C). Notably, an immediate expansion of CD4CAR T cells
in animals A15104 and A15112 was observed after Env boost,
before ATI (Figure 3D); we refer to these animals as Group 1.
Interestingly, the kinetics of expansion in animals A15106 and
A15108 (Group 2) were delayed, but higher magnitude relative to
Group 1. To our knowledge, ours is the first report of HIV/SHIV-
specific CAR T-cell expansion in an autologous host.

Antigen boosting expands CD4CAR T cells in gut
and secondary lymphoid tissues
To determine whether antigen boosting induced CD4CAR T-cell
expansion in secondary lymphoid tissues prior to ATI and viral
recrudescence, we performed tissue surgeries on each animal
before and after cell-based Env boosting, prior to withdrawal of
suppressive ART. Consistent with findings in the peripheral
blood, total CD4CAR T cells in tissues in Group 2 did not expand
initially, whereas Group 1 showed marked expansion in all tis-
sues sampled, including gut, lymph nodes, spleen, and bron-
choalveolar lavage (Figure 4A). CD4CAR T-cell expansion was
observed both in the CD81 and the CD8– fractions, with slightly
increased expansion observed in the CD8– CD4CAR T cells
(Figure 4B-C). Collectively, these data demonstrate expansion of
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HIV/SHIV-specific CAR T cells following cell-based antigen boost
in peripheral blood (Figure 3) and secondary lymphoid tissues.
This unprecedented finding lays the groundwork for similar
applications for numerous other CAR T-cell targets with limited
antigen expression.

ART-free suppression of SHIV viremia after
CD4CAR T-cell therapy
Although our study was primarily designed to demonstrate
expansion of CAR T cells in a low-antigen setting in vivo, we also
investigated the ability of expanding cells to control SHIV
viremia after withdrawal of suppressive ART. Pre-ATI and post-
ATI SHIV plasma viral loads were assessed in Groups 1 and 2
(Figure 5A) and compared with a cohort of 8 rhesus macaques
that were infected with the same SHIV and suppressed on the
same ART regimen but were otherwise untreated (supplemental
Table 1). These controls displayed a mean time to viral rebound
of 14.5 days (Figure 5B; supplemental Figure 4A). Following ATI,
SHIV rebound in CD4CAR T-cell animals was significantly delayed
relative to the control group using a rank sum test (P 5 .014). In
particular, plasma viral load in animal A15104 remained un-
detectable until 89 days post-ATI. To account for potential outlier
effects due to the significant delay in viral rebound in animal
A15104, we also calculated percent rebound in Kaplan-Meier
curves, revealing significantly delayed SHIV RNA rebound in the
treatment group comparedwith controls using a Grehan-Breslow-
Wilcoxon test (P 5 .02). To quantify the magnitude of viral re-
bound in each animal, area under the curve (AUC) of rebound
SHIV plasma viremia was calculated over the same 22-week time
course shown in Figure 5C. CD4CAR animals displayed lower
rebound plasma viral load AUC than the control group, but due to
the well-characterized variability in SHIV viral set points,30,36,37

these trends did not reach statistical significance (supplemental
Figure 4B). Intriguingly,Group 1 animals exhibited 2 to 3 viral blips
after ATI that temporally correlated with transient CAR T-cell
expansion, whereas Group 2 animals failed to control the virus
long term, despite clear evidence of post-ATI CD4CAR T-cell
expansion. At the time of manuscript submission, plasma viral
loads in animal A15112 have stabilized in the range of 102 copies/
mL, whereas A15104 continues to display occasional low-level
viral blips and recontrol. Collectively, these results indicate that
CD4CAR T-cell therapy coupled with cell-associated Env boost
supports ART-free suppression of SHIV viremia to 102 copies or
less in 2 of 4 treated animals; these animals (Group 1) also showed
the most immediate response to antigen boosting.

Ex vivo correlates of in vivo CD4CAR T-cell function
To gain insight into potential differences between Groups 1 and
2, we interrogated the phenotype of each CD4CAR T-cell in-
fusion product using markers of cellular proliferation, activation
state, memory subset, and coinhibitory molecule expression.
Group 1 animals had slightly increased CAR expression, par-
ticularly in the CD8– lineage; CARmodification of SHIV1 cells was
only modestly decreased relative to SHIV– cells collected prior to
infection (Figure 6A). Notably, we detected only low levels of
SHIV DNA and SHIV RNA in the SHIV1 fraction of each infusion
product, and these levels did not significantly increase during
the manufacturing process (supplemental Figure 5). During
manufacturing, Group 1 CD4CAR T-cell products showed de-
creased cellular proliferation (Ki67), increased activation (CD69),
and decreased expression of coinhibitory molecules (PD-1,
TIGIT [T-cell immunoreceptor with immunoglobulin and ITIM

domains]), relative to animals in Group 2 (Figure 6B-D). There
were no obvious differences between the groups in terms of
CD28 or CD95 expression, with each infusion product strongly
skewed toward amemory phenotype. Expression of thememory
subset markers CCR7 and CD45RA was also comparable be-
tween the groups, with a majority showing an effector memory
phenotype (Figure 6E-F). In sum, lower levels of CD4CAR T-cell
proliferation and higher levels of activation ex vivo could po-
tentially account for the control of virus in Group 1, but not
Group 2, consistent with our in vivo data.

