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l Genome-wide CRISPR
activation and
knockout screens
identify genes
involved in modulating
sensitivity to crizotinib
in NPM1-ALK1 ALCL.

l In an autocrine loop,
the interleukin-10
receptor activates
STAT3, bypassing
NPM1-ALK, to bind to
the promoters of IL10,
IL10RA, and IL10RB.

Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by a
hyperactive anaplastic lymphoma kinase (ALK) fusion protein. ALK inhibitors, such as
crizotinib, provide alternatives to standard chemotherapy with reduced toxicity and side ef-
fects. Children with lymphomas driven by nucleophosmin 1 (NPM1)-ALK fusion proteins achieved
an objective response rate to ALK inhibition therapy of 54% to 90% in clinical trials; how-
ever, a subset of patients progressed within the first 3 months of treatment. The mechanism
for the development of ALK inhibitor resistance is unknown. Through genome-wide clustered
regularly interspaced short palindromic repeats (CRISPR) activation and knockout screens in
ALCL cell lines, combined with RNA sequencing data derived from ALK inhibitor–relapsed
patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven
by aberrant upregulation of interleukin 10 receptor subunit alpha (IL10RA). Elevated IL10RA
expression rewires the STAT3 signaling pathway, bypassing otherwise critical phosphorylation
by NPM1-ALK. IL-10RA expression does not correlate with response to standard chemother-
apy in pediatric patients, suggesting that a combination of crizotinib and chemotherapy could
prevent ALK inhibitor resistance–specific relapse. (Blood. 2020;136(14):1657-1669)

Introduction
Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy that
primarily affects children.1 The first chemotherapy protocol was
introduced to pediatric ALCL patients in the 1980s, but event-

free survival (EFS) and overall survival (OS) rates that vary
between 50% and 75% and between 70% and 90%, re-
spectively, have barely improved, and there is a clear need for
less toxic andmore effective therapies in the relapse setting.2-13
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The nucleophosmin 1 (NPM1)-anaplastic lymphoma kinase (ALK)
fusion protein14 is the oncogenic driver in 75% of cases of ALK1

ALCL.8 A chromosomal translocation gives rise to NPM1-ALK,
leading to ectopic expression of this constitutively active kinase,
which, in turn, upregulates effectors of cell survival and pro-
liferation, including the JAK/STAT pathway.15-18

ALK is an ideal drug target because endogenous expression is
limited to neuronal cells during neonatal development.19,20

Therefore, 3 trials (NCT01979536,NCT02034981, andUMIN000028075)
have investigated the ALK inhibitor crizotinib in pediatric ALK1

ALCL patients.21-23 Preliminary results from the NCT02034981
trial showed that 5 of 15 patients progressed and that all cases
of progression on crizotinib occurred during the first 3 months
following treatment initiation.24

An understanding of the molecular pathways enabling tumors to
harbor primary drug resistance or to acquire resistance to tar-
geted therapies is critical for precisely predicting patient re-
sponses and for the identification of additional targetable
pathways to maximize clinical benefit.25 The consensus gold
standard for identifying ALK-inhibitor resistance mechanisms
involves whole exome sequencing coupled with RNA se-
quencing (RNA-seq) of tumor tissues obtained from patients via
multiple biopsies throughout their treatment.25 Until now,
fewer than 130 pediatric ALK1 ALCL patients have been treated
with crizotinib in a clinical trial setting, and the majority have
not been rebiopsied at relapse because of ethical constraints
and/or the health status of the patient.

However, defining a global landscape of resistance mechanisms
requires matched presentation-relapse tumor specimens from
a sufficiently large number of patients.25-27 For instance, the
cataloguing of epidermal growth factor receptor tyrosine kinase
inhibitor (TKI) resistance in non–small cell lung cancer (NSCLC)
patients, with an incidence rate of 18 252 to 54 756 newly di-
agnosed cases per year in the United States, is still incomplete,
with ;30% of relapsed patients currently presenting with “un-
known” resistancemechanisms.26,28,29 This problem is intensified
for pediatric malignancies, such as ALK1ALCL, with an incidence
rate of ;80 newly diagnosed and 16 relapse cases per year in
children and adolescents in Europe.30 Such an extended discovery
phase of resistance mechanisms leads to a deadly lag in the de-
velopment of salvage therapeutic strategies. To counteract this,
we used genome-wide clustered regularly interspaced short
palindromic repeats (CRISPR) overexpression and knockout
screens, in combination with analysis of RNA-seq data from ALK
inhibitor–relapsed patient tumors, to identify biological path-
ways involved in resistance to ALK inhibition in ALK1 ALCL.

Materials and methods
Cell culture
KARPAS-299 (K299)/SU-DHL-1/SUP-M2/Mac-2A/TS/DEL cell
lines were maintained in RPMI 1640 supplemented with 10%
fetal bovine serum and 100 U/mL penicillin/streptomycin.
HEK293T cells were maintained in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum and
100 U/mL penicillin/streptomycin. Cell lines were tested for
mycoplasma contamination every 6 months.

Lentivirus production
HEK293T cells were seeded 24 hours before transfection to
reach 80% to 90% confluence before the plasmid of interest was
cotransfected with pMD2.G and psPAX2 at a 1:1:1 ratio with
TransIT-293 Transfection Reagent. Medium was replenished
after 24 hours, and supernatant was collected 60 hours after
transfection and filtered through a 0.45-mm polyvinylidene
difluoride filter.

CRISPR screening
CRISPR overexpression screening was performed using a human
CRISPR activation library,31 as described previously.32 DEL/SUP-
M2/K299 cells were sequentially transduced with the plasmids
dCAS9-VP64 and MS2-P65-HSF1 and selected using high
concentrations of blasticidin (10 mg/mL) and hygromycin B
(200 mg/mL) for 7 days each. Stable DEL/SUP-M2/K299 SAM
cells were infected with the library at a multiplicity of infection of
0.3 and a ratio of $500 cells per single guide RNA (sgRNA) and
selected in zeocin (100 mg/mL) for 7 days. Two separate in-
fections were performed; for each condition, 500 cells per
sgRNA were collected as input control, and genomic DNA
(gDNA) was extracted using a QIAamp DNA BloodMaxi Kit. The
remaining cell pools were cultured with crizotinib (120/150/
300 nM for DEL/SUP-M2/K299) or dimethyl sulfoxide (DMSO) for
14 days and harvested for DNA extraction. Amplification of the
specific sgRNAs was performed using Herculase II Fusion DNA
Polymerase in a single-step reaction of 24 or 25 cycles. Briefly, a
small amount of gDNA from each sample was amplified by
polymerase chain reaction (PCR) before products were sepa-
rated on a 20% agarose gel to determine optimal PCR conditions
using low cycle numbers to minimize PCR bias. Next, DNA from
the sample was divided into 23 PCR reactions of 100 mL with
10 mg of input gDNA, each amplified with a barcoded reverse
primer and forward primers 1-9 (supplemental Table 1, available
on the BloodWeb site). PCR products were pooled and cleaned
using a Zymo DNA Clean & Concentrator-5. Products were
tested for concentration and specificity using a High Sensitivity
D1000 ScreenTape System and quantitative PCR (qPCR) using
the KAPA Library Quantification Kit. Libraries were pooled and
sequenced using an Illumina HiSeq High Output v4 on 1 3
100 bp mode with a 10% PhiX spike.

CRISPR-targeted knockout screening was performed using a
mini screen library based on the commercially available GeCKO
v2 A or B libraries33 and methodology can be found in sup-
plemental Materials and methods.

Reverse transcription qPCR
Total RNA was purified using an RNeasy Plus Mini Kit. A total of
2 mg of total RNA was reverse transcribed into complementary
DNA using the High-Capacity RNA-to-cDNA Kit. SYBR-Green
qPCRanalysiswas performedusing aQuantStudio 6 Flex Real-Time
PCR System using qPCR primers listed in supplemental Table 2.

IC50 determination
For 50% inhibitory concentration (IC50) determination, cells were
cultured for 48 hours in a range of concentrations of crizotinib/
alectinib/brigatinib/lorlatinib. Cell numbers were measured
using a CellTiter-Blue Cell Viability Assay. The signal intensity was
measured using a SpectraMax i3 plate reader. The normalized
measurements were used to obtain survival curves and IC50 values.
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Results
CRISPR overexpression screens identify genes
modulating crizotinib sensitivity in ALCL cell lines
To define potential mechanisms driving resistance to crizotinib in
a high-throughput manner, we established a CRISPR-based
overexpression system31,32 in ALCL cell lines. Transcriptional
upregulation is achieved by directly fusing VP64 to catalytically

inactive Cas9 (dCas9) and further recruiting the transcriptional
activation domains p65 and HSF1, eventually recruiting the
transcriptional machinery to the transcriptional start site of the
desired target genes.

Using this system, we first upregulated expression of the
adenosine triphosphate binding cassette subfamily B member 1
(ABCB1, supplemental Figure 1A), a transporter expressed in the
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Figure 1. CRISPR overexpression screens identify genes modulating crizotinib sensitivity in ALCL cell lines. (A) Schematic diagram of the CRISPR-dCas9–based
overexpression screen for the identification of genes whose activation modifies sensitivity to crizotinib in ALCL cell lines. A crizotinib/DMSO selection pressure is applied, and
gDNA is harvested on day 0 and after 14 days of treatment. The sgRNA regions are amplified from gDNA and then analyzed by next-generation, sequencing followed by
statistical analyses. (B) Scatterplot showing robust rank aggregation P values calculated using MAGeCK38 and plotted against the fold change in sgRNA enrichment between
day-14 DMSO and day-14 crizotinib of genes detected in $2 of the 3 (K299/DEL/SUP-M2) ALCL cell lines tested. (C) Fold change in expression levels of the CRISPR screen
candidate genes modulated by CRISPR overexpression for 2 sgRNAs relative to nontargeting (NT) control sgRNA determined at baseline in 4 ALK1 ALCL cell lines (K299/DEL/
SUP-M2/SU-DHL-1) plotted against the total number of gene-specific sgRNAs that modified sensitivity to crizotinib in 48-hour CellTiter-Blue assays. Individual overexpression
levels for each sgRNA and for separate ALCL cell lines can be found in supplemental Figure 1I. (D) Schematic diagram of the CRISPR-Cas9-based mini knockout screen for the
identification of genes whose knockout modifies sensitivity to crizotinib in ALCL cell lines. A crizotinib/DMSO selection pressure is applied, and gDNA is harvested on day 0 and
after 14 days of treatment. The sgRNA regions are amplified from gDNA and then analyzed by next-generation sequencing, followed by statistical analyses. (E) Read counts of
6 sgRNAs targeting the indicated genes before and after a 14-day incubation with DMSO/crizotinib in the SUP-M2–derived TS cell line. Data are means 6 standard deviation
with read counts for individual sgRNAs (n 5 6) plotted as dots. *P , .05. **P , .01, ***P , .001, unpaired Welch-corrected t test. ns, not significant.
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liver and blood-brain barrier to efflux toxic agents34 that was
previously shown to mediate crizotinib resistance in ALK1