Immune exhaustion contributes to suboptimal
CD4CAR T-cell function
We next looked for SHIV mutations in the Env open reading
frame in circulating virus fromGroup 2 animals, which could have
enabled viral escape from CD4CAR T cells. No relevant muta-
tions (eg, in the CD4 binding site) were observed in either animal
(supplemental Figure 6). We hypothesized that the lack of viral
control was instead due to CAR T-cell exhaustion, consistent with
the increased expression of the coinhibitory molecules PD-1 and
TIGIT on the Group 2 infusion products (Figure 6D). To directly
test whether CAR T cells were exhausted in vivo, we treated the
Group 2 animals with a rhesusized version of the anti–PD-1
checkpoint inhibitor nivolumab at 227 days after CAR T-cell in-
fusion.We opted not to treat Group 1 animals, because both were
still sporadically controlling viremia to low or undetectable levels
at this time. We first confirmed that this antibody bound the PD-1
receptor in peripheral T-cell populations by comparing PD-1
occupancy before and after nivolumab administration, using a
mean fluorescence intensity–based approach. Consistent with our
prediction, CD81 CAR T cells displayed the highest levels of PD-1
expression in vivo before treatment and were most dramatically
affected following nivolumab dosing and receptor blockade
(Figure 7A). The impact of PD-1 blockade on total peripheral
T cells was modest (Figure 7B). In stark contrast, anti–PD-1 se-
lectively increased the frequency of CD4CAR T cells, with CD81

CAR T cells expanding specifically (Figure 7C). Transient viral
control was observed in both Group 2 animals after checkpoint
inhibitor treatment (Figure 7D). Virus rebounded shortly after
nivolumab washout. Despite a subsequent increase in circulating
viral antigen, peripheral CAR T cells did not expand (Figure 7E).
Collectively, these data show that lack of function of CAR T cells in
the Group 2 animals was associated with a persistent immune
exhaustion phenotype, whichwas transiently releasedby the PD-1
immune checkpoint blockade.

Discussion
CAR T-cell therapies for HIV have so far lagged behind those for
cancer.6 Consistent with waning virus-specific T-cell responses
during ART-dependent viral suppression,38 it is reasonable to
assume that a lack of requisite antigen contributes to inefficient
virus-specific CAR T-cell recognition/killing of infected cells and
trafficking to tissue sites.39,40 Similar shortcomings with lack of
persistence and expansion have been observed by groups in-
fusing expanded modified or natural cytotoxic T lymphocytes
specific to HIV, particularly related to immune-mediated clear-
ance or apotosis.41-43

Our preliminary studies in the NHP model indicated that non-
boosted virus-specific CAR T cells did not expand or affect SHIV
viremia in vivo but did persist at low levels, consistent with early
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clinical findings (manuscript in preparation). 4-6 Here, we have
implemented a novel strategy to introduce exogenous antigen to
aid in CAR T-cell expansion and persistence. We optimized our
CAR T-cell manufacturing to maintain a central memory pheno-
type with balanced CD4:CD8 T cell ratios to aid engraftment and
persistence in vivo. After infusion of optimized CD4CAR T cells,
we show for the first time robust expansion of anti-HIV CAR T cells
in the macaque model following in vivo modulation by a cell-
based Env boost. CAR T cells expanded in all 4 animals following
boosting. Interestingly, expansion in one pair of animals (referred
to asGroup 1) was earlier and lower inmagnitude than in the other
pair (Group 2), in which the magnitude of expansion was later and
substantially higher. Intriguingly, the Group 1 animals that dis-
played “slow burn” kinetics of CD4CAR expansion were able to
control viral replication with Env boosting alone, whereas viral
control was not initially observed inGroup 2 animals that exhibited
a “short burst” of CD4CAR expansion. We postulate that a slow
burn model (ie, potent antiviral activity over a prolonged time
period even at lower levels) is important to target and clear latently
infected cells, which may recrudesce over an extended time
frame.44-46