NSCLC.35 We were able to increase the IC50 of crizotinib for 3
of 4 ALK1 ALCL cell lines but not for an ALK2 ALCL cell line
(supplemental Figure 1B), confirming that sensitivity to crizotinib
can be readily manipulated.

To test the efficiency of the CRISPR overexpression system in
ALCL cell lines, we used a panel of sgRNAs36 targeting 15 genes,
which were previously shown to lead to crizotinib resistance in
EML4-ALK1 NSCLC.37 The ability of most sgRNAs to achieve
significant overexpression was highly cell line dependent
(supplemental Figure 1C). Therefore, we applied our CRISPR-
based overexpression platform to screen for potential drivers of
resistance to crizotinib in 3 ALCL cell lines (K299/SUP-M2/DEL),
using a genome-wide sgRNA library containing 70 290 sgRNAs
targeting 23 430 genes31 (Figure 1A). dCas9-VP64/MS2-P65-
HSF1-expressing ALCL cells were transduced with the library
and selected in zeocin for 7 days (day 0). Next, we exposed the
selected cells to crizotinib/DMSO for 14 days. gDNA was iso-
lated from the cells on days 0 and 14 and deep sequenced
to measure read counts for each sgRNA. Following treatment,
changes in the abundance of each sgRNA were assessed using
MAGeCK38 and analyzed for quality control (supplemental
Figures 1D-F). We identified a host of genes enriched in day-14
crizotinib compared with day-14 DMSO-treated cells, including
genes with known relevance to ALCL disease biology, such as
STAT3/RORC/MYC/IRF415,16,39-41 (Figure 1B).

STAT3, a well-known downstream mediator of NPM1-ALK,15,16

was the most significantly enriched gene in all 3 CRISPR

overexpression screens (Figure 1B; supplemental Figure 1G),
thereby confirming the validity of this approach. In addition,
NPM1 was significantly enriched in the screens (Figure 1B;
supplemental Figure 1H).

We selected the 10 most significantly enriched genes that were
shared between $2 ALK1 ALCL cell lines for further validation
(Figure 1B). First, we overexpressed these 10 candidate genes,
as well as NPM1 as a positive control, using 2 sgRNAs per gene
in the 4 ALK1 and 1 ALK2 ALCL cell lines. After determining
overexpression levels (supplemental Figure 1I), growth inhi-
bition in the presence of crizotinib was assessed using 48-hour
CellTiter-Blue Cell Viability Assays (Figure 1C; supplemental
Figure 1I). The most consistent targets, modifying crizotinib
sensitivity in all ALK1 cell lines, were interleukin 10 receptor
subunit alpha (IL10RA) and adenosine A2a receptor (ADORA2A).

We next reasoned that if overexpression of a gene would de-
crease sensitivity to crizotinib, then knockout of the same gene
should increase sensitivity to crizotinib. To address this, we
performed amini CRISPR knockout screen targeting the same 10
candidate genes. TS/K299 cells were transduced with a GeCKO
v2 mini library containing 6 sgRNAs per gene and selected with
puromycin for 7 days (day 0) before exposure to crizotinib/
DMSO for 14 days and processing as previously conducted for
the overexpression screen (Figure 1D). Knockout of IL10RA/
PGBD1 rendered the TS cell line, but not the K299 cell line, more
sensitive to crizotinib (Figure 1E; supplemental Figure 1J).

In parallel, the same 10 candidate genes were analyzed for their
expression levels in cells that had been chronically exposed to

A

ALCL99

patient 1

08/2014

ALK TKI
resistant
ALCL patients

Chemotherapy-
relapsed
ALCL patients

01/2015 10/2017 11/2017 12/2017 01/2018 02/2018 03/2018 06/2018 07/2018

Crizotinib Doxorubicin
+Brentuximab vedotin

Lorlatinib A
LK

L1
19

6M

ALCL99

patient 3

12/2017 04/2018 08/2018 09/2019
last seen

CrizotinibA
LK

w
t

ALCL99

patient 4

06/2018 10/2018 11/2018

CrizotinibA
LK

w
t

Nivolumab

ALCL99*

patient 2

08/2015 08/2016 04/2016 10/2017
last seen

Crizotinib A
LK

w
t

Nivolumab

Relapse biopsy taken 

Remission

Relapse/Refactory

Treatment start

Treatment end

LegendCorticoidetherapy
+Vinblastine

C

PC
2:

 3
8%

patient 4

patient 3

patient 1

patient 2

ALK TKI resistant

Chemotherapy-relapsed50

0

-50

-50 0 50

PC1: 48%
100

B

patient 1

ALK TKI resistant Chemotherapy-relapsed

patient 2 patient 3 patient 4 CPM

10
8
6
4
2
0

D
ALK TKI resistant

patient 1
ALKL1196M

patient 2
ALKLwt

CPM

7

6

5

4

3

2

IL-10RA

PGBD1

Figure 2. Validation of candidate genes modulating ALK TKI sensitivity in ALCL patients. (A) Schema of the treatment history of ALK1 ALCL patients who relapsed on ALK-
targeted therapy (patients 1 and 2) or chemotherapy (patients 3 and 4). (B) Unsupervised clustering of RNA-seq data from chemotherapy-relapsed (patients 3 and 4) and ALK
TKI–resistant (patients 1 and 2) patients. (C) Principal component (PC) analysis of gene-expression levels across the 4 resistant ALCL patient samples. (D) Candidate genes
identified by the CRISPR screens were analyzed for differential expression between ALK TKI–resistant patients with wild-type or mutated ALK. ALCL99*, patient was treated
according to ALCL99 recommendations for patients with central nervous system involvement, as specified in Williams et al.78 CPM, counts per million.

1660 blood® 1 OCTOBER 2020 | VOLUME 136, NUMBER 14 PROKOPH et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/14/1657/1759786/bloodbld2019003793.pdf by guest on 21 M

ay 2024



ALK TKIs (crizotinib/alectinib/brigatinib/lorlatinib) to induce
resistance42-45 and were compared with transcript levels in pa-
rental cells (supplemental Figure 1K). Among the genes assessed,
IL10RA was overexpressed in 30% of resistant cell lines.

Validation of candidate genes modulating ALK TKI
sensitivity in ALCL patients
To determine which targets identified by the screen are of
potential clinical relevance, we analyzed data obtained from
samples of resistant tumors from 4 patients with ALK1 ALCL,
recruited to the MAPPYACTS trial (NCT02613962), who had
relapsed on ALK TKIs or chemotherapy (Figure 2A; supple-
mental Table 3). Patient 2 was treated with the standard che-
motherapy protocol but progressed at 6 months following
treatment initiation, at which point crizotinib treatment was
started, which only lasted for 2 months because of disease

progression and then a biopsy was taken. Patient 1, having
a more complex treatment history, had been treated with
the chemotherapy protocol and remained in remission for
34 months until progression, at which point multiple sequential
therapies, including crizotinib or lorlatinib, were administered
with short-term responses. The biopsy was taken at the time of
relapse on lorlatinib treatment, whereas patients 3 and 4 were
biopsied at the time of relapse from standard chemotherapy
(Figure 2A).

To identify resistance drivers and associated pathways that
might play a role in clinical resistance to ALK inhibitors, we
performed RNA-seq to compare gene-expression profiles be-
tween ALK1 ALCL tumors with acquired resistance to ALK in-
hibitors and those that relapsed on standard chemotherapy
(Figure 2B; supplemental Figures 2A-C). Using gene set
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standard deviation (SD). (C) Intensity of staining (left panel) or percentage of tumor cells expressing IL-10RA (n 5 92) or IL-10RB (n 5 89) (right panel), as determined by
immunohistochemistry of a TMA of FFPE pediatric ALK1 ALCL patient samples. Data are presented as a violin plot with the means indicated. (D) Fold change in IL-10,
IL-10RA, and IL-10RB mRNA expression levels in the indicated ALCL cell lines transduced with a doxycycline-dependent ALK shRNA. Doxycycline-induced cells were
compared with noninduced cells and were normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data are means 6 SD (n 5 3). (E) Fold change in IL-10,
IL-10RA, and IL-10RB mRNA expression levels in crizotinib-treated (300 nM for 6 hours) ALCL cell lines normalized to GAPDH and relative DMSO control. Data are
means 6 SD (n 5 3). *P , .05. **P , .01, ***P , .001, Welch 2-sample t test.
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Figure 4. IL10RA overexpression modulates sensitivity to ALK inhibition. (A) Fold change in expression levels of IL10RA for each of the 3 sgRNAs targeting IL10RA vs
nontargeting (NT) control sgRNA in the indicated ALCL cell lines. Data are means6 standard deviation (SD) (n5 3). (B) Viability of SUP-M2 cells based on normalized CellTiter-
Blue fluorescence reads on exposure to increasing concentrations of crizotinib, alectinib, brigatinib, or lorlatinib for 48 hours when expressing 1 of 3 of the indicated sgRNAs
inducing overexpression of IL10RA in the presence or absence of 10 ng/mL IL-10. Data are means6 SD (n5 3). (C) Proliferation of ALCL cell lines expressing sgRNAs inducing
overexpression of IL10RA over 4 days. Data are means6 SD (n5 3). (D) Modulation of apoptosis upon expression of sgRNAs inducing overexpression of IL10RA in the indicated
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enrichment analysis, we identified positive enrichment for au-
toimmune disease signaling pathways and the T-cell receptor
pathway in chemotherapy-relapsed tumors compared with ALK
TKI–resistant patient tumors (supplemental Figure 2B). In
agreement, the genes enriched in chemotherapy-relapsed pa-
tients show specific gene ontology features, such as T-cell ac-
tivation and differentiation (supplemental Figure 2C).