A common challenge in CAR cell therapy for malignancies is
T-cell exhaustion, which can be overcome both intrinsically47,48

and extrinsically with immune checkpoint blockade.49 ART-
suppressed persons living with HIV with associated hemato-
logic malignancies have been safely treated with checkpoint
inhibitors,50-54 although little is known about the impact of these
therapies on viral persistence. Numerous studies in the NHP
model collectively suggest that checkpoint blockade does in-
deed augment the endogenous T-cell response and provides
clinical benefit both in prophylactic and therapeutic models.55-60

Based on these findings, we administered an anti–PD-1 checkpoint
inhibitor to test whether T-cell exhaustion was a factor in the 2
animals that did not control virus long term. After treatment, we
observed CAR T-cell expansion and transient viral control to un-
detectable levels. These data suggest that exhausted anti-HIV CAR
T cells can be “rescued”with checkpoint inhibitors, a combinatorial
approach that is already under investigation for cancer-specific CAR
T cells in clinical trials.61

Our findings are consistent with the hypothesis that antigen
supplementation may overcome challenges associated with the
recognition of low-antigen targets. In the case of HIV/SHIV in-
fection, antigen boosting may effectively prime virus-specific
CAR T cells before ATI, allowing these cells to stay ahead of
recrudescent viremia, while also allowing them to escape ex-
haustion in response to recrudescent virus. The ongoing control
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of virus in 2 animals lends credence to our approach as being a
reasonable strategy to achieve durable ART-free remission of HIV-1
in infectedpatients, whereas the other 2 animals highlight the ability
of exhausted anti-HIV CAR T cells to respond favorably to check-
point blockade following exhaustion. This is the first report of
exogenous antigenboosting and immune checkpoint blockade to
expand anti-HIV CAR T cells in an NHP model. The clinical
implementation of our K562 cell line–based antigen boosting
approach could present regulatory challenges. However, analo-
gous approaches to deliver Env antigens (eg, utilizing various
nanoparticle-based strategies) have shown marked successes in
recent clinical trials (reviewed by Anselmo and Mitragotri62). Fur-
thermore, using recombinant protein and RNA-based antigen
delivery, similar boosting approaches have recently been described

for CAR T cells directed against solid tumors in mouse models.25,63

Our results are consistent with these data, indicating that similar
strategies may also be required for malignant targets in which in-
sufficient antigen is a primary barrier to efficacy.64-66 Additional
research will also be necessary to merge immune checkpoint
blockade with CAR T-cell therapies in clinical studies. Clinical trials
combining cancer-specific CAR T cells and immune checkpoint
blockade require substantially greater study. The reversal of T-cell
exhaustion following antibody-based PD-1 blockade in our study
was transient andmay not protect against latently infected cells that
recrudesce months or years after withdrawal of suppressive ART.
Notably, further development of CAR T-cell gene-editing ap-
proaches (eg, to directly inactivate PD-1 expression) are highly
promising and feasible in patients.67
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We and others have previously established proof of principle
that the curative approaches applied to formerly HIV-infected
patients in Berlin and London included a component of en-
hanced virus-specific immunity.29,68,69 Importantly, both patients
experienced toxicities that are only applicable for those with
HIV-associated malignancies. Likewise, CAR T-cell therapies for
cancer frequently require aggressive and often toxic condi-
tioning regimens to maximize CAR T-cell engraftment, followed
by risks associated with cytokine release syndrome during CAR
T-cell expansion in vivo.70 A primary goal for virus-specific CAR
T-cell therapies in otherwise healthy persons living with HIV-1

infection is to provide enhanced virus-specific immunity with
minimal toxicity. Our study accomplished this goal in 3 respects.
First, CD4CART cell–treated animals did not receive a preparative
conditioning regimen before infusion of CD4CAR T cells. Second,
CD4CAR T-cell infusion was well tolerated, with no evidence of
cytokine release syndrome or neurotoxicities that have been
observed previously in the monkey model.25 Finally, we saw no
nonspecific binding of the CD4CAR to endogenous MHCII
molecules, a safety concern that has also been alleviated in clinical
CD4CAR T-cell trials.71,72 In short, the safety profile of our virus-
specific CAR T-cell therapy is extremely favorable, supporting an
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ongoing clinical trial of CD4CAR T cells in HIV-infected, stably
suppressed patients (ClinicalTrials.gov #NCT03617198).

In summary, we have developed a robust large animal model of
CAR T-cell therapy using clinically relevant manufacturing
schemes and methods, supporting expansion and function of
CAR-modified effectors in the peripheral blood as well as in
tissues. We show that virus-specific CAR T cells can be expanded
both by rationally designed cell-based antigens and by immune
checkpoint blockade. This study shows the feasibility of our

approach not only for HIV but potentially also for liquid and solid
tumors in which low antigen expression is a key limitation.
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