Notably, although the global gene expression profiles of both
chemotherapy-relapsed patients (patients 3 and 4) clustered
together, those of the ALK inhibitor–resistant patients (patients 1
and 2) did not (Figure 2C).

To further investigate this difference in clustering, we deter-
mined whether any of the resistant patients had developed
mutations in the ALK kinase domain. Patient 1 harbored a
missense mutation (ALK L1196M, COSM99137) near the aden-
osine triphosphate binding pocket, which has previously been
shown tomediate resistance to crizotinib inALK1NSCLC46 (Figure
2A; supplemental Table 3). In contrast, althoughwe confirmed the
presence of theNPM1-ALK rearrangement at crizotinib relapse for
patient 2, no ALKmutation was detected. As expected, neither of
the patients that relapsed after the standard chemotherapy (pa-
tients 3 and 4) had an ALK mutation at relapse (supplemental
Table 3). These data allowed us to compare presumed ALK
mutation-driven resistance (patient 1) with ALK mutation-
independent resistance (patient 2).

Therefore, we integrated our RNA-seq analysis with the CRISPR
overexpression screen results (Figure 2D; supplemental Figure
2D). Both validated candidate genes (PGBD1/IL10RA) identified
by the CRISPR screens were expressed at higher levels in the ALK
wild-type tumor of patient 2 compared with the ALKL1196M tumor
of patient 1 (Figure 2D). IL10RA was selected for further analysis
because it showed the higher expression level of the 2 genes in
tumors from patients 1 and 2.

Additionally, interleukin-10 (IL-10) signaling has been shown to
play a crucial role in ALCL. For example, IL-10 benefits ALCL cells
directly, by enhancing their viability, and indirectly, by sup-
pressing the immune response.47 In addition, IL-10 is known to
be one of the most abundant cytokines secreted by ALCL cell
lines,48 and it is prevalent in the peripheral blood of children with
ALCL.49 Moreover, knockdown of IL10RA in the ALK1 cell line
K299 resulted in reduced cell growth,48 whereas the roles and
functions of IL10RA in drug resistance have not been fully
elucidated.

IL10RA is expressed in ALCL in an
NPM1-ALK–independent manner
To characterize the importance of IL-10/IL-10 receptor (IL-10R)
signaling in ALCL, wemeasured the expression levels of IL-10RA

and IL-10RB by immunostaining of T-cell lymphoma tissue
microarrays (TMAs) from adult patients (supplemental Table 4).
We determined that IL10RA was expressed in 100% of ALK1

ALCLs, 92% of ALK2 ALCLs, 43% of angioimmunoblastic T-cell
lymphomas (AITLs), and 30% of peripheral T-cell lymphomas not
otherwise specified (PTCL-NOS) (Figure 3A-B). We further
confirmed IL-10RA and IL-10RB expression by immunostaining
of TMAs50 comprising an independent cohort of pediatric ALK1

ALCL patients (Figure 3C; supplemental Table 5) that were
recruited onto NHL-BFM907/NHL-BFM9551/NCT00006455 trials.8

These data are consistent with existing gene expression data52-57

from 75 ALK1 ALCL patients compared with 45 ALK2 ALCL pa-
tients, 160 PTCL-NOS patients, and 100 AITL patients (supple-
mental Figure 3A).

In agreement with the patient data, ALK1ALCL cell lines showed
robust messenger RNA (mRNA) expression of IL-10RA/IL-10RB/
IL-10 (supplemental Figure 3B-C).

To determine whether IL10R signaling is mediated by NPM1-
ALK, we examined whether IL10RA/IL10RB/IL10 expression was
directly controlled by NPM1-ALK activity. Knockdown of ALK
with an inducible short hairpin RNA (shRNA)58 led to decreased
IL-10, but not IL10RA/IL10RB, mRNA expression (Figure 3D),
which is in agreement with existing microarray data59 for ALK
shRNA–transduced ALCL cell lines (supplemental Figure 3D).
Consistent with this, crizotinib inhibition of NPM1-ALK activity
also resulted in decreased IL-10, but not IL10RA/IL10RB, mRNA
expression (Figure 3E). Again, our results are in agreement with
existing microarray data59 from ALK inhibitor–treated ALCL cell
lines compared with untreated ALCL cell lines (supplemental
Figure 3E). Hence, transcription of IL10RA is independent of
NPM1-ALK expression and activity, suggesting that it is a prime
candidate for bypass signaling in response to ALK inhibition.

IL10RA overexpression modulates sensitivity to
ALK inhibition
To further characterize the effects of elevated IL10RA expression
on ALK TKI–induced cytotoxicity, we expressed IL10RA-
targeting sgRNAs in ALK1 ALCL cell lines (Figure 4A). Expres-
sion of at least 2 of 3 sgRNAs resulted in decreased crizotinib
sensitivity, especially on supplementation of IL-10 (Figure 4B;
supplemental Figures 4A-B). Interestingly, decreased crizotinib
sensitivity in DEL cells overexpressing IL10RA was only observed
upon IL-10 supplementation (supplemental Figure 4B). As
expected, themajority of these sgRNAs also promoted decreased
sensitivity to the second-line ALK inhibitors (alectinib/brigatinib/
lorlatinib) (Figure 4B; supplemental Figures 4A-B). Furthermore,
IL10RA was significantly upregulated in 2 of 3 lorlatinib-resistant
tumors that had been treated twice a day with 1 or 2 mg/kg of
lorlatinib compared with 3 vehicle control–treated tumors from

Figure 4 (continued) ALCL cell lines. The percentage of apoptotic cells was determined by APC-annexin V and propidium iodide (PI) staining of ALCL cells treated with 125 nM
crizotinib (SU-DHL-1), 312.5 nM crizotinib (SUP-M2) or 1250 nM crizotinib (DEL) for 48 hours (left panel). Data aremeans6 SD of technical replicates; experiments were performed
independently 3 times. Representative flow cytometry plots of APC-annexin V/PI staining intensities corresponding to IL10RA sgRNA promoting survival vs NT control sgRNA in
SUP-M2 cells (right panel). (E) Modulation of apoptotic response upon expression of sgRNAs inducing overexpression of IL10RA in the indicated ALCL cell lines. The percentage
of apoptotic cells was determined by annexin V and PI staining of ALCL cells treated with 125 nM crizotinib (SU-DHL-1), 312.5 nM crizotinib (SUP-M2) or 1250 nM crizotinib (DEL) in
the presence of 10 ng/mL IL-10 for 48 hours. Data are means6 SD of technical replicates; experiments were performed independently 3 times. (F) Results from the mini CRISPR-
Cas9–based knockout screen. Read counts of 6 sgRNAs targeting IL10/IL10RA/IL10RB in the SUP-M2–derived TS cell line before and after a 14-day incubation with DMSO or
80 nM crizotinib. Data are means6 SD with read counts for individual sgRNAs (n5 6) plotted as dots. *P , .05. **P , .01, ***P , .001, Welch 2-sample t test (B,D-E); unpaired
Welch-corrected t test (F). ns, not significant.
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previously described orthotopic xenografts42 (supplemental
Figure 4C).

To investigate how IL10RA overexpression may be enabling cell
survival in the presence of ALK inhibitors, we assessed cell
proliferation and apoptosis. None of the 3 IL10RA-targeting
sgRNAs promoted proliferation in the absence of crizotinib
(Figure 4C), suggesting that cell survival is not facilitated by
increased proliferation. On the other hand, most IL10RA sgRNAs
were able to prevent apoptosis to some extent when cells were
treated with crizotinib (Figure 4D; supplemental Figure 4D), all
3 IL10RA-targeting sgRNAs demonstrated a significant ability to
diminish apoptosis in the presence of crizotinib, particularly
when IL-10 was added to the growth media (Figure 4E; sup-
plemental Figure 4D). Next, we overexpressed IL10RA with a
puromycin selectable plasmid60 and could confirm the results
achieved with sgRNA-mediated CRISPR overexpression (sup-
plemental Figures 4E-H).

Because these data hint toward the possibility that IL10RA-
mediated crizotinib resistance is dependent on IL-10, we next
assessed whether IL10/IL-10 overexpression alone could drive
crizotinib resistance. Decreased crizotinib sensitivity or a re-
duction in apoptosis was not observed in ALK1/ALK2 ALCL cell
lines when the growth media was supplemented with IL-10
(supplemental Figure 4I-J). Consistent with this observation,
overexpression of 2 IL10–targeting sgRNAs in the same ALCL
cell lines (supplemental Figure 4K) did not promote proliferation
in the absence of crizotinib (supplemental Figure 4L) or in-
creased survival in the presence of crizotinib (supplemental
Figure 4M). This observation highlights the fact that expression
of IL10RA is the limiting factor for IL-10 signaling in these
cell lines.

To understand whether inhibition of any component of the IL10/
IL10R complex would render cells sensitive to crizotinib treat-
ment, we carried out a CRISPR-Cas9–based knockout of IL10/
IL10RA/IL10RB, as described above, using 6 sgRNAs per gene
(Figure 1D); we validated 2 of the sgRNAs targeting IL10RA for
their knockout efficiency (supplemental Figure 4N-O). We found
that sgRNAs targeting IL10/IL10RA were significantly de-
pleted in TS/K299 cells treated with crizotinib for 14 days in
comparison with input control cells (D0) (Figure 4F; supple-
mental Figure 4P).

STAT3 is activated independently of NPM1-ALK
through the IL10/IL10R signaling pathway upon
crizotinib inhibition
We next explored the mechanism by which IL10RA mediates
resistance to ALK inhibition. Oncogenic ALK fusions activate
several signaling pathways, with STAT3 representing a key
downstream effector.15,16 Activation of JAK/STAT signaling is
also highly cytokine dependent in lymphoid cells, with IL-10
being a prominent activator.61 To determine whether this also
applies in ALCL, IL10RA overexpression was induced in ALCL
cell lines; it was able to rescue the phosphorylation of STAT3
in the presence of crizotinib (Figure 5A). This effect could
be potentiated by the addition of IL-10 (supplemental Figure
5A). Furthermore, addition of the STAT3 inhibitor Stattic62-64

resensitized IL10RA-overexpressing cells to crizotinib inhibition
(supplemental Figures 4F-G). This indicates that IL10RA over-
expression can mediate STAT3 phosphorylation independently

of NPM1-ALK activity and that this mechanism can successfully
reverse the effects of crizotinib-mediated inhibition on STAT3
activity.

To understand how transcriptional targets of STAT3 are affected
by IL10RA overexpression, we examined their expression levels.
Overexpression of IL10RA led to increased mRNA levels of the
known STAT3 target genes, including MYC/IRF4/CD30, in
crizotinib-treated cells (Figure 5B). These data are in keeping
with the CRISPR overexpression screen results wherein sgRNA-
mediated overexpression of MYC/IRF4 enabled cell survival in
the presence of crizotinib (Figure 1B).

We also observed a strong correlation between IL-10RA and
IL-10 mRNA expression levels across publicly available Human
Protein Atlas RNA-seq datasets (Figure 5C), and an over-
expression of IL10RA led to an increase in IL-10mRNA expression
in crizotinib-treated cells (Figure 5D). In addition, we found IL-10
to be expressed at higher levels in the ALK wild-type tumor of
patient 2 (IL10RA high) compared with the ALKL1196M tumor of
patient 1 (IL10RA low) (supplemental Figure 5B). These results
suggest that, when IL10RA is expressed in ALK1 ALCL, it may
function by creating an autocrine positive feedback loop via ac-
tivation of STAT3.

To investigate whether STAT3 might directly regulate the
transcription of IL10/IL10RA/IL10RB genes, we analyzed publicly
available chromatin immunoprecipitation sequencing (ChIP-seq)
data from 2 ALCL cell lines treated with crizotinib/DMSO65 and
compared them with existing STAT3 ChIP-seq data from mouse
CD41 T cells.66 We found STAT3 binding upstream of the
transcriptional start sites (TSSs) of IL10/IL10RA/IL10RB in both
ALCL cell lines (Figure 5E), but not in naive CD41 T cells (sup-
plemental Figure 5C). Strikingly, STAT3 binding was abrogated
when ALK activity was inhibited by crizotinib (Figure 5E). In
addition, by using IRF4 as a positive control, we validated several
STAT3 peaks by chromatin immunoprecipitation (ChIP) followed
by qPCR and confirmed STAT3 binding to the TSSs of IL10/
IL10RA/IL10RB in SUP-M2 cells (Figure 5F; supplemental
Figure 5D). Consistent with this, STAT3 depletion65 was found
to diminish the expression of IL-10 mRNA in ALCL cell lines
expressing IL10RA-targeting sgRNAs (Figure 5G). Furthermore,
we confirmed that IL10RA overexpression rescued STAT3
binding to the TSS of IL10/IL10RB/IRF4 in the presence of
crizotinib (supplemental Figure 5E).

Thus, our data support amodel whereby increased expression of
IL10RA promotes upregulation of the IL-10 ligand, ultimately
reversing crizotinib-mediated inhibition of STAT3 phosphory-
lation. This mechanism promotes cellular survival and resistance
to ALK TKI treatment in ALK1 ALCL (Figure 5H).

High expression of IL-10RA at diagnosis is not
predictive of clinical outcome for patients treated
with standard chemotherapy
To determine whether IL10RA is an ALK TKI–specific resistance
driver in ALK1 ALCL, we evaluated IL-10RA protein expression
levels in ALK1 ALCL patients treated with the standard ALCL99
chemotherapy treatment protocol (supplemental Tables 4 and
5). Patients who did not show evidence of disease for .10 years
after chemotherapy were classified as “no relapse” cases, and
patients with disease recurrencewithin 10 years were considered
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“relapse” cases (Figure 6A). Samples from cancer patients who
relapsed after standard ALCL99 chemotherapy did not show
significantly higher IL-10RA protein expression levels at di-
agnosis compared with patients who remained in remission
(Figure 6B). Although we observed a trend toward IL-10RA
expression levels being predictive of EFS in pediatric ALCL
patients treated with ALCL99 chemotherapy, these data were
not significant (P 5 .096) (Figure 6C-D; supplemental Figures
6A-B; supplemental Table 5). Collectively, these results indicate
that IL-10RA expression does not correlate with response or
resistance to standard ALCL99 chemotherapy. It remains to be
determined whether IL10RA overexpression as a consequence
of ALK TKI therapy resensitizes tumor cells to chemotherapy, as

well as whether cotreatment with an ALK TKI and chemotherapy
could overcome resistance.

Discussion
In the relapse setting, patients with ALK1 ALCL are commonly
treated with ALK TKIs.21,23,67-71 Here, we present findings from a
systematic large-scale functional study of resistance to ALK in-
hibition in ALCL, with the aim to inform future therapeutic ap-
proaches that prevent relapse or provide salvage options. To
narrow down targets identified in the screen to those that may be
clinically relevant, results were compared with RNA-seq data of
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Figure 5. STAT3 is activated independently of NPM1-ALK through the IL10/IL10R signaling pathway upon crizotinib inhibition. (A) Western blot analysis of differential
JAK/STAT signaling activation in response to individual nontargeting (NT) sgRNA control or IL10RA sgRNA overexpression in SUP-M2 cells. Cells were treated with DMSO or
1000 nM crizotinib for 1 hour. Phosphorylated STAT3 (pSTAT3) levels normalized to STAT3 and relative to NT sgRNA (lane 5: 1, lane 6: 8.6, lane 7: 59.1, lane 8: 67.8). Blot is
representative of 3 independent experiments. Lines indicate different blots. (B) Fold change in transcript level of the indicated STAT3 target genes relative to GAPDH and
relative to NT sgRNA in SUP-M2 cells expressing sgRNAs targeting IL10RA and treated with 1000 nM crizotinib for 1 hour. Data are means6 standard deviation (SD) (n5 3). (C)
Correlation between IL10RA and IL-10mRNA expression levels in the Human Protein Atlas RNA-seq datasets, including nontransformed (red) and cancer (gray) cell lines. (D) Fold
change in IL-10 mRNA expression levels in crizotinib-treated ALCL cell lines expressing sgRNAs inducing expression of IL10RA. Data are means6 SD (n5 3). (E) STAT3 ChIP-seq
tracks near the IL10/IL10RB/IL10RA loci in ALCL cell lines treated for 3 hours with crizotinib (300 nM) or DMSO. (F) STAT3 ChIP-seq validation by ChIP, followed by qPCR, of the
IL10/IL10RA/IL10RB and IRF4 TSSs in SUP-M2 cells treated for 3 hours with crizotinib (1000 nM) or DMSO.Data aremeans6 SD of technical replicates; experiment was performed
independently 3 times. IRF4 served as a positive control. (G) Fold change in expression levels of STAT3 and IL-10 on STAT3 shRNA induction in the indicated ALCL cell lines
compared with NT control shRNA and simultaneous expression of sgRNAs inducing overexpression of IL10RA. Data are means 6 SD (n 5 3). (H) Model summarizing the
mechanism by which IL10RA overexpression leads to ALK TKI resistance.
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relapse biopsy specimens from ALCL patients resistant to
ALK TKIs.

Our CRISPR activation screens identified several new targets but
were biased by the fold change in gene expression achieved
for a particular gene and sgRNA. The identification of STAT3
and the STAT3 target genes MYC and IRF4 by the screen
was suggestive of a potential NPM1-ALK bypass track that
could be activated by a protein upstream of STAT3 and in-
dependent of NPM1-ALK. Indeed, IL10RA, a cell surface receptor
usually upstream of STAT3, was also consistently detected and
validated as mediating decreased sensitivity to crizotinib.
Importantly, we show that IL10RA overexpression decreases
cell sensitivity to other ALK TKIs. Given that IL10RA can me-
diate activation of STAT3 activity on ligand binding, together
with IL10RB,72 we investigated the role of IL10RA further.

IL-10R forms a tetramer of 2 units of IL-10RA and 2 units of IL-10RB,
which together bind IL-10 to mediate downstream signaling via

JAK1/TYK2 and STAT3.72 Among peripheral T-cell lympho-
mas, ALCL has been associated with the highest level of IL-10
expression.73 In addition, IL-10 is known to be the most
abundant cytokine secreted by ALCL cell lines.48 Furthermore,
our study provides evidence that IL10RA/IL10RB expression is
independent of NPM1-ALK expression. Thus, we reasoned that
IL-10R subunits can be highly expressed, even in the presence of
crizotinib-mediated ALK inhibition, representing a bypass signaling
pathway.

In the future, it will be interesting to investigate how IL10RA over-
expression is achieved. This could be through decreased recycling of
IL10RAor its increased transcription, perhapsdrivenbya transcription
factor (eg, CEBPB)whose activity is not affectedbyALK inhibition.65,74

However, it is also possible that tumor cell subclones with higher
IL10RA expression levels already exist and are selected for with ALK
TKI therapy.
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Our data demonstrate that crizotinib inactivates STAT3 signaling
by inhibiting NPM1-ALK–induced phosphorylation, whereas
IL10RA expression leads to phosphorylation of STAT3, ac-
counting for renewed signal transduction downstream of STAT3.
Therefore, STAT3, pan-JAK, or TYK2 TKIs are rational candidates
for combination with ALK TKIs to overcome or prevent therapy
resistance.48,75-77 Alternatively, several pan-JAK or TYK2 TKIs
have been successfully validated in ALCL cell lines as efficacious
single agents.48

Furthermore, our results indicate that IL-10RA expression does
not correlate with response or resistance to standard chemo-
therapy,7 suggesting that resistance mechanisms, such as ele-
vated IL10RA expression developing from single-agent crizotinib
therapy, could be overcome by combining ALK-targeted therapy
with chemotherapy.
